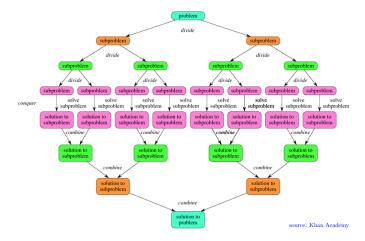
Design Paradigm: Divide and Conquer

- Finding Rank Merge Sort
- Karatsuba Algorithm for Integers Multiplication
- Counting Inversions
- Finding Closest Pair in Plane

Imdad ullah Khan

Algorithm Design Paradigm: Divide and Conquer

- Break a problem into several subproblems
- Solve each part recursively
- Combine solutions of sub-problems into overall solution



$Rank_A(x)$

A: is an array of n integers

Rank of x in A is the number of elements in A smaller than x $P_{A} = \left\{ \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{2$

$$Rank_A(x) = |\{a \in A : a < x\}$$

$$A = \begin{bmatrix} 5 & 4 & 6 & 9 & 2 & 7 & 5 & 8 \end{bmatrix}$$

- $\blacksquare Rank_A(5) = 2$
- $\blacksquare Rank_A(3) = 1$
- $Rank_A(1) = 0$
- $\blacksquare Rank_A(-10) = 0$
- $Rank_A(min(A)) = 0$
- $Rank_A(max(A)) = n freq of max$

Compute $Rank_A(x)$

Input: A **sorted** array *A* of *n* distinct integers and $x \in \mathbb{Z}$ **Output:** $Rank_A(x)$

• EXTENDED BINARY SEARCH for x in A

Takes log *n* comparisons

• Linear scan A and count A[i] < x

Takes n comparisons

Compute Rank of 2 numbers

Input: A **sorted** array *A* of *n* distinct integers and $x < y \in \mathbb{Z}$ **Output:** $Rank_A(x)$, $Rank_A(y)$

• EXTENDED BINARY SEARCH for x and y in A Takes 2 log n comparisons (worst case) $Rank_A(x) = t \rightarrow next EXTENDED BINARY SEARCH for y in A[t...n]$ $\triangleright \log n + \log(n - t)$

▷ Worst case: $Rank_A(x) = 0$

Linear scan A and count A[i] < x and A[i] < y
 Takes 2n comparisons

Compute Rank of 3 numbers

Input: A sorted array A of n distinct integers and $x_1 < x_2 < x_3 \in \mathbb{Z}$ **Output:** Rank_A(x_1), Rank_A(x_2), Rank_A(x_3)

- Three EXTENDED BINARY SEARCH for x₁, x₂, x₃ in A
 Takes 3 log n comparisons (worst case)
- Linear scan A: count A[i] < x₁, A[i] < x₂, A[i] ≤ x₃ Takes 3n comparisons

Compute Rank of *n* numbers

Input: A sorted array A of n distinct integers and $x_1 < x_2 < ..., x_n \in \mathbb{Z}$ **Output:** Rank_A(x_i), for $1 \le i \le n$

• *n* EXTENDED BINARY SEARCH for each $x_i \in X$ in *A* Takes $n \log n$ comparisons (worst case)

Linear scan A: count A[i] < x_j for 1 ≤ j ≤ n
 Takes n² comparison

*Rank*_A(x₁) = t ⇒ for x₂ continue scan from A[t + 1]
 ▷ Because A[1...t] < x₁ ⇒ A[1...t] < x₂
 Takes 2n comparisons (worst case)

Compute Rank of *n* numbers

Input: A sorted array A of n distinct integers and $x_1 < x_2 < ..., x_n \in \mathbb{Z}$ **Output:** Rank_A(x_i), for $1 \le i \le n$

• $Rank_A(x_1) = t \implies \text{for } x_2 \text{ continue scan from } A[t+1]$ $\triangleright \because A[1 \dots t] < x_1 \implies A[1 \dots t] < x_2$

Takes 2*n* comparisons (worst case)

Algorithm Find Ranks	
$j \leftarrow 1$	⊳ index of current <i>x_i</i>
$r \leftarrow 0$	⊳ running rank
for $i = 1$ to n do	
if $A[i] < x_j$ then	
$r \leftarrow r+1$	
else	
$\mathit{rank}_{\mathcal{A}}(x_j) \gets r$	
$j \leftarrow j+1$	
$i \leftarrow i-1$	need to repeat this i

Merge

Input: Sorted array *A* and sorted array *B* of *n* distinct integers **Output:** Sorted $C = A \cup B$, |C| = 2n

$$A = \begin{bmatrix} 2 & 4 & 7 & 10 & 12 \end{bmatrix} \quad B = \begin{bmatrix} 3 & 9 & 14 & 15 & 18 \end{bmatrix}$$
$$C = \begin{bmatrix} 2 & 3 & 4 & 7 & 9 & 10 & 12 & 14 & 15 & 18 \end{bmatrix}$$

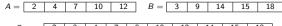
The brute-force algorithm (just implements the definition)

Make $C = A \cup B$ and SORT C

 $\triangleright O(n^2)$ comparisons

Can make use of the FINDRANK algorithm

Input: Sorted array *A* and sorted array *B* of *n* distinct integers **Output:** Sorted $C = A \cup B$, |C| = 2n



C =	2	3	4	7	9	10	12	14	15	18	
-----	---	---	---	---	---	----	----	----	----	----	--

What will be index of B[1] in C?

In C, elements of A smaller than B[1] are to the left of B[1]

- Index of B[1] in C is $rank_A(B[1]) + 1$
- Index of B[2] in C is $rank_A(B[2]) + 2$
- Index of B[3] in C is $rank_A(B[3]) + 3$

Merging is just findrank

▷ Runtime: 2*n* comparisons

Merge Sort

Input: Array *A* of *n* distinct integers **Output:** Sorted *A*

- Divide A into left and right halves
- Recursively sort the left and right halves
- Merge the sorted halves

Algorithm Merge Sort

```
function MERGESORT(A, st, end)

n \leftarrow end - st + 1

if n = 1 then

return A

else

L \leftarrow MERGESORT(A, st, n/2)

R \leftarrow MERGESORT(A, n/2 + 1, end)

return MERGE(L, R)
```

Merge Sort: Runtime

Input: Array *A* of *n* distinct integers **Output:** Sorted *A*

Algorithm Merge Sort

```
function MERGESORT(A, st, end )

n \leftarrow end - st + 1

if n = 1 then

return A

else

L \leftarrow MERGESORT(A, st, n/2)

R \leftarrow MERGESORT(A, n/2 + 1, end)

return MERGE(L, R)
```

T(n): runtime of MERGESORT(A, n)

$$T(n) = \begin{cases} 2T(n/2) + n & \text{if } n > 1\\ 1 & \text{else} \end{cases}$$

This evaluates to $O(n \log n)$

matches the lower bound

Divide and Conquer Design Paradigm

- Break a problem into several parts (Divide Part)
- Solve each part recursively
- Combine sub-problems solutions into overall solution (Combine Part)
- Sometimes divide part is straight-forward (e.g. Mergesort)
- Sometimes divide part is difficult and combine part is straight-forward (Quicksort)
- Runtime of divide and conquer based algorithm is modeled by a recurrence relation
- Number of operations per call (work for division and combine) plus the number of calls (on certain problem sizes)