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Cuts in Graphs

Cuts in graphs are useful structures, helps analyzing MST algorithm

We will discuss it in network flows, complexity, randomized algorithms

A cutin G is asubset S C V

Denoted as [S, S]

>S =0 and S =V are trivial cuts, we assume that ) # S # V
A graph on n vertices has 2" cuts
An edge (u, v) is crossing the cut [S,S], ifuc SandveS
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Empty Cut Lemma

A graph G is disconnected iff it has a cut with no crossing edge (empty cut) J

Proof: if part

m Let [S,S] be an empty cut
mletucSandveS

m No crossing edge implies no path between v and v
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Empty Cut Lemma

A graph G is disconnected iff it has a cut with no crossing edge (empty cut) )

Proof: only if part

Let v and v be disconnected
Let S = R(u) (vertices reachable from u)
> S is the connected component containing u

No edge crosses the cut [S, 5]
m Otherwise the endpoint of crossing edge must be in S

e
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Double and Lonely Crossing Lemma

If a cycle crosses a cut, then it has to cross at least twice J

A edge-subset (subgraph) crossing a cut means there is an edge crossing the cut

m A cycle starting in S once reaches S must have another edge to come back
to S

m Actually any cycle must cross a cut an even number times

S

1)

If e is the only edge crossing a cut [S,S], then it is not in any cycle J
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The cut property (Blue Rule)

If an edge e € E is the lightest edge crossing some cut [S, S], then e belongs to
the MST of G

This statement assume edge weights are unique. More generally,

If an edge e € E is a lightest edge crossing some cut [S, S], then e belongs to
some MST of G
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Proof of the cut property (blue rule)

If an edge e € E is the lightest edge crossing some cut [S, S], then e belongs to
the MST of G

Proof by contradiction:
m Let T* be the “MST" of G

m Let e be lightest edge across a cut [S, S]

Suppose e ¢ T*

m There must some edge f € T* across [S, 5]
m ' otherwise T* is not connected, hence not a tree

Exchange e with f € T* to get T’
w(T) <w(T*) as w(e) < w(f)

Is T’ a spanning tree?
p g
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Proof of the cut property (blue rule)

If an edge e € E is the lightest edge crossing some cut [S, S], then e belongs to
the MST of G

Proof by contradiction:

Let T* be the "MST" of G

Let e be lightest edge across a cut [S,S]

Suppose e ¢ T*

There must some edge f € T* across [S, 5]

Exchange e with f € T* toget T/, w(T’) < w(T*) as w(e) < w(f)
Is T' a spanning tree?
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Proof of the cut property (blue rule)

If an edge e € E is the lightest edge crossing some cut [S, S], then e belongs to
the MST of G

Proof by contradiction:
Let T* be the "MST" of G
Let e be lightest edge across a cut [S,S]

Exchange e with f € T* to get T/, w(T') < w(T*) as w(e) < w(f)

m
[

m Suppose e ¢ T* == there must some edge f € T* across [S, 5]
m

m Replacing an arbitrary heavier crossing edge by e does not work
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Proof of the cut property (blue rule)

If an edge e € E is the lightest edge crossing some cut [S, S], then e belongs to
the MST of G

Proof by contradiction:

Let T* be the "MST" of G

Let e be lightest edge across a cut [S,S]

Suppose e ¢ T* = there must some edge f € T* across [S, 5]
Exchange e with f € T* to get T/, w(T') < w(T*) as w(e) < w(f)

Replacing an arbitrary heavier crossing edge by e does not work

Which edge should e replace?
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Proof of the cut property (blue rule)

If an edge e € E is the lightest edge crossing some cut [S, S], then e belongs to
the MST of G

Proof by contradiction:

m Let e be lightest edge across a cut [S, S]
m Suppose e ¢ T*, the MST of G

m Addeto T
m It must create a cycle > (a tree is maximally acyclic)
m The cycle must cross the cut at least twice > (double crossing lemma)

m Let € be another crossing edge on that cycle
m 7' =T\ {}U{e} and w(T') < w(T%)

IMDAD ULLAH KHAN (LUMS) Prim’s Algorithm 11/11



