Algorithms

Single Source Shortest Path

- Weighted Graphs and Shortest Paths

■ Dijkstra Algorithm

- Proof of Correctness
- Runtime
- Basic Implementation
- Vertex-Centric Implementation
- Heap Based Implementation

Imdad ullah Khan

Shortest Paths

Weight of a path in weighted graphs is sum of weights of its edges

Shortest path from s to t is a path of smallest weight

Distance from s to $t, \mathbf{d}(\mathbf{s}, \mathbf{t})$: weight of the shortest $s-t$ path

There can be multiple shortest paths

Shortest Path Problems

1 Shortest $s-t$ path:
Given $G=(V, E, w)$ and $s, t \in V$, find a shortest path from s to t

- For an undirected graph, it will be a path between s and t
- Unweighted graphs are weighted graphs with all edge weights $=1$
- Shortest path is not unique, any path with minimum weight will work

2 Single source shortest paths (SSSP):
Given $G=(V, E, w)$ and $s \in V$, find shortest paths from s to all $t \in V$

- Problems of undirected and unweighted graphs are covered as above
- It includes the first problem

We focus on SSSP

SSSP Problem

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all vertices $v \in V$
For unweighted graphs (unit weights) BFS from s will work
\triangleright BFS running time: $O(n+m)$
For weighted graph replace each edge e by a directed path of $w(e)$ unit weight edges

■ What if weights are not integers or are negative

- Blows up size of the graph a lot

Dijkstra Algorithm

Input: A weighted graph G and a source vertex $s \in V$
Output: Shortest paths from s to all vertices $v \in V$
Dijkstra's algorithm solves SSSP for both directed and undirected graphs
Assumptions:
1 All vertices are reachable from s

- Otherwise there is no shortest path (distance $=\infty$)

■ Easy to get $R(s)$ in preprocessing (e.g., BFS or DFS)
2 All edge weights are non-negative

- Bellman-Ford algorithm deals with negative weights

Dijkstra Algorithm

- First step: only find distances $d[1 \ldots n] \quad d[i]=d\left(s, v_{i}\right)$
- $d[s]=0$

■ Maintains a set $R \subset V$ (known region), $\quad d[x \in R]$ is finalized

- Initially $R=\{s\}$ and iteratively add one vertex to R

$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0$
$R \leftarrow\{s\}$
while $R \neq V$ do
Select $v \in \bar{R}$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d(s, v)$

Dijkstra Algorithm

- First step: only find distances $d[1 \ldots n] \quad d[i]=d\left(s, v_{i}\right)$
- $d[s]=0$

■ Maintains a set $R \subset V$ (known region), $\quad d[x \in R]$ is finalized
■ Initially $R=\{s\}$ and iteratively add one vertex to R

$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0$
$R \leftarrow\{s\}$
while $R \neq V$ do
Select $v \in \bar{R}$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d(s, v)$

Dijkstra Algorithm

- First step: only find distances $d[1 \ldots n] \quad d[i]=d\left(s, v_{i}\right)$
- $d[s]=0$

■ Maintains a set $R \subset V$ (known region), $\quad d[x \in R]$ is finalized
■ Initially $R=\{s\}$ and iteratively add one vertex to R

$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0$
$R \leftarrow\{s\}$
while $R \neq V$ do
Select $v \in \bar{R}$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d(s, v)$

Dijkstra Algorithm

- First step: only find distances $d[1 \ldots n] \quad d[i]=d\left(s, v_{i}\right)$
- $d[s]=0$

■ Maintains a set $R \subset V$ (known region), $\quad d[x \in R]$ is finalized
■ Initially $R=\{s\}$ and iteratively add one vertex to R

$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0$
$R \leftarrow\{s\}$
while $R \neq V$ do
Select $v \in \bar{R}$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d(s, v)$

Dijkstra Algorithm

- First step: only find distances $d[1 \ldots n] \quad d[i]=d\left(s, v_{i}\right)$
- $d[s]=0$

■ Maintains a set $R \subset V$ (known region), $\quad d[x \in R]$ is finalized
■ Initially $R=\{s\}$ and iteratively add one vertex to R

$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0$
$R \leftarrow\{s\}$
while $R \neq V$ do
Select $v \in \bar{R}$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d(s, v)$

Dijkstra Algorithm

- First step: only find distances $d[1 \ldots n] \quad d[i]=d\left(s, v_{i}\right)$
- $d[s]=0$

■ Maintains a set $R \subset V$ (known region), $\quad d[x \in R]$ is finalized

- Initially $R=\{s\}$ and iteratively add one vertex to R

$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0$
$R \leftarrow\{s\}$
while $R \neq V$ do
Select $v \in \bar{R}$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d(s, v)$

Dijkstra Algorithm: Greedy Criteria

$$
\begin{aligned}
& d[1 \ldots n] \leftarrow[\infty \ldots \infty] \\
& d[s] \leftarrow 0 \quad R \leftarrow\{s\} \\
& \text { while } R \neq V \text { do } \\
& \text { Select } v \in \bar{R} \\
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d(s, v) \\
& \hline
\end{aligned}
$$

- Which vertex from \bar{R} to add to R ?
- The vertex $v \in \bar{R}$ that is closest to s
- Such a v must be at the "frontier" of \bar{R}

Shortest path to $v \in \bar{R}$, closest to s

- Let $v \in \bar{R}$ be the closest to s and let a shortest $s-v$ path be s, \ldots, u, v

Dijkstra Algorithm: Greedy Criteria

$$
\begin{aligned}
& d[1 \ldots n] \leftarrow[\infty \ldots \infty] \\
& d[s] \leftarrow 0 \quad R \leftarrow\{s\} \\
& \text { while } R \neq V \text { do } \\
& \text { Select } v \in \bar{R} \\
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d(s, v) \\
& \hline
\end{aligned}
$$

- Which vertex from \bar{R} to add to R ?
- The vertex $v \in \bar{R}$ that is closest to s
- Such a v must be at the "frontier" of \bar{R}

Shortest path to $v \in \bar{R}$, closest to s
■ Let $v \in \bar{R}$ be the closest to s and let a shortest $s-v$ path be s, \ldots, u, v
■ $w(u v) \geq 0 \Longrightarrow d(s, u) \leq d(s, v) \Longrightarrow u$ is closer to s than $v \Longrightarrow u \in R$

Dijkstra Algorithm: Greedy Criteria

$$
\begin{aligned}
& d[1 \ldots n] \leftarrow[\infty \ldots \infty] \\
& d[s] \leftarrow 0 \quad R \leftarrow\{s\} \\
& \text { while } R \neq V \text { do } \\
& \text { Select } v \in \bar{R} \\
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d(s, v) \\
& \hline
\end{aligned}
$$

- Which vertex from \bar{R} to add to R ?
- The vertex $v \in \bar{R}$ that is closest to s
- Such a v must be at the "frontier" of \bar{R}

Shortest path to $v \in \bar{R}$, closest to s
■ Let $v \in \bar{R}$ be the closest to s and let a shortest $s-v$ path be s, \ldots, u, v
$\square w(u v) \geq 0 \Longrightarrow d(s, u) \leq d(s, v) \Longrightarrow u$ is closer to s than $v \Longrightarrow u \in R$

- Otherwise we get contradiction to v being closest to s in \bar{R}

Dijkstra Algorithm: Greedy Criteria

$$
\begin{aligned}
& d[1 \ldots n] \leftarrow[\infty \ldots \infty] \\
& d[s] \leftarrow 0 \quad R \leftarrow\{s\} \\
& \text { while } R \neq V \text { do } \\
& \text { Select } v \in \bar{R} \\
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d(s, v) \\
& \hline
\end{aligned}
$$

- Which vertex from \bar{R} to add to R ?
- The vertex $v \in \bar{R}$ that is closest to s
- Such a v must be at the "frontier" of \bar{R}

Shortest path to $v \in \bar{R}$, closest to s

- Let $v \in \bar{R}$ be the closest to s and let a shortest $s-v$ path be s, \ldots, u, v
- $w(u v) \geq 0 \Longrightarrow d(s, u) \leq d(s, v) \Longrightarrow u$ is closer to s than $v \Longrightarrow u \in R$
- Otherwise we get contradiction to v being closest to s in \bar{R}
- This implies that v is only one edge away from R, i.e. (u, v)

Dijkstra Algorithm: Greedy Criteria

$$
\begin{aligned}
& d[1 \ldots n] \leftarrow[\infty \ldots \infty] \\
& d[s] \leftarrow 0 \quad R \leftarrow\{s\} \\
& \text { while } R \neq V \text { do } \\
& \text { Select } v \in \bar{R} \\
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d(s, v) \\
& \hline
\end{aligned}
$$

- Which vertex from \bar{R} to add to R ?
- The vertex $v \in \bar{R}$ that is closest to s
- Such a v must be at the "frontier" of \bar{R}

Restrict search to "single edge extensions" of paths to $u \in R$
■ Dijkstra assigns a score to each crossing edge

$$
\operatorname{score}(u, v)=d[u]+w(u v) \quad \text { for } \quad(u, v) \in E, u \in R, v \notin R
$$

- Add a frontier vertex adjacent through minimum scoring edge

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$ $d[v] \leftarrow d[u]+w(u v)$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$ $d[v] \leftarrow d[u]+w(u v)$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d[u]+w(u v)$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$ $d[v] \leftarrow d[u]+w(u v)$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d[u]+w(u v)$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$

$$
\begin{aligned}
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d[u]+w(u v)
\end{aligned}
$$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$

$$
\begin{aligned}
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d[u]+w(u v)
\end{aligned}
$$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$

$$
\begin{aligned}
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d[u]+w(u v)
\end{aligned}
$$

Dijkstra Algorithm

Algorithm Dijkstra's Algorithm for distances from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$

$$
\begin{aligned}
& R \leftarrow R \cup\{v\} \\
& d[v] \leftarrow d[u]+w(u v)
\end{aligned}
$$

Dijkstra Algorithm with paths

Record predecessor relationships (sources of used edges) Implicitly builds a tree (shortest path tree)

Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices

$$
\begin{aligned}
& d[1 \ldots n] \leftarrow[\infty \ldots \infty] \\
& \operatorname{prev}[1 \ldots n] \leftarrow[\text { null } \ldots \text { null }] \\
& d[s] \leftarrow 0 \\
& R \leftarrow\{s\}
\end{aligned}
$$

while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d[u]+w(u v)$
$\operatorname{prev}[v] \leftarrow u \quad \triangleright$ predecessor is the vertex whose path is single-edge extended

Dijkstra Algorithm with paths

Algorithm Dijkstra's Algorithm for Shortest Paths from s to all vertices
$d[1 \ldots n] \leftarrow[\infty \ldots \infty]$
$\operatorname{prev}[1 \ldots n] \leftarrow[$ null \ldots null $]$
$d[s] \leftarrow 0 \quad R \leftarrow\{s\}$
while $R \neq V$ do
Select $e=(u, v), u \in R, v \notin R$, with minimum $d[u]+w(u v)$
$R \leftarrow R \cup\{v\}$
$d[v] \leftarrow d[u]+w(u v)$
$\operatorname{prev}[v] \leftarrow u \quad \triangleright$ predecessor is the vertex whose path is single-edge extended

