Minimum Spanning Tree

- Minimum Spanning Tree
- Prim's Algorithm for MST
- Cuts in Graphs
- Correctness and Optimality of Prim's Algorithm
- Runtime
 - Basic Implementation
 - Vertex-Centric Implementation
 - Heap Based Implementation

Imdad ullah Khan

Minimum Spanning Tree: Review

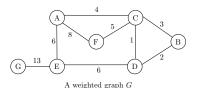
- T = (V', E') is a spanning tree of G = (V, E) if
 - \blacksquare T is a spanning subgraph of G
 - T is a tree
- Weight of a tree T is sum of weights of its edges $w(T) = \sum_{e \in T} w(e)$
- A tree is a connected graph with no cycles
- A tree on n vertices has n-1 edges
- A MST is a spanning tree with minimum weight

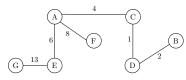
Computing MST is a classic optimization problem with many applications in graph analysis, combinatorial optimization, network formation,..

Minimum Spanning Tree Problem

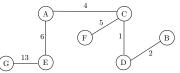
Input: A weighted graph G = (V, E, w), $w : E \to \mathbb{R}$

Output: A spanning tree of *G* with minimum total weight

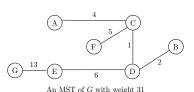




A spanning tree of G with weight 34



An MST of G with weight 31



MST does not have to be unique

MST Algorithms

Input: An undirected weighted graph G = (V, E, w), $w : E \to \mathbb{R}$ **Output:** A spanning tree of G with minimum total weight

We discuss two greedy algorithms to find MST in a graph

- Prim's Algorithm (1957) [also Dijkstra '59, Jarnik '30]
- Kruskal's Algorithm (1956)

We make the following assumptions

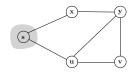
- 1 Input graph G is connected
 - Otherwise there is no spanning tree
 - Easy to check in preprocessing (e.g., BFS or DFS).
 - For disconnected graphs can find minimum spanning forest
- Edge weights are distinct
 - Otherwise there can be more than one MSTs
 - Algorithms remain correct with arbitrarily breaking ties
 - Analysis is slightly complicated

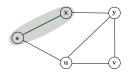
Prim's Algorithm

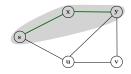
- Maintains a set $R \subset V$ and a tree T spanning vertices in R
- V(T) = R \triangleright vertices spanned by T
- Grow R by adding one vertex v in every iteration
- lacktriangle Grow T by adding an edge connecting v to some vertex in current R
- Initially $R = \{s\}$, an arbitrary vertex and $T = \emptyset$
- Select a minimum crossing edge from R to \overline{R} \triangleright (greedy criteria)

$$\underset{e=(u,v),u\in R,v\notin R}{\operatorname{arg\,min}} w(e)$$

Add v to R and e to T





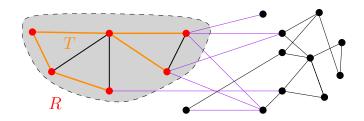


Prim's Algorithm

Algorithm Prim's Algorithm for MST in G = (V, E, w)

$$R \leftarrow \{s\}$$
 $\triangleright s \in V$ an arbitrary vertex $T \leftarrow \emptyset$ \triangleright Begin with an empty tree while $R \neq V$ do

Get $e = (u, v), \ u \in R, v \notin R$ with minimum $w(uv)$
 $T \leftarrow T \cup \{e\}$
 $R \leftarrow R \cup \{v\}$



Prim's Algorithm: Example

