Algorithms

Asymptotic Analysis

- Runtime Analysis and Big Oh - O($)$

■ Complexity Classes and Curse of Exponential Time
$\square \Omega(\cdot), \Theta(\cdot), o(\cdot), \omega(\cdot)$ - Relational properties

Imdad ullah Khan

Asymptotic-Complexity Classes

Class Name	Class Symbol	Example
Constant	$O(1)$	Comparison of two integers
Logarithmic	$O(\log (n))$	Binary Search, Exponentiation
Linear	$O(n)$	Linear Search
Log-Linear	$O n(\log (n))$	Merge Sort
Quadratic	$O\left(n^{2}\right)$	Integer multiplications
Cubic	$O\left(n^{3}\right)$	Matrix multiplication
Polynomial	$O\left(n^{a}\right), a \in \mathbb{R}$	
Exponential	$O\left(a^{n}\right), a \in \mathbb{R}$	Print all subsets
Factorial	$O(n!)$	Print all permutations
$n!\gg 2^{n} \gg n^{3} \gg n^{2} \gg n l o g n>n \gg l o g n \gg 1$		

Growth Rates of Functions

Find F_{n} : The curse of Exponential time

Fibonacci Sequence

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

Find F_{n} : The curse of Exponential time

Fibonacci Sequence

$$
\begin{gathered}
0,1,1,2,3,5,8,13,21, \ldots \\
F_{n}= \begin{cases}0 & \text { if } n=0 \\
1 & \text { if } n=1 \\
F_{n-1}+F_{n-2} & \text { if } n>2\end{cases}
\end{gathered}
$$

Find F_{n} : The curse of Exponential time

Implementation of the recursive definition of F_{n}
function FIB1 (n)
if $n=0$ then
return 0
else if $n=1$ then
return 1
else
return $\operatorname{FIB} 1(n-1)+\operatorname{FIB} 1(n-2)$

Find F_{n} : The curse of Exponential time

Implementation of the recursive definition of F_{n}
function $\operatorname{FIB} 1(n)$
if $n=0$ then
return 0
else if $n=1$ then
return 1
else
return $\operatorname{FIB} 1(n-1)+\operatorname{FIB} 1(n-2)$

■ Is it correct?
■ How much time it takes to compute F_{n} ?
■ Can we do better?

Find F_{n} : The curse of Exponential time

Let $T(n)$ be the number of ops (comparisons and additions) on input n

Find F_{n} : The curse of Exponential time

Let $T(n)$ be the number of ops (comparisons and additions) on input n
function FIB1 (n)
if $n=0$ then
return 0
else if $n=1$ then

$$
T(n)= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ T(n-1)+T(n-2)+3 & \text { if } n>2\end{cases}
$$ return 1

else
return $\operatorname{FIB} 1(n-1)+\operatorname{FIB} 1(n-2)$

Find F_{n} : The curse of Exponential time

Let $T(n)$ be the number of ops (comparisons and additions) on input n

```
function FIB1 \((n)\)
    if \(n=0\) then
        return 0
    else if \(n=1\) then
        return 1
    else
        return \(\operatorname{FIB} 1(n-1)+\operatorname{FIB} 1(n-2)\)
```

$$
T(n)= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ T(n-1)+T(n-2)+3 & \text { if } n>2\end{cases}
$$

By definition, we have $T(n)>F_{n}$

Find F_{n} : The curse of Exponential time

Let $T(n)$ be the number of ops (comparisons and additions) on input n

```
function FIB1 \((n)\)
    if \(n=0\) then
        return 0
    else if \(n=1\) then
        return 1
    else
        return \(\operatorname{FIB} 1(n-1)+\operatorname{FIB} 1(n-2)\)
```

 \(T(n)= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ T(n-1)+T(n-2)+3 & \text { if } n>2\end{cases}\)
 By definition, we have $T(n)>F_{n}$
The running time of $\operatorname{FIB} 1(n)$ grows as fast as F_{n}

Find F_{n} : The curse of Exponential time

Let $T(n)$ be the number of ops (comparisons and additions) on input n

```
function FIB1 ( \(n\) )
    if \(n=0\) then
        return 0
    else if \(n=1\) then
        return 1
    else
        return \(\operatorname{FIB} 1(n-1)+\operatorname{FIB} 1(n-2)\)
```

 \(T(n)= \begin{cases}1 & \text { if } n=0 \\ 2 & \text { if } n=1 \\ T(n-1)+T(n-2)+3 & \text { if } n>2\end{cases}\)
 By definition, we have $T(n)>F_{n}$
The running time of $\operatorname{FIB} 1(n)$ grows as fast as F_{n}

$$
T(n) \geq 2^{69 n}
$$

\triangleright exponential in n (prove by induction)

Find F_{n} : The curse of Exponential time

$$
T(n) \geq 2^{.69 n}
$$

Find F_{n} : The curse of Exponential time

$$
T(n) \geq 2^{.69 n}
$$

- For $n=300$, computing F_{300} takes (much) more than 2^{150} ops
- On a 64 THz computer (64×2^{40} operations per second)
- It needs $2^{104} s>10^{27} h>10^{23}$ years

Find F_{n} : The curse of Exponential time

$$
T(n) \geq 2^{.69 n}
$$

- For $n=300$, computing F_{300} takes (much) more than 2^{150} ops
- On a 64 THz computer (64×2^{40} operations per second)
- It needs $2^{104} s>10^{27} h>10^{23}$ years

Another perspective to see growth of exponential time

- Runtime of $\operatorname{FIB} 1(n)$ is $\geq 2^{0.694 n} \approx(1.6)^{n}$
- it takes 1.6 times longer to compute F_{n+1} than F_{n}
- Moore's law \Longrightarrow computers get roughly 1.6 times faster each year

Find F_{n} : The curse of Exponential time

$$
T(n) \geq 2^{.69 n}
$$

- For $n=300$, computing F_{300} takes (much) more than 2^{150} ops
- On a 64 THz computer (64×2^{40} operations per second)
- It needs $2^{104} s>10^{27} h>10^{23}$ years

Another perspective to see growth of exponential time

- Runtime of $\operatorname{FIB} 1(n)$ is $\geq 2^{0.694 n} \approx(1.6)^{n}$
- it takes 1.6 times longer to compute F_{n+1} than F_{n}
- Moore's law \Longrightarrow computers get roughly 1.6 times faster each year
- If we can compute F_{100} with this year's technology, next year we will manage F_{101}, the year after, F_{102}, \ldots
\triangleright one more Fibonacci number every year
Such is the curse of exponential time

Find F_{n} : The curse of Exponential time

$$
T(n) \geq 2^{.69 n}
$$

- For $n=300$, computing F_{300} takes (much) more than 2^{150} ops
- On a 64 THz computer (64×2^{40} operations per second)
- It needs $2^{104} s>10^{27} h>10^{23}$ years

Another perspective to see growth of exponential time

- Runtime of $\operatorname{FIB} 1(n)$ is $\geq 2^{0.694 n} \approx(1.6)^{n}$
- it takes 1.6 times longer to compute F_{n+1} than F_{n}
- Moore's law \Longrightarrow computers get roughly 1.6 times faster each year
- If we can compute F_{100} with this year's technology, next year we will manage F_{101}, the year after, F_{102}, \ldots
\triangleright one more Fibonacci number every year
Such is the curse of exponential time
How can we improve it?

Exponential vs Polynomial Growth rates

Sizes of problems that can be solved within 10^{12} operations on today's computer and next years computer with double speed

Complexity	Increase	Problem Size (today)	Problem Size (next year)
n	$n \rightarrow 2 n$	10^{12}	2×10^{12}
n^{2}	$n \rightarrow \sqrt{2} n$	10^{6}	1.4×10^{6}
n^{3}	$n \rightarrow \sqrt[3]{2} n$	10^{4}	1.25×10^{4}
$2^{n / 10}$	$n \rightarrow n+10$	400	410
2^{n}	$n \rightarrow n+1$	40	41

