Minimum Spanning Tree

- The Cycle Property (Red Rule)
 - Reverse Delete Algorithm for MST
- Kruskal's Algorithm for MST
- Runtime and Implementation
 - Disjoint Sets Data Structure

IMDAD ULLAH KHAN

Minimum Spanning Tree: Review

- \blacksquare T = (V', E') is a spanning tree of G = (V, E) if
 - \blacksquare T is a spanning subgraph of G
 - T is a tree
- Weight of a tree T is sum of weights of its edges $w(T) = \sum_{e \in T} w(e)$
- A tree is a (minimally) connected graph with no cycles
- A tree on n vertices has n-1 edges
- A MST is a spanning tree with minimum weight

Computing MST is a classic optimization problem with many applications in graph analysis, combinatorial optimization, network formation,..

Minimum Spanning Tree Problem

Input: A weighted graph $G = (V, E, w), w : E \to \mathbb{R}$

Output: A spanning tree of G with minimum total weight

A weighted graph G

An MST of G with weight 31

An MST of G with weight 31

MST does not have to be unique

MST Algorithms

Input: An undirected weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight

We discuss two greedy algorithms to find MST in a graph

- Prim's Algorithm (1957) [also Dijkstra '59, Jarnik '30]
- Kruskal's Algorithm (1956)

We make the following assumptions

- 1 Input graph G is connected
 - Otherwise there is no spanning tree
 - Easy to check in preprocessing (e.g., BFS or DFS).
 - For disconnected graphs can find minimum spanning forest
- 2 Edge weights are distinct
 - Otherwise there can be more than one MSTs
 - Algorithms remain correct with arbitrarily breaking ties
 - Analysis is slightly complicated

Cuts in Graphs

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$, $S = \emptyset$ and S = V are trivial cuts
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$
- Empty Cut Lemma:
 - \blacksquare A graph G is disconnected iff it has a cut with no crossing edge
- Double Crossing Lemma
 - If a cycle crosses a cut, then it has to cross at least twice
- Lonely Crossing Lemma
 - If e is the only edge crossing a cut $[S, \overline{S}]$, then it is not in any cycle
- The Blue Rule
 - If an edge $e \in E$ is the lightest edge crossing some cut $[S, \overline{S}]$, then e belongs to the MST of G

The cycle property (Red Rule)

If an edge $e \in E$ is the heaviest edge on some cycle C, then e does not belong to the MST of G

This statement assume edge weights are unique. More generally,

If an edge $e \in E$ is a heaviest edge on some cycle C, then e does not belong to some MST of G

The cycle property (Red Rule): Proof

If an edge $e \in E$ is the heaviest edge on some cycle C, then e does not belong to the MST of G

Proof by contradiction:

- Let e = (u, v) be the heaviest edge across a cycle C
- Suppose $e \in T^*$, "the MST" of G
- Deleting *e* from *T** disconnects *T**

- ▷ a tree is minimally connected
- Let S = R(u) in $T^* \setminus \{e\}$, consider [S, S]
- e and another edge $f \neq e \in C$ crosses $[S, \overline{S}]$

 $T' = T^* \setminus \{e\} \cup \{f\} \text{ and } w(T') < w(T^*)$

Reverse Delete Algorithm for MST

Input: An undirected weighted graph G = (V, E, w), $w : E \to \mathbb{R}$

Output: A spanning tree of *G* with minimum total weight

Algorithm Reverse Delete Algorithm for MST

Sort edges in decreasing order of weights sorted order

$$\triangleright$$
 let e_1, e_2, \ldots, e_m be the

$$G' \leftarrow G$$

▶ Begin with the whole graph

for i = 1 to m do

if $G' \setminus \{e_i\}$ is connected **then**

$$G' \leftarrow G' \setminus \{e_i\}$$

return G'

Reverse Delete Algorithm

Algorithm Reverse Delete Algorithm for MST

```
Sort edges in decreasing order of weights G' \leftarrow G for i=1 to m do if G' \setminus \{e_i\} is connected then G' \leftarrow G' \setminus \{e_i\} return G'
```

```
\triangleright e_1, e_2, \dots, e_m is sorted order \triangleright Begin with the whole graph
```

Removing an edge does not disconnect a graph iff it is on a cycle

- Since G is connected, by design the returned graph G' is connected
- G' is a tree, : an edge from a cycle wouldn't disconnect it
- Optimality follows from the red rule

If e is the heaviest edge on a cycle, then e is not in the MST

■ Check connectivity of $G \setminus \{e_i\}$ by BFS/DFS