Design Paradigm: Divide and Conquer

- Finding Rank Merge Sort
- Karatsuba Algorithm for Integers Multiplication
- Counting Inversions \mathcal{L}^{max}
- **Finding Closest Pair in Plane**

Imdad ullah Khan

Given n points in a plane, find a pair of points with minimum Euclidean distance between them

For $p_i = (x_i, y_i)$ and $p_j = (x_j, y_j)$ $d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

 \triangleright can be computed in $O(1)$

Applications: Computer graphics, computer vision, geographic information systems, molecular modeling, air traffic control

Closest Pair of Points Problem

Input: $P = \{p_1, p_2, \ldots, p_n\}$: a set of *n* distinct points in \mathbb{R}^2 **Output:** A pair of points in P that minimizes $d(p, q)$

1-dimensional space:

1 Sort points \triangleright \bigcirc (n log n) Find closest adjacent points \triangleright O(n)

2-dimensional space:

Brute force Algorithm:

FINDMIN among all $\binom{n}{2}$ $n \choose 2$ pairwise distances $\qquad \qquad \triangleright \; O(n)$

²) comparisons

```
Goal: O(n \log n) time algorithm for 2-D version
```
- Divide point set into two halves
- Find closest pair in each part recursively \rightarrow return closest of the two

Will it find closest pair?

- Divide point set into two halves
- Find closest pair in each part recursively
-

This will find the overall closest pair

IMDAD ULLAH KHAN (LUMS) [Divide & Conquer](#page-0-0) 5 / 13

- **1** Divide point set into two halves
- Find closest pair in each part recursively
- Find closest crossing pair
- 4 Return the closest of the 3 pairs

Algorithm Divide & Conquer based Closest pair: returns distance

function $CLOSEST-PAIR(P)$

SPLIT P into left and right halves, P_L and P_R

$$
\delta_1 \leftarrow \text{CLOSEST-PAIR}(P_L)
$$

 $\delta_2 \leftarrow$ CLOSEST-PAIR (P_R)

 $\delta_3 \leftarrow$ FINDMIN distance over all pairs in $P_L \times P_R$

return MIN $\{\delta_1, \delta_2, \delta_3\}$

- Divide point set into two halves
- Find closest pair in each part recursively
- Find closest crossing pair
- Return the closest of the 3 pairs

Algorithm Divide & Conquer based Closest pair: returns distance

function closes -pair(P) \triangleright $\mathcal{T}(n)$ SPLIT P into left and right halves, P_L and P_R \triangleright "O(n)" $\delta_1 \leftarrow \text{CLOSEST-PAIR}(P_I)$ \triangleright $\mathcal{T}(n/2)$ $\delta_2 \leftarrow \text{CLOSEST-PAIR}(P_R)$ \triangleright $\mathcal{T}(n/2)$ $\delta_3 \leftarrow$ FINDMIN distance over all pairs in $P_L \times P_R$ 2) return $MIN\{\delta_1, \delta_2, \delta_3\}$

$$
T(n) = 2T\left(\frac{n}{2}\right) + O(n^2) \quad \Longrightarrow \quad T(n) = O(n^2)
$$

Find closest crossing pair?

Consider points within δ strip of the 'x-bisecting line'

Closest crossing pair cannot be

Critical observation: closest crossing pair must be

- it not only (possibly) reduces the search space
- but gives us a very efficient algorithm

To find closest crossing pair (ρ_i,ρ_j) such that $d(\rho_i,\rho_j)<\delta$

- **Consider points within** δ **of the bisecting line (in both directions)**
- Sort points in 2δ strip by their y-coordinates, $S_v : s_1, s_2, \ldots$,
- Starting from lowest point $s_1 \in S_V$
- For each s_i only check the next 7 points in S_v , $s_{i+1}, s_{i+2}, \ldots, s_{i+7}$

- **Defn:** Let s_i be a point in the 2 δ -strip with *ith* smallest y-coordinate
- **Claim:** If $|i-j|\geq 7$, then $d(s_i,s_j)\geq \delta$ \blacksquare Proof:
	- No two points lie in the same $\delta/2 \times \delta/2$ box
	- Two points, at least 2 rows apart, have $\overline{}$ distance $\geq 2(\delta/2)$

Algorithm Divide & Conquer strategy for Closest pair: returns distance

function $\text{CLOSEST-PAIR}(P)$

Compute bisecting line b_l

SPLIT P into left and right halves, P_L and P_R

$$
\delta_1 \leftarrow \text{CLOSEST-PAIR}(P_L)
$$

$$
\delta_2 \leftarrow \text{CLOSEST-PAIR}(P_R)
$$

$$
\delta = \text{min}(\delta_1, \delta_2)
$$

Delete all points further than δ from separation line b_l

 $SORT$ remaining points by y -coordinate

Scan points in y-order and compare distance between each point and its next

7 neighbors. If any of these distances is less than δ , update δ

return δ

Getting the actual pair realzing the distance δ is easy

Claim: Let p, q be pair having $d(p, q) \leq \delta$ Then:

- p and q are members of S_v
	- Closest crossing pair must be
- p and q are at most 7 positions apart in S_v
	- Grid Scan is a proof of this

Running Time:

$$
T(n) \leq 2T\left(\frac{n}{2}\right) + O(n\log n) \implies T(n) = \underbrace{O(n\log^2 n)}_{\log n \text{ times sorting}}
$$

Can we acheive $O(n \log n)$?

- Pre-sort all points by x and y -coordinates $\mathcal{L}_{\mathcal{A}}$
- Filter sorted lists to find the points within δ of b_l (no need to sort in $\mathcal{L}_{\mathcal{A}}$ every step to get S_v)

$$
T(n) \leq 2T\left(\frac{n}{2}\right) + O(n) \implies T(n) = O(n\log n)
$$