Algorithms

Design Paradigm: Divide and Conquer

m Finding Rank - Merge Sort
m Karatsuba Algorithm for Integers Multiplication
m Counting Inversions

m Finding Closest Pair in Plane

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 1/13

Closest Pair of Points Problem

Given n points in a plane, find a pair of points with minimum Euclidean
distance between them

For pi = (xi,yi) and p; = (x;,y;)

d(pinp) = \/(xi =)+ (i — ;)2
> can be computed in O(1)

Applications: Computer graphics, computer vision, geographic
information systems, molecular modeling, air traffic control

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 2/13

Closest Pair of Points Problem

Input: P = {p1,p2,...,pn}: a set of n distinct points in R?
Output: A pair of points in P that minimizes d(p, q)

1-dimensional space:

Sort points > O(nlog n)
Find closest adjacent points > O(n) e A

2-dimensional space:

Brute force Algorithm:

FINDMIN among all (5) pairwise distances > O(n?) comparisons

Goal: O(nlog n) time algorithm for 2-D version

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 3/13

Closest Pair: Divide & Conquer

e Divide point set into two halves

e Find closest pair in each part recursively > return closest of the two

Will it find closest pair?

IMDAD ULLAH KHAN (LUMS) Divide & Conquer

Closest Pair: Divide & Conquer

e Divide point set into two halves
e Find closest pair in each part recursively
e Find crossing closest pair > return closest of the three

This will find the overall closest pair

IMDAD ULLAH KHAN (LUMS) Divide & Conquer

Closest Pair: Divide & Conquer

Divide point set into two halves

Find closest pair in each part recursively A Ty
Find closest crossing pair I
Return the closest of the 3 pairs

Algorithm Divide & Conquer based Closest pair: returns distance

function CLOSEST-PAIR(P)
SPLIT P into left and right halves, P, and Pgr
d1 < CLOSEST-PAIR(P;)
J2 < CLOSEST-PAIR(PR)
03 < FINDMIN distance over all pairs in P, X Pr
return MIN{d1, 6, 03}

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 6/13

Closest Pair: Divide & Conquer

Divide point set into two halves o

Find closest pair in each part recursively . o Y
Find closest crossing pair .

Return the closest of the 3 pairs

Algorithm Divide & Conquer based Closest pair: returns distance

function CLOSEST-PAIR(P) > T(n)
SPLIT P into left and right halves, P, and Pg > “O(n)"
d1 < CLOSEST-PAIR(P,) > T(7/2)
J2 +— CLOSEST-PAIR(PR) > T(n/2)
3 < FINDMIN distance over all pairs in P, x Pg > n/2 x nf2 = O(n?)

return MIN{d1, 62,3}

T(n)=2T (n/2) + O(n2) = T(n)= O(n2)

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 7/13

Closest Pair: Divide & Conquer

Critical observation:

) :IIliI’l(617 62)

closest crossing pair must be

Find closest crossing pair?
Consider points within § strip of the
‘x-bisecting line’

Closest crossing pair cannot be

m it not only (possibly) reduces the search space

m but gives us a very efficient algorithm

IMDAD ULLAH KHAN (LUMS)

Divide & Conquer

8/13

Closest Pair: Divide & Conquer

To find closest crossing pair (pj, pj) such that d(p;, p;) < ¢
m Consider points within § of the bisecting line (in both directions)

m Sort points in 20 strip by their y-coordinates, S, : s1,5,. ..,

m Starting from lowest point s; € S,

m For each s; only check the next 7 points in Sy, si11,5i42,...,5i47
° qi.‘é_’ 6:min(61,52)
[- ;
/e g
. |®
e |® .
. |®
) .

IMDAD ULLAH KHAN (LUMS)

Divide & Conquer 9/13

Closest Pair: Grid Scan

m Defn: Let s; be a point in the 2§-strip
with ith smallest y-coordinate

m Claim: If |i-j| > 7, then d(s;,s;) > 0

m Proof:

m No two points lie in the same 9/2 x 6/2 box

m Two points, at least 2 rows apart, have
distance > 2(%/2)

IMDAD ULLAH KHAN (LUMS) Divide & Conquer

@y

.®

5/2

5/2

10/13

Closest Pair: Algorithm

Algorithm Divide & Conquer strategy for Closest pair: returns distance

function CLOSEST-PAIR(P)
Compute bisecting line by
SPLIT P into left and right halves, P, and Pgr
d1 + CLOSEST-PAIR(PL)
J < CLOSEST-PAIR(PR)
d = min(d1,67)
Delete all points further than § from separation line by
SORT remaining points by y-coordinate

Scan points in y-order and compare distance between each point and its next
7 neighbors. If any of these distances is less than §, update §

return ¢

Getting the actual pair realzing the distance ¢ is easy

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 11/13

Closest Pair: Correctness

Claim: Let p, g be pair having d(p,q) < ¢
Then:

m p and g are members of S,

m Closest crossing pair must be o °

m p and g are at most 7 positions apart in S,

m Grid Scan is a proof of this

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 12/13

Closest Pair: Runtime Analysis

Running Time:

T(n) < 2T<g> + O(nlogn) = T(n) = O(nlog?®n)

log n times sorting

Can we acheive O(nlogn)?

m Pre-sort all points by x and y-coordinates

m Filter sorted lists to find the points within 0 of b; (no need to sort in
every step to get S,)

T(n) < 2T<g) +0(n) = T(n) = O(nlogn)

IMDAD ULLAH KHAN (LUMS) Divide & Conquer 13/13

