Algorithms

Algorithmic Thinking and Terminology

m Problem Formulation

Algorithm Design Strategy: Implementing the Definition

Algorithms Runtime Analysis

m Basic Numbers and Vectors Arithmetic

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 1/29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

if Amod 2 =0 then
return true

Pseudocode

m A plain English description of “steps” of algorithm
m Use structural conventions like C/JAvA
m Focus on solution rather than technicalities of programming language

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 2/29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

if Amod 2 =0 then
return true

Issues:

m The above algorithm only works if A is given in an int
m What if A doesn’t fit an int and A’s digits are given in an array?
m What if A is given in binary/unary/...?

> These issues are in addition to usual checks of valid input

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 3/29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

If ‘digits’ of A digits are given in an array

P S L S if A[0] mod 2 =0 then
[4]6]9]2]7[5]8] return true

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic

Questions computer scientists would (must) ask?

What is the problem?

m What is input/output?, what is the " format”?
m What are the “boundary cases’, “easy cases’, “bruteforce solution”?
m What are the available “tools’?

Do not jump to solution, spend time on problem formulation

Formulating the problem with precise definitions often yield a solution

> e.g. both the above algorithms just use definitions of even numbers

This is implementing the definition algorithm design paradigm

> The bruteforce solution

What is the dumbest/obvious/laziest way to solve the problem? What is
the easiest cases? what are the hardest cases? where is the hardness?

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 5/29

Questions computer scientists would (must) ask?

Input: An integer A
Output: True if A is even, else False

If digits of A are given in an array

A_ 6 5 4 3 2 1 0 if A[0] mod 2 =0 then
_‘4‘6‘9‘2‘7‘5‘8‘ return true
What if mod is not available? > What are the tools available?
if A[0] =0 then
Just check if A[0] € {0,2,4,6,8} return true

else if A[0] =2 then
return true

else
return false

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 6/29

Questions computer scientists would (must) ask?

Is the algorithm “correct”?

m Does it do what it is “supposed’ to do? > requirement specification
m Does it always “produce’ the “correct output'?
m Does it work for all “legal inputs’?

An extremely important step! Without a convincing argument for
correction, we cannot call it an algorithm or solution

> Relies heavily on the problem formulation

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 7/29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

if Amod 2 =0 then if A[0l mod2=0
return true then
return true

if A[0] =0 then
return true

else if A[0] =2 then
return true

else
return false

Correctness of these 3 algorithms follows from definition of even/odd
and/or mod, depending on how we formulate the problem

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic

8/29

Questions computer scientists would (must) ask?

How much “resources” does the algorithm consume?

Analysis of Algorithms: the theoretical study of performance and resource
utilization of algorithms

How to measure the “goodness” of an algorithms?

m Time consumption

m Space and memory consumption

Bandwidth consumption or number of messages passed

m Energy consumption

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 9/29

How to measure runtime?

Clock-time of algorithm execution is not a suitable measure

m Depends on machine/hardware, operating systems, other concurrent
programs, implementation language and style etc.

m We want platform and implementation language independent
Number of operations is the right framework

m Measure runtime in terms of number of elementary operations
m Assuming each elementary operation takes fixed computation time

m Important to decide which operations are counted as elementary

if Amod 2=0then Number of operations: 1 mod and 1 comparison
return true

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 10/29

Runtime as a function of input size

We want a consistent mechanism to measure efficiency that is platform
and implementation language independent

Number of elementary operations depends on the actual input
Measure runtime by number of operations as a function of size of input

> Has predictive value with respect to increasing input sizes

Size of input: usually number of bits needed to encode the input instance,
can be length of an array, number of nodes in a graph etc.

Issue: For inputs of fixed size (n) there could be different runtimes
depending on different instances

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 11/29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

If digits of A are given in an array if A[0] = 0 then
Ao o0 > & 3 2 1 0 return true
[4]6]9]2]7]5]8] else if A[0] = 2 then

return true
If mod is not available :
else

Just check if A[0] € {0,2,4,6,8} roturn false

What is the number of comparisons when A[0] =0 and when A[0] = 87

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic

12/29

Best /Worst /Average Case

Issue: For inputs of fixed size (n) there could be different runtimes
depending on different instances

Let T(/) be the time, algorithm takes on instance /

Best case runtime: thest(n) = MINy|j=p {T(/)}
Worst case runtime: tworst(N) = MAX.|jj=p {T(}
Average case runtime: tav(n) = AVERAGE[||=p {T(/)}
In general, we consider the worst case runtime J

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 13/29

Adding two n digits integers

Input: Two n digits numbers A and B
Output: A+ B

For “small” A and B

1. C+~ A+B
m The algorithm is correct by definition of + operator

m Runtime is one integer addition

m Can't really do better than that ...

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 14 /29

Adding two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: A+ B (n+ 1-digit array)

A_ 6 5 4 3 2 1 0 1 1 1
4T6[o]2][7]5]8] Gt 60215 s
o 6 5 4 3 2 1 0 -+
B=rs1177121276 1] 172261
9 8 5019
1. ¢« 0
2: fori=0ton—1do
m Correct?
3: S[i] + (Ali] + B[i] + ¢) mod 10 _
4. c« (Ali]+ B[]+ ¢)/10 m Runtime?

5. S[n]+ ¢

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 15 /29

Adding two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: A+ B (n+ 1-digit array)

1: ¢« 0 } 1 time

2: fori=0ton—1do

3. S[i] < (A[li] + Bl[i] + ¢) mod 10 n times
4. c+ (Ali]+ B[]+ ¢c)/10

5. S[n] « ¢ } 1 time

6n single digit arithmetic operations

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 16 /29

Multiplying two n digits integers

Input: Two n digits numbers A and B (n-digits

Output: A x B (2n + 1-digit array)

1: for i=1to ndo

2: c+0

3: forj=1to ndo

4:

5: ¢« (A[j] = B[i] + ¢)/10
6: Z[i[i+n]+c

7: carry <0

8: for i =1to 2n do

9: sum < carry

10: for j=1to ndo

11: sum + sum + Z[j][i]

12: C[i] + sum mod 10
13: carry + sum/10

14: C[2n+ 1] < carry

IMDAD ULLAH KHAN (LUMS)

Z[illj +i — 1] « (A[j] * B[i] + ¢) mod 10

Basic Arithmetic

arrays)

% 7 5 8
6 3 2
1 5 1 6
2 2 7 4
4 5 4 8
4 7 9 0 5 6
Ops: 8n% +2n

arithmetic ops.

17/29

Multiplying two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: (integer) C = Ax B

Reformulate and apply distributive and associative laws

(A[O] +10° + A[1] * 10" + A[2] * 1o2+...) x (B[o] +10° + B[1] * 10 + B[2] 102+...)

C+0 X
: fori=1to ndo

@)
I |w
N

for j=1to ndo - - - -
C + C+ 10 x A[i] = B[j] - - -

Sl

Ops: n? single digit multiplications + shifting (multiplying by 10%)

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 18 /29

Exponentiation

Input: Two integers, a and n >0 Problem Formulation
Output: a"
a"=axax...xa
—_————
n times
x<+1 m Correct by definition
for i=1to ndo m Takes n multiplications
X 4 X *a . e
> integer multiplications

return x

m Initializing x to a, saves one multiplication
> Careful! what if n =10

Can we do better?

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 19 /29

Exponentiation

Input: Two integers, aand n >0 Problem Formulation
Output: a"
axa™l ifn>1
a"=<a ifn=1
1 ifn=0

function REC-EXP(a,n)
if n =20 then return 1
else if n =1 then return a
else
return a x REC-EXP(a,n — 1)

m Correct by the above definition
m Number of operations?

> Number of recursive calls x Number of operations per call

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 20/29

Exponentiation

Input: Two integers, aand n >0 Problem Formulation
Output: a"
a2 3" if n> 1 even
a"=<{a-a""2. 3" ifnis odd
1 ifn=20

function REP-sQ-EXP(a,n)
if n =0 then return 1

else if n > 0 AND n is even then m Correctness
Z < REP-SQ-EXP(a, /2
Q (a,7/2) m Number of calls?
return z x z

else m operations per call?

7 < REP-SQ-EXP(a, "—1/2)
return ax z * z

Give a non-recursive implementation of repeated squaring based
exponentiation. You can also use the binary expansion of n

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 21/29

Dot Product of two vectors

Input: Two n-dimensional vectors as arrays A and B
Output: A- B := (A, B) := A[1]B[1] + ...+ A[n]B[n] := >_ A[i]B]i]
i=1

A B function DOT-PROD(A, B)
ax b s+0

as by | N, for i =i to ndo
T Z:l aibi s < s+ Ali] = B[]

an by return s

m Correctness follows from definition
m Runtime is n multiplications and n — 1 additions

> integer/real additions and multiplications
m At least n “operations” are required for reading the input

> Lower Bound

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 22/29

Matrix-Vector Multiplication

Input: Matrix A and vector b Qutput: c = Ax b
m Condition: num columns of A = num rows of b

Am><n X bn><1 = Cmx1

Dot Product

ail ao Qin by

21 Q22 . Qo by

azr a3 < .. A3y b3 -

GG, | b, -
mXn nx1 m X 1

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic

Matrix-Vector Multiplication

Input: Matrix A and vector b Qutput: c = Ax b

function MAT-VECTPROD(A, b)
c[][] + zErROS(m x 1)
for i=1to mdo
c[i] + poT-prOD(A[][:], b)

return c

m Correct by definition
m Runtime is m dot-products of n-dim vectors

m Total runtime m X n real multiplications and additions

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 24 /29

Matrix-Matrix Multiplication

Input: Matrices A and B Output: C = Ax B

m Condition: num columns of A = num rows of B

IMDAD ULLAH KHAN (LUMS)

Amxn X Bnxk = Chxk

Matrix—Vect%

ap a2
az1 a2
azy az

Am1 Am2 - - -

mXxXmn

B b21 "'b2k

A1n

Aa2n

A3n

Qmn

Basic Arithmetic

nxk

25 /29

Matrix-Matrix Multiplication

Input: Matrices A and B Output: C = Ax B

m Condition: num columns of A = num rows of B
Amxn X Bn><k = Cm><k
function MAT-MATPROD(A, B)
C[][] « zeErROS(m X k)

for j =1 to k do
C[:][/] ¢ MAT-VECTPROD(A, B[:][j])

return C

m k Matrix-Vector products of m x nand n x 1

m Total k X m x n real multiplications and additions

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 26/29

Matrix-Matrix Multiplication: Dot Product

Input: Matrices A and B Output: C = Ax B

bu1 - -+ bk
Dot Product Dot Product
air a2 - -- Ay Ciif - - -
asy a9y --- Aoy |:| C
(],31 a32 .. a?”, . e
Am1 A2 -+ Qmp_| _|:| e
mxn m X k

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic

27/29

Matrix-Matrix Multiplication: Dot Product

Input: Matrices A and B Output: C = Ax B

m Condition: num columns of A = num rows of B

Amxn X Bn><k = Cm><k

function MAT-MATPROD(A, B)
C[][] « zeErROS(m X k)

for i=1to mdo
for j=1to k do

C[[j] « por-prOD(A[[:], BI:]L])

return C

m Performs m x k dot-products of n-dim vectors

m Total m x k x n real multiplications and additions

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 28/29

m Problem formulation with precise definitions/notation is important
m Definition-based (and other strategies) critically depend on it

m Pseudocode is a good human-readable way to describe solution

m Correctness of an algorithm is argued in view of problem statement
m Runtime of an algorithm is the most basic measure of its goodness

m Runtime is measured by number of well-chosen elementary operations
as a function of size of input

m We usually consider the worst case runtime for a fixed input size

m Discussed how an algorithm can be used as a subroutine in another

m Gave different algorithms (for exponentiation) with different runtime
m Always ask if a solution can be improved (usually in terms of runtime)

m Lower bound means no algorithm has runtime lower than the bound

IMDAD ULLAH KHAN (LUMS) Basic Arithmetic 29/29

