Algorithms

Single Source Shortest Path

- Weighted Graphs and Shortest Paths
- Dijkstra Algorithm
- Proof of Correctness
- Runtime
- Basic Implementation
- Vertex-Centric Implementation
- Heap Based Implementation

Imdad ullah Khan

Dijkstra Algorithm

$$
\begin{aligned}
& d[1 \ldots n] \leftarrow[\infty \ldots \infty] \\
& d[s] \leftarrow 0 \quad R \leftarrow\{s\} \\
& \text { while } R \neq V \text { do } \\
& \text { Select } v \in \bar{R} \\
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d(s, v)
\end{aligned}
$$

- Which vertex from \bar{R} to add to R ?
- The vertex $v \in \bar{R}$ that is closest to s

■ Such a v must be at the "frontier" of \bar{R}

Restrict search to "single edge extensions" of paths to $u \in R$
■ Dijkstra assigns a score to each crossing edge

$$
\operatorname{score}(u, v)=d[u]+w(u v) \quad \text { for } \quad(u, v) \in E, u \in R, v \notin R
$$

- Add a frontier vertex adjacent through minimum scoring edge

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$

$$
\begin{aligned}
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d[u]+w(u v)
\end{aligned}
$$

Dijkstra Algorithm with paths

Record predecessor relationships (sources of used edges)
Implicitly builds a tree (shortest path tree)
Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$\operatorname{prev}[1 \ldots n] \leftarrow[n u l l$...null]
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d[u]+w(u v)$
$\operatorname{prev}[v] \leftarrow u \quad \triangleright$ predecessor is the vertex whose path is single-edge extended

Dijkstra Algorithm: Proof of Correctness

One example (or millions) doesn't prove correctness

With source A, algorithm greedily selects C then B
Selected paths are $A-C$ and $A-B$
The shortest path from A to C is $A-B-C$
Where does the algorithm use the non-negative weights

Need a proof!

Dijkstra Algorithm: Proof of Correctness

In every iteration $i=|R|, \quad \forall u \in R, \quad d[u]=d(s, u)$

- Proof by induction on i
- Base case: $i=0$
- $R=\{s\}$
- $d[s]=0$
- $d[s]=0=d(s, s)$, because all weights are ≥ 0

Dijkstra Algorithm: Proof of Correctness

In every iteration $i=|R|, \quad \forall u \in R, \quad d[u]=d(s, u)$

- Assume the statement is true from $i \leq k-1$
- Suppose v is added to R in the k th iteration using edge (u, v)

■ Let the path made for v be $P=s, \ldots, u, v$
■ We show $d[v]=w(P) \leq w\left(P^{\prime}\right)$ for any other $s-v$ path P^{\prime}

Dijkstra Algorithm: Proof of Correctness

In every iteration $i=|R|, \forall u \in R, d[u]=d(s, u)$

- Assume the statement is true from $i \leq k-1$
- Suppose v is added to R in the k th iteration using edge (u, v)

■ Let the path made for v be $P=s, \ldots, u, v$
■ We show $d[v]=w(P) \leq w\left(P^{\prime}\right)$ for any other $s-v$ path P^{\prime}

Dijkstra Algorithm: Proof of Correctness

In every iteration $i=|R|, \forall u \in R, d[u]=d(s, u)$

- Assume the statement is true from $i \leq k-1$
- Suppose v is added to R in the k th iteration using edge (u, v)

■ Let the path made for v be $P=s, \ldots, u, v$
■ We show $d[v]=w(P) \leq w\left(P^{\prime}\right)$ for any other $s-v$ path P^{\prime}

Dijkstra Algorithm: Proof of Correctness

In every iteration $i=|R|, \forall u \in R, d[u]=d(s, u)$

- Assume the statement is true from $i \leq k-1$

■ Suppose v is added to R in the k th iteration using edge (u, v)
■ Let the path made for v be $P=s, \ldots, u, v$
■ We show $d[v]=w(P) \leq w\left(P^{\prime}\right)$ for any other $s-v$ path P^{\prime}

$$
w\left(P^{\prime}\right) \geq d[x]+w(x y) \geq d[u]+w(u v)=w(P)
$$

