Algorithms

Design Paradigm: Divide and Conquer

- Finding Rank - Merge Sort
- Karatsuba Algorithm for Integers Multiplication
- Counting Inversions
- Finding Closest Pair in Plane

Imdad ullah Khan

Algorithm Design Paradigm: Divide and Conquer

- Break a problem into several subproblems

■ Solve each part recursively
■ Combine solutions of sub-problems into overall solution

$\operatorname{Rank}_{A}(x)$

A : is an array of n integers
Rank of x in A is the number of elements in A smaller than x

$$
\operatorname{Rank}_{A}(x)=|\{a \in A: a<x\}|
$$

$A=$| 5 | 4 | 6 | 9 | 2 | 7 | 5 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- $\operatorname{Rank}_{A}(5)=2$
- $\operatorname{Rank}_{A}(3)=1$
- $\operatorname{Rank}_{A}(1)=0$
- $\operatorname{Rank}_{A}(-10)=0$
- $\operatorname{Rank}_{A}(\min (A))=0$
- $\operatorname{Rank}_{A}(\max (A))=n-$ freq of \max

Compute $\operatorname{Rank}_{A}(x)$

Input: A sorted array A of n distinct integers and $x \in \mathbb{Z}$ Output: $\operatorname{Rank}_{A}(x)$

- EXTENDED BINARY SEARCH for x in A

Takes $\log n$ comparisons

- Linear scan A and count $A[i]<x$

Takes n comparisons

Compute Rank of 2 numbers

Input: A sorted array A of n distinct integers and $x<y \in \mathbb{Z}$ Output: $\operatorname{Rank}_{A}(x), \operatorname{Rank}_{A}(y)$

- EXTENDED BINARY SEARCH for x and y in A

Takes $2 \log n$ comparisons (worst case)
$\operatorname{Rank}_{A}(x)=t \rightarrow$ next EXTENDED BINARY SEARCH for y in $A[t \ldots n]$
$\triangleright \log n+\log (n-t)$
\triangleright Worst case: $\operatorname{Rank}_{A}(x)=0$

- Linear scan A and count $A[i]<x$ and $A[i]<y$

Takes $2 n$ comparisons

Compute Rank of 3 numbers

Input: A sorted array A of n distinct integers and $x_{1}<x_{2}<x_{3} \in \mathbb{Z}$ Output: $\operatorname{Rank}_{A}\left(x_{1}\right), \operatorname{Rank}_{A}\left(x_{2}\right), \operatorname{Rank}_{A}\left(x_{3}\right)$

■ Three extended binary search for x_{1}, x_{2}, x_{3} in A
Takes $3 \log n$ comparisons (worst case)

- Linear scan A : count $A[i]<x_{1}, A[i]<x_{2}, A[i] \leq x_{3}$

Takes $3 n$ comparisons

Compute Rank of n numbers

Input: A sorted array A of n distinct integers and $x_{1}<x_{2}<\ldots, x_{n} \in \mathbb{Z}$ Output: $\operatorname{Rank}_{A}\left(x_{i}\right)$, for $1 \leq i \leq n$

- n EXTENDED BINARY SEARCH for each $x_{i} \in X$ in A

Takes $n \log n$ comparisons (worst case)

- Linear scan A : count $A[i]<x_{j}$ for $1 \leq j \leq n$

Takes n^{2} comparison

- $\operatorname{Rank}_{A}\left(x_{1}\right)=t \Longrightarrow$ for x_{2} continue scan from $A[t+1]$
\triangleright Because $A[1 \ldots t]<x_{1} \Longrightarrow A[1 \ldots t]<x_{2}$
Takes $2 n$ comparisons (worst case)

Compute Rank of n numbers

Input: A sorted array A of n distinct integers and $x_{1}<x_{2}<\ldots, x_{n} \in \mathbb{Z}$ Output: $\operatorname{Rank}_{A}\left(x_{i}\right)$, for $1 \leq i \leq n$

■ $\operatorname{Rank}_{A}\left(x_{1}\right)=t \Longrightarrow$ for x_{2} continue scan from $A[t+1]$

$$
\triangleright \because A[1 \ldots t]<x_{1} \Longrightarrow A[1 \ldots t]<x_{2}
$$

Takes $2 n$ comparisons (worst case)
Algorithm Find Ranks

$j \leftarrow 1$	\triangleright index of current x_{j}
$r \leftarrow 0$	\triangleright running rank
for $i=1$ to n do	
if $A[i]<x_{j}$ then	
$r \leftarrow r+1$	
else	
$\operatorname{rank}_{A}\left(x_{j}\right) \leftarrow r$	
$j \leftarrow j+1$	
$i \leftarrow i-1$	\checkmark need to repeat this i

Merge

Input: Sorted array A and sorted array B of n distinct integers Output: Sorted $C=A \cup B,|C|=2 n$

$$
\begin{gathered}
A=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 2 & 4 & 7 & 10 & 12 \\
\hline
\end{array} \quad B=\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 3 & 9 & 14 & 15 & 18 \\
\hline
\end{array} \\
C=\begin{array}{|ll|l|l|l|l|l|}
\hline 2 & 3 & 4 & 7 & 9 & 10 & 12 \\
14 & 15 & 18 \\
\hline
\end{array}
\end{gathered}
$$

The brute-force algorithm (just implements the definition)
Make $C=A \cup B$ and sort C
$\triangleright O\left(n^{2}\right)$ comparisons
Can make use of the FINDRANK algorithm

Merge

Input: Sorted array A and sorted array B of n distinct integers
Output: Sorted $C=A \cup B,|C|=2 n$

$$
\begin{gathered}
A=\begin{array}{|l|l|l|l|l|}
\hline 2 & 4 & 7 & 10 & 12 \\
\hline
\end{array} \quad B=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 3 & 9 & 14 & 15 & 18 \\
\hline
\end{array} \\
C=\begin{array}{|l|l|l|l|l|l|l}
\hline
\end{array}
\end{gathered}
$$

What will be index of $B[1]$ in C ?
In C, elements of A smaller than $B[1]$ are to the left of $B[1]$

- Index of $B[1]$ in C is $\operatorname{rank}_{A}(B[1])+1$
- Index of $B[2]$ in C is $\operatorname{rank}_{A}(B[2])+2$

- Index of $B[3]$ in C is $\operatorname{rank}_{A}(B[3])+3$

Merging is just findrank
\triangleright Runtime: $2 n$ comparisons

Merge Sort

Input: Array A of n distinct integers
Output: Sorted A

- Divide A into left and right halves
- Recursively sort the left and right halves
- Merge the sorted halves

Algorithm Merge Sort

function MERGESort $(A$, st, end $)$
$n \leftarrow$ end - st +1
if $n=1$ then
return A
else
$L \leftarrow \operatorname{mergesort}(A, s t, n / 2)$
$R \leftarrow \operatorname{MERGESORT}(A, n / 2+1$, end $)$
return $\operatorname{MERGE}(L, R)$

Merge Sort: Runtime

Input: Array A of n distinct integers

Output: Sorted A

Algorithm Merge Sort
function MERGESORT $(A$, st, end $)$

$$
\begin{aligned}
& n \leftarrow \text { end }-s t+1 \\
& \text { if } n=1 \text { then } \\
& \quad \text { return } A \\
& \text { else } \\
& \quad L \leftarrow \operatorname{MERGESORT}(A, s t, n / 2) \\
& \quad R \leftarrow \operatorname{Mergesort}(A, n / 2+1, \text { end }) \\
& \quad \text { return } \operatorname{merge}(L, R)
\end{aligned}
$$

$T(n)$: runtime of $\operatorname{MERGESORT}(A, n)$

This evaluates to $O(n \log n)$

$$
T(n)= \begin{cases}2 T(n / 2)+n & \text { if } n>1 \\ 1 & \text { else }\end{cases}
$$

Divide and Conquer Design Paradigm

■ Break a problem into several parts (Divide Part)

- Solve each part recursively
- Combine sub-problems solutions into overall solution (Combine Part)

■ Sometimes divide part is straight-forward (e.g. Mergesort)

- Sometimes divide part is difficult and combine part is straight-forward (Quicksort)
- Runtime of divide and conquer based algorithm is modeled by a recurrence relation
- Number of operations per call (work for division and combine) plus the number of calls (on certain problem sizes)

