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Kruskal’s Algorithm

Input: An undirected weighted graph G = (V ,E ,w), w : E → R
Output: A spanning tree of G with minimum total weight

1 Makes a forest by making each vertex (an empty) tree

2 In every iteration merge two trees

3 Repeat until only one tree remains

Which trees to merge?

1 Process edges in increasing order

2 If (u, v) creates a cycle (u and v are in one tree), ignore it

3 If u and v are in two different trees, merge the corresponding trees
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Kruskal’s Algorithm

Algorithm Kruskal’s Algorithm, G = (V ,E ,w)

Sort edges in increasing order of weights ▷ let e1, e2, . . . , em be the
sorted order

F ← ∅ ▷ Begin with a forest with no edges

for i = 1 to m do

if F ∪ ei does not contain a cycle then

F ← F ∪ {ei}
return F
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Kruskal’s Algorithm: Example

G = (V,E,w)
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Initially each vertex is a tree
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(A,D) is picked for merging
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(C,E) is picked for merging
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(A,F ) is picked for merging
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(B,E) is picked for merging
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(A,B) is picked for merging (C,G) is merged skipping (F,C), (B,C), . . .

A C

B

D E

F

G

7 8
5

9 7

5

15

6

11

8

9

Imdad ullah Khan (LUMS) Kruskal’s Algorithm 4 / 7



Kruskal’s Algorithm: Correctness

Algorithm Kruskal’s Algorithm, G = (V ,E ,w)

Sort edges in increasing order of weights ▷ e1, e2, . . . , em is the sorted order
F ← ∅ ▷ Begin with a forest with no edges
for i = 1 to m do

if F ∪ ei does not contain a cycle then
F ← F ∪ {ei}

return F

Correctness: F is a spanning tree of G

F is a subgraph of G

F is connected

F has no cycle

F is spanning

Optimality: F is the minimum spanning tree of G
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Kruskal’s Algorithm: Correctness

Correctness: F is a spanning tree of G

F is a subgraph of G ▷ only used edges in G

F has no cycles ▷ only add edges not making cycles

F is connected and spans V

Consider any cut [S ,S ] in G

We will show that F crosses the cut [S ,S ]

So F has no empty cut

Since [S ,S ] is not empty in G

Edges ei1 , ei2 , . . . , eik (k ≥ 1) cross [S ,S ]

We will pick ei1 , as it cannot create cycle ▷ lonely cut lemma
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Kruskal’s Algorithm: Correctness

Optimality: F is the minimum spanning tree of G

Proof follows from the cut property

If an edge e ∈ E is the lightest edge crossing some cut [S ,S ], then e belongs to
the MST of G

When edge e = (u, v) was added, F ∪ {(u, v)} had no cycle

Let S to be the tree containing u

Let ei1 , ei2 , . . . , eik be edges crossing [S ,S ] ▷ k ≥ 1, ∵ [S ,S ] is not empty

e must be the lightest edge among ei1 , ei2 , . . . , eik
Otherwise some other edge must have been processed and S would be different

The cut property guarantees inclusion of e in the MST
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