# Design Paradigm: Divide and Conquer

- Finding Rank Merge Sort
- Karatsuba Algorithm for Integers Multiplication
- Counting Inversions
- Finding Closest Pair in Plane

## Imdad ullah Khan

Given n points in a plane, find a pair of points with minimum Euclidean distance between them

For  $p_i = (x_i, y_i)$  and  $p_j = (x_j, y_j)$ 

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

 $\triangleright$  can be computed in O(1)

**Applications:** Computer graphics, computer vision, geographic information systems, molecular modeling, air traffic control

## **Closest Pair of Points Problem**

**Input:**  $P = \{p_1, p_2, \dots, p_n\}$ : a set of *n* distinct points in  $\mathbb{R}^2$ **Output:** A pair of points in *P* that minimizes d(p, q)

### 1-dimensional space:

Sort points $\triangleright$   $O(n \log n)$ Find closest adjacent points $\triangleright$  O(n)

### 2-dimensional space:

### Brute force Algorithm:

FINDMIN among all  $\binom{n}{2}$  pairwise distances

 $\triangleright O(n^2)$  comparisons

**Goal:**  $O(n \log n)$  time algorithm for 2-D version

- Divide point set into two halves
- Find closest pair in each part recursively > return closest of the two



#### Will it find closest pair?

- Divide point set into two halves
- Find closest pair in each part recursively
- Find crossing closest pair

#### ▷ return closest of the three



#### This will find the overall closest pair

IMDAD ULLAH KHAN (LUMS)

Divide & Conquer

- Divide point set into two halves
- 2 Find closest pair in each part recursively
- 3 Find closest crossing pair
- 4 Return the closest of the 3 pairs



Algorithm Divide & Conquer based Closest pair: returns distance

function CLOSEST-PAIR(P)

SPLIT P into left and right halves,  $P_L$  and  $P_R$ 

$$\delta_1 \leftarrow \text{CLOSEST-PAIR}(P_L)$$

 $\delta_2 \leftarrow \text{CLOSEST-PAIR}(P_R)$ 

 $\delta_3 \leftarrow \text{FINDMIN}$  distance over all pairs in  $P_L \times P_R$ 

return  $MIN\{\delta_1, \delta_2, \delta_3\}$ 

- 1 Divide point set into two halves
- 2 Find closest pair in each part recursively
- 3 Find closest crossing pair
- 4 Return the closest of the 3 pairs



Algorithm Divide & Conquer based Closest pair: returns distance

function CLOSEST-PAIR(P) $\triangleright$  T(n)SPLIT P into left and right halves,  $P_L$  and  $P_R$  $\triangleright$  "O(n)" $\delta_1 \leftarrow$  CLOSEST-PAIR( $P_L$ ) $\triangleright$  T(n/2) $\delta_2 \leftarrow$  CLOSEST-PAIR( $P_R$ ) $\triangleright$  T(n/2) $\delta_3 \leftarrow$  FINDMIN distance over all pairs in  $P_L \times P_R$  $\triangleright$   $n/2 \times n/2 = O(n^2)$ return MIN{ $\delta_1, \delta_2, \delta_3$ }

$$T(n) = 2T(n/2) + O(n^2) \implies T(n) = O(n^2)$$



Find closest crossing pair?

Consider points within  $\delta$  strip of the 'x-bisecting line'

Closest crossing pair cannot be



Critical observation: closest crossing pair must be

- it not only (possibly) reduces the search space
- but gives us a very efficient algorithm

To find closest crossing pair  $(p_i, p_j)$  such that  $d(p_i, p_j) < \delta$ 

- Consider points within  $\delta$  of the bisecting line (in both directions)
- Sort points in  $2\delta$  strip by their y-coordinates,  $S_y : s_1, s_2, \ldots, s_n$
- Starting from lowest point  $s_1 \in S_y$
- For each  $s_i$  only check the next 7 points in  $S_y$ ,  $s_{i+1}, s_{i+2}, \ldots, s_{i+7}$



- Defn: Let s<sub>i</sub> be a point in the 2δ-strip with i<sup>th</sup> smallest y-coordinate
- Claim: If  $|i-j| \ge 7$ , then  $d(s_i, s_j) \ge \delta$

Proof:

- No two points lie in the same  $\delta/2 \times \delta/2$  box
- Two points, at least 2 rows apart, have distance  $\geq 2(\delta/2)$



Algorithm Divide & Conquer strategy for Closest pair: returns distance

function CLOSEST-PAIR(P)

Compute bisecting line  $b_l$ 

SPLIT P into left and right halves,  $P_L$  and  $P_R$ 

$$\delta_1 \leftarrow \text{CLOSEST-PAIR}(P_L)$$

$$\delta_2 \leftarrow \text{closest-pair}(P_R)$$

 $\delta = \min(\delta_1, \delta_2)$ 

Delete all points further than  $\delta$  from separation line  $b_l$ 

SORT remaining points by y-coordinate

Scan points in y-order and compare distance between each point and its next

7 neighbors. If any of these distances is less than  $\delta,$  update  $\delta$ 

return  $\delta$ 

### Getting the actual pair realzing the distance $\delta$ is easy

# Closest Pair: Correctness

**Claim:** Let p, q be pair having  $d(p, q) \le \delta$ Then:

- p and q are members of  $S_y$ 
  - Closest crossing pair must be
- p and q are at most 7 positions apart in  $S_y$ 
  - Grid Scan is a proof of this

Running Time:

$$T(n) \leq 2T\left(\frac{n}{2}\right) + O(n\log n) \implies T(n) = \underbrace{O(n\log^2 n)}_{\log n \text{ times sorting}}$$

#### Can we acheive $O(n \log n)$ ?

- Pre-sort all points by x and y-coordinates
- Filter sorted lists to find the points within  $\delta$  of  $b_l$  (no need to sort in every step to get  $S_y$ )

$$T(n) \leq 2T\left(\frac{n}{2}\right) + O(n) \implies T(n) = O(n \log n)$$