# Single Source Shortest Path

- Weighted Graphs and Shortest Paths
- Dijkstra Algorithm
- Proof of Correctness
- Runtime
  - Basic Implementation
  - Vertex-Centric Implementation
  - Heap Based Implementation

#### IMDAD ULLAH KHAN

### Shortest Paths

Weight of a path in weighted graphs is sum of weights of its edges



#### Shortest path from s to t is a path of smallest weight

Distance from s to t, d(s,t): weight of the shortest s-t path

There can be multiple shortest paths

### Shortest Path Problems

#### 1 Shortest s - t path:

Given G = (V, E, w) and  $s, t \in V$ , find a shortest path from s to t

- For an undirected graph, it will be a path between s and t
- lacksquare Unweighted graphs are weighted graphs with all edge weights =1
- Shortest path is not unique, any path with minimum weight will work

#### 2 Single source shortest paths (SSSP):

Given G = (V, E, w) and  $s \in V$ , find shortest paths from s to all  $t \in V$ 

- Problems of undirected and unweighted graphs are covered as above
- It includes the first problem

#### We focus on SSSP

#### SSSP Problem

**Input:** A weighted graph G and a source vertex  $s \in V$  **Output:** Shortest paths from s to all vertices  $v \in V$ 

For unweighted graphs (unit weights) BFS from s will work

 $\triangleright$  BFS running time: O(n+m)

For weighted graph replace each edge e by a directed path of w(e) unit weight edges





- What if weights are not integers or are negative
- Blows up size of the graph a lot

**Input:** A weighted graph G and a source vertex  $s \in V$  **Output:** Shortest paths from s to all vertices  $v \in V$ 

Dijkstra's algorithm solves SSSP for both directed and undirected graphs

#### **Assumptions:**

- 1 All vertices are reachable from s
  - lacksquare Otherwise there is no shortest path (distance  $=\infty$ )
  - Easy to get R(s) in preprocessing (e.g., BFS or DFS)
- 2 All edge weights are non-negative
  - Bellman-Ford algorithm deals with negative weights

- First step: only find distances d[1...n]  $d[i] = d(s, v_i)$
- d[s] = 0
- Maintains a set  $R \subset V$  (known region),  $d[x \in R]$  is finalized
- Initially  $R = \{s\}$  and iteratively add one vertex to R

$$d[1 ... n] \leftarrow [\infty ... \infty]$$

$$d[s] \leftarrow 0$$

$$R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ v \in \overline{R}$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d(s, v)$$



- First step: only find distances d[1...n]  $d[i] = d(s, v_i)$
- d[s] = 0
- Maintains a set  $R \subset V$  (known region),  $d[x \in R]$  is finalized
- Initially  $R = \{s\}$  and iteratively add one vertex to R

$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0$$

$$R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ v \in \overline{R}$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d(s, v)$$



- First step: only find distances d[1...n]  $d[i] = d(s, v_i)$
- d[s] = 0
- Maintains a set  $R \subset V$  (known region),  $d[x \in R]$  is finalized
- Initially  $R = \{s\}$  and iteratively add one vertex to R

$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0$$

$$R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ v \in \overline{R}$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d(s, v)$$



- First step: only find distances d[1...n]  $d[i] = d(s, v_i)$
- d[s] = 0
- Maintains a set  $R \subset V$  (known region),  $d[x \in R]$  is finalized
- Initially  $R = \{s\}$  and iteratively add one vertex to R

$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0$$

$$R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ v \in \overline{R}$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d(s, v)$$



- First step: only find distances d[1...n]  $d[i] = d(s, v_i)$
- d[s] = 0
- Maintains a set  $R \subset V$  (known region),  $d[x \in R]$  is finalized
- Initially  $R = \{s\}$  and iteratively add one vertex to R

$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0$$

$$R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ v \in \overline{R}$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d(s, v)$$



- First step: only find distances d[1...n]  $d[i] = d(s, v_i)$
- d[s] = 0
- Maintains a set  $R \subset V$  (known region),  $d[x \in R]$  is finalized
- Initially  $R = \{s\}$  and iteratively add one vertex to R

$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0$$

$$R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ v \in \overline{R}$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d(s, v)$$





$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \quad R \leftarrow \{s\}$$
while  $R \neq V$  do
$$\frac{\mathbf{Select} \ v \in \overline{R}}{R} \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d(s, v)$$

- Which vertex from  $\overline{R}$  to add to R?
- The vertex  $v \in \overline{R}$  that is closest to s
- Such a v must be at the "frontier" of  $\overline{R}$





- Let  $v \in \overline{R}$  be the closest to s and let a shortest s v path be  $s, \ldots, u, v$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \quad R \leftarrow \{s\}$$
while  $R \neq V$  do
$$\frac{\text{Select } v \in \overline{R}}{R \leftarrow R \cup \{v\}}$$

$$d[v] \leftarrow d(s, v)$$

- Which vertex from  $\overline{R}$  to add to R?
- The vertex  $v \in \overline{R}$  that is closest to s
- Such a v must be at the "frontier" of  $\overline{R}$





- Let  $v \in \overline{R}$  be the closest to s and let a shortest s v path be  $s, \ldots, u, v$
- $w(uv) \ge 0 \implies d(s,u) \le d(s,v) \implies u$  is closer to s than  $v \implies u \in R$



$$d[1 ... n] \leftarrow [\infty ... \infty]$$

$$d[s] \leftarrow 0 \quad R \leftarrow \{s\}$$
while  $R \neq V$  do
$$\begin{array}{c} \textbf{Select} \quad v \in \overline{R} \\ R \leftarrow R \cup \{v\} \\ d[v] \leftarrow d(s, v) \end{array}$$

- Which vertex from  $\overline{R}$  to add to R?
- The vertex  $v \in \overline{R}$  that is closest to s
- Such a v must be at the "frontier" of  $\overline{R}$





- Let  $v \in \overline{R}$  be the closest to s and let a shortest s v path be  $s, \ldots, u, v$
- $w(uv) \ge 0 \implies d(s,u) \le d(s,v) \implies u$  is closer to s than  $v \implies u \in R$
- Otherwise we get contradiction to v being closest to s in  $\overline{R}$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \quad R \leftarrow \{s\}$$
while  $R \neq V$  do
$$\begin{array}{c} \text{Select } v \in \overline{R} \\ R \leftarrow R \cup \{v\} \\ d[v] \leftarrow d(s, v) \end{array}$$

- Which vertex from  $\overline{R}$  to add to R?
- The vertex  $v \in \overline{R}$  that is closest to s
- Such a v must be at the "frontier" of  $\overline{R}$





- Let  $v \in \overline{R}$  be the closest to s and let a shortest s v path be  $s, \ldots, u, v$
- $w(uv) \ge 0 \implies d(s,u) \le d(s,v) \implies u$  is closer to s than  $v \implies u \in R$
- Otherwise we get contradiction to v being closest to s in  $\overline{R}$
- This implies that v is only one edge away from R, i.e. (u, v)



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \quad R \leftarrow \{s\}$$
while  $R \neq V$  do
$$\begin{array}{c} \textbf{Select} \quad v \in \overline{R} \\ R \leftarrow R \cup \{v\} \\ d[v] \leftarrow d(s, v) \end{array}$$

- Which vertex from  $\overline{R}$  to add to R?
- The vertex  $v \in \overline{R}$  that is closest to s
- Such a v must be at the "frontier" of  $\overline{R}$



Restrict search to "single edge extensions" of paths to  $u \in R$ 

Dijkstra assigns a score to each crossing edge

$$score(u, v) = d[u] + w(uv)$$
 for  $(u, v) \in E, u \in R, v \notin R$ 

• Add a frontier vertex adjacent through minimum scoring edge

$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
while  $R \neq V$  do
$$\text{Select } e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



$$d[1 \dots n] \leftarrow [\infty \dots \infty]$$

$$d[s] \leftarrow 0 \qquad R \leftarrow \{s\}$$
**while**  $R \neq V$  **do**

$$Select \ e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$

$$R \leftarrow R \cup \{v\}$$

$$d[v] \leftarrow d[u] + w(uv)$$



# Dijkstra Algorithm with paths

#### Record predecessor relationships (sources of used edges)

Implicitly builds a tree (shortest path tree)

### **Algorithm** Dijkstra's Algorithm for Shortest Paths from s to all vertices

```
d[1\dots n] \leftarrow [\infty \dots \infty]
prev[1\dots n] \leftarrow [null \dots null]
d[s] \leftarrow 0
R \leftarrow \{s\}
while R \neq V do
Select e = (u, v), u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)
R \leftarrow R \cup \{v\}
d[v] \leftarrow d[u] + w(uv)
prev[v] \leftarrow u \quad \triangleright \text{ predecessor is the vertex whose path is single-edge extended}
```

# Dijkstra Algorithm with paths

### **Algorithm** Dijkstra's Algorithm for Shortest Paths from s to all vertices

$$d[1\dots n] \leftarrow [\infty \dots \infty]$$
 
$$prev[1\dots n] \leftarrow [null \dots null]$$
 
$$d[s] \leftarrow 0 \quad R \leftarrow \{s\}$$
 
$$\mathbf{while} \ R \neq V \ \mathbf{do}$$
 
$$\text{Select } e = (u, v), \ u \in R, v \notin R, \text{ with minimum } d[u] + w(uv)$$
 
$$R \leftarrow R \cup \{v\}$$
 
$$d[v] \leftarrow d[u] + w(uv)$$
 
$$prev[v] \leftarrow u \quad \triangleright \text{ predecessor is the vertex whose path is single-edge extended}$$

