
Algorithms

Design Paradigm: Divide and Conquer

Finding Rank - Merge Sort

Karatsuba Algorithm for Integers Multiplication

Counting Inversions

Finding Closest Pair in Plane

Imdad ullah Khan

Imdad ullah Khan (LUMS) Divide & Conquer 1 / 13

Closest Pair of Points Problem

Given n points in a plane, find a pair of points with minimum Euclidean
distance between them

For pi = (xi , yi) and pj = (xj , yj)

d(pi , pj) =
√

(xi − xj)2 + (yi − yj)2

. can be computed in O(1)

Applications: Computer graphics, computer vision, geographic
information systems, molecular modeling, air traffic control

Imdad ullah Khan (LUMS) Divide & Conquer 2 / 13

Closest Pair of Points Problem

Input: P = {p1, p2, . . . , pn}: a set of n distinct points in R2

Output: A pair of points in P that minimizes d(p, q)

1-dimensional space:

1 Sort points . O(n log n)

2 Find closest adjacent points . O(n)

2-dimensional space:

Brute force Algorithm:

findmin among all
(n
2

)
pairwise distances . O(n2) comparisons

Goal: O(n log n) time algorithm for 2-D version

Imdad ullah Khan (LUMS) Divide & Conquer 3 / 13

Closest Pair: Divide & Conquer

• Divide point set into two halves

• Find closest pair in each part recursively . return closest of the two

• Find crossing closest pair

20
12

Will it find closest pair?

Imdad ullah Khan (LUMS) Divide & Conquer 4 / 13

Closest Pair: Divide & Conquer

• Divide point set into two halves

• Find closest pair in each part recursively

• Find crossing closest pair . return closest of the three

12

209

This will find the overall closest pair

Imdad ullah Khan (LUMS) Divide & Conquer 5 / 13

Closest Pair: Divide & Conquer

1 Divide point set into two halves

2 Find closest pair in each part recursively

3 Find closest crossing pair

4 Return the closest of the 3 pairs

12

209

Algorithm Divide & Conquer based Closest pair: returns distance

function closest-pair(P)

split P into left and right halves, PL and PR

δ1 ← closest-pair(PL)

δ2 ← closest-pair(PR)

δ3 ← findmin distance over all pairs in PL × PR

return min{δ1, δ2, δ3}

Imdad ullah Khan (LUMS) Divide & Conquer 6 / 13

Closest Pair: Divide & Conquer

1 Divide point set into two halves

2 Find closest pair in each part recursively

3 Find closest crossing pair

4 Return the closest of the 3 pairs

12

209

Algorithm Divide & Conquer based Closest pair: returns distance

function closest-pair(P) . T (n)

split P into left and right halves, PL and PR . “O(n)”

δ1 ← closest-pair(PL) . T (n/2)

δ2 ← closest-pair(PR) . T (n/2)

δ3 ← findmin distance over all pairs in PL × PR . n/2× n/2 = O(n2)

return min{δ1, δ2, δ3}

T (n) = 2T (n/2) + O(n2) =⇒ T (n) = O(n2)

Imdad ullah Khan (LUMS) Divide & Conquer 7 / 13

Closest Pair: Divide & Conquer

δ1
δ2

δδ δ =min(δ1, δ2)

Find closest crossing pair?

Consider points within δ strip of the
‘x-bisecting line’

Closest crossing pair cannot be

• •
• •
• •
• •

Critical observation: closest crossing pair must be • •

it not only (possibly) reduces the search space

but gives us a very efficient algorithm

Imdad ullah Khan (LUMS) Divide & Conquer 8 / 13

Closest Pair: Divide & Conquer

To find closest crossing pair (pi , pj) such that d(pi , pj) < δ

Consider points within δ of the bisecting line (in both directions)

Sort points in 2δ strip by their y-coordinates, Sy : s1, s2, . . . ,

Starting from lowest point s1 ∈ Sy

For each si only check the next 7 points in Sy , si+1, si+2, . . . , si+7

δ1
δ2

δδ δ =min(δ1, δ2)

S2

S3

S4

S5

S6

S7

S8

S9

S10

S1

Imdad ullah Khan (LUMS) Divide & Conquer 9 / 13

Closest Pair: Grid Scan

Defn: Let si be a point in the 2δ-strip
with i th smallest y-coordinate

Claim: If |i-j | ≥ 7, then d(si , sj) ≥ δ
Proof:

No two points lie in the same δ/2× δ/2 box

Two points, at least 2 rows apart, have
distance ≥ 2(δ/2)

δ/2

δ/2

δ

i

j

S3 S2

S4

S6

S9

S11

Sy︷ ︸︸ ︷

δ

Imdad ullah Khan (LUMS) Divide & Conquer 10 / 13

Closest Pair: Algorithm

Algorithm Divide & Conquer strategy for Closest pair: returns distance

function closest-pair(P)

Compute bisecting line bl

split P into left and right halves, PL and PR

δ1 ← closest-pair(PL)

δ2 ← closest-pair(PR)

δ = min(δ1, δ2)

Delete all points further than δ from separation line bl

sort remaining points by y -coordinate

Scan points in y-order and compare distance between each point and its next
7 neighbors. If any of these distances is less than δ, update δ

return δ

Getting the actual pair realzing the distance δ is easy

Imdad ullah Khan (LUMS) Divide & Conquer 11 / 13

Closest Pair: Correctness

Claim: Let p, q be pair having d(p, q) ≤ δ
Then:

p and q are members of Sy

Closest crossing pair must be • •

p and q are at most 7 positions apart in Sy

Grid Scan is a proof of this

Imdad ullah Khan (LUMS) Divide & Conquer 12 / 13

Closest Pair: Runtime Analysis

Running Time:

T (n) ≤ 2T
(n

2

)
+ O(n log n) =⇒ T (n) = O(n log2 n)︸ ︷︷ ︸

log n times sorting

Can we acheive O(n log n)?

Pre-sort all points by x and y -coordinates

Filter sorted lists to find the points within δ of bl (no need to sort in
every step to get Sy)

T (n) ≤ 2T
(n

2

)
+ O(n) =⇒ T (n) = O(n log n)

Imdad ullah Khan (LUMS) Divide & Conquer 13 / 13

