Minimum Spanning Tree

- The Cycle Property (Red Rule)
 - Reverse Delete Algorithm for MST
- Kruskal's Algorithm for MST
- Runtime and Implementation
 - Disjoint Sets Data Structure

Imdad ullah Khan

Kruskal's Algorithm

Input: An undirected weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight

- **1** Makes a forest by making each vertex (an empty) tree
- 2 In every iteration merge two trees
- 3 Repeat until only one tree remains

Which trees to merge?

- 1 Process edges in increasing order
- **2** If (u, v) creates a cycle (u and v are in one tree), ignore it
- 3 If u and v are in two different trees, merge the corresponding trees

Algorithm Kruskal's Algorithm, G = (V, E, w)

Sort edges in increasing order of weights \triangleright let e_1, e_2, \ldots, e_m be the sorted order

 $F \leftarrow \emptyset$ \triangleright Begin with a forest with no edges

for i = 1 to m do

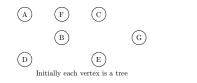
if $F \cup e_i$ does not contain a cycle then

 $F \leftarrow F \cup \{e_i\}$

return F

Kruskal's Algorithm: Example

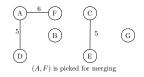
 $\begin{array}{c} (A) & -6 & (F) & 8 & (C) & 9 \\ 5 & 0 & -7 & -8 & -5 & -9 \\ -9 & -8 & -5 & -6 & -9 \\ 0 & -15 & -6 & -5 & -6 \\ 0 & -15 & -6 & -6 & -6 \\ 0 &$

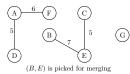


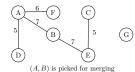


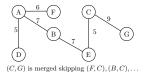
(C,E) is picked for merging

(G)









Kruskal's Algorithm: Correctness

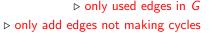
AlgorithmKruskal's Algorithm, G = (V, E, w)Sort edges in increasing order of weights $\triangleright e_1, e_2, \dots, e_m$ is the sorted order $F \leftarrow \emptyset$ \triangleright Begin with a forest with no edgesfor i = 1 to m doif $F \cup e_i$ does not contain a cycle then $F \leftarrow F \cup \{e_i\}$ return F

Correctness: F is a spanning tree of G • F is a subgraph of G • F is connected • F has no cycle • F is spanning • Optimality: F is the minimum spanning tree of G

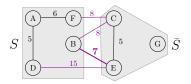
Kruskal's Algorithm: Correctness

Correctness: *F* is a spanning tree of *G*

- F is a subgraph of G
- F has no cycles
- F is connected and spans V
- Consider any cut $[S, \overline{S}]$ in G
- We will show that F crosses the cut $[S, \overline{S}]$
- So F has no empty cut
- Since $[S, \overline{S}]$ is not empty in G
- Edges $e_{i_1}, e_{i_2}, \ldots, e_{i_k} \ (k \ge 1) \ {
 m cross} \ [S, \overline{S}]$
- We will pick *e*_{*i*1}, as it cannot create cycle



▷ lonely cut lemma



Kruskal's Algorithm: Correctness

Optimality: *F* is the minimum spanning tree of *G*

Proof follows from the cut property

If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

- When edge e = (u, v) was added, $F \cup \{(u, v)\}$ had no cycle
- Let S to be the tree containing u
- Let $e_{i_1}, e_{i_2}, \ldots, e_{i_k}$ be edges crossing $[S, \overline{S}] \qquad \triangleright \ k \ge 1, \ \because \ [S, \overline{S}]$ is not empty
- *e* must be the lightest edge among $e_{i_1}, e_{i_2}, \ldots, e_{i_k}$
- Otherwise some other edge must have been processed and S would be different
- The cut property guarantees inclusion of e in the MST

