
Algorithms

Algorithmic Thinking and Terminology

Problem Formulation

Algorithm Design Strategy: Implementing the Definition

Algorithms Runtime Analysis

Basic Numbers and Vectors Arithmetic

Imdad ullah Khan

Imdad ullah Khan (LUMS) Basic Arithmetic 1 / 29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

if A mod 2 = 0 then
return true

Pseudocode

A plain English description of “steps” of algorithm

Use structural conventions like C/Java

Focus on solution rather than technicalities of programming language

Imdad ullah Khan (LUMS) Basic Arithmetic 2 / 29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

if A mod 2 = 0 then
return true

Issues:

The above algorithm only works if A is given in an int

What if A doesn’t fit an int and A’s digits are given in an array?

What if A is given in binary/unary/. . . ?

. These issues are in addition to usual checks of valid input

Imdad ullah Khan (LUMS) Basic Arithmetic 3 / 29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

If ‘digits’ of A digits are given in an array

A =
6 5 4 3 2 1 0

4 6 9 2 7 5 8
if A[0] mod 2 = 0 then
return true

Imdad ullah Khan (LUMS) Basic Arithmetic 4 / 29

Questions computer scientists would (must) ask?

What is the problem?

What is input/output?, what is the ”format”?

What are the “boundary cases”, “easy cases”, “bruteforce solution”?

What are the available “tools”?

Do not jump to solution, spend time on problem formulation

Formulating the problem with precise definitions often yield a solution

. e.g. both the above algorithms just use definitions of even numbers

This is implementing the definition algorithm design paradigm

. The bruteforce solution

What is the dumbest/obvious/laziest way to solve the problem? What is
the easiest cases? what are the hardest cases? where is the hardness?

Imdad ullah Khan (LUMS) Basic Arithmetic 5 / 29

Questions computer scientists would (must) ask?

Input: An integer A
Output: True if A is even, else False

If digits of A are given in an array

A =
6 5 4 3 2 1 0

4 6 9 2 7 5 8

if A[0] mod 2 = 0 then
return true

What if mod is not available? . What are the tools available?

Just check if A[0] ∈ {0, 2, 4, 6, 8}
if A[0] = 0 then
return true

else if A[0] = 2 then
return true
...

else
return false

Imdad ullah Khan (LUMS) Basic Arithmetic 6 / 29

Questions computer scientists would (must) ask?

Is the algorithm “correct”?

Does it do what it is “supposed” to do? . requirement specification

Does it always “produce” the “correct output”?

Does it work for all “legal inputs”?

An extremely important step! Without a convincing argument for
correction, we cannot call it an algorithm or solution

. Relies heavily on the problem formulation

Imdad ullah Khan (LUMS) Basic Arithmetic 7 / 29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

if A mod 2 = 0 then
return true

if A[0] mod 2 = 0
then
return true

if A[0] = 0 then
return true

else if A[0] = 2 then
return true
...

else
return false

Correctness of these 3 algorithms follows from definition of even/odd
and/or mod, depending on how we formulate the problem

Imdad ullah Khan (LUMS) Basic Arithmetic 8 / 29

Questions computer scientists would (must) ask?

How much “resources” does the algorithm consume?

Analysis of Algorithms: the theoretical study of performance and resource
utilization of algorithms

How to measure the “goodness” of an algorithms?

Time consumption

Space and memory consumption

Bandwidth consumption or number of messages passed

Energy consumption

...

Imdad ullah Khan (LUMS) Basic Arithmetic 9 / 29

How to measure runtime?

Clock-time of algorithm execution is not a suitable measure

Depends on machine/hardware, operating systems, other concurrent
programs, implementation language and style etc.

We want platform and implementation language independent

Number of operations is the right framework

Measure runtime in terms of number of elementary operations

Assuming each elementary operation takes fixed computation time

Important to decide which operations are counted as elementary

if A mod 2 = 0 then
return true

Number of operations: 1 mod and 1 comparison

Imdad ullah Khan (LUMS) Basic Arithmetic 10 / 29

Runtime as a function of input size

We want a consistent mechanism to measure efficiency that is platform
and implementation language independent

Number of elementary operations depends on the actual input

Measure runtime by number of operations as a function of size of input

. Has predictive value with respect to increasing input sizes

Size of input: usually number of bits needed to encode the input instance,
can be length of an array, number of nodes in a graph etc.

Issue: For inputs of fixed size (n) there could be different runtimes
depending on different instances

Imdad ullah Khan (LUMS) Basic Arithmetic 11 / 29

Parity Test: Odd/Even integer

Input: An integer A
Output: True if A is even, else False

If digits of A are given in an array

A =
6 5 4 3 2 1 0

4 6 9 2 7 5 8

If mod is not available

Just check if A[0] ∈ {0, 2, 4, 6, 8}

if A[0] = 0 then
return true

else if A[0] = 2 then
return true
...

else
return false

What is the number of comparisons when A[0] = 0 and when A[0] = 8?

Imdad ullah Khan (LUMS) Basic Arithmetic 12 / 29

Best/Worst/Average Case

Issue: For inputs of fixed size (n) there could be different runtimes
depending on different instances

Let T (I) be the time, algorithm takes on instance I

Best case runtime: tbest(n) = minI :|I |=n

{
T (I)

}
Worst case runtime: tworst(n) = maxI :|I |=n

{
T (I)

}
Average case runtime: tav (n) = averageI :|I |=n

{
T (I)

}

In general, we consider the worst case runtime

Imdad ullah Khan (LUMS) Basic Arithmetic 13 / 29

Adding two n digits integers

Input: Two n digits numbers A and B
Output: A + B

For “small” A and B

1: C ← A + B

The algorithm is correct by definition of + operator

Runtime is one integer addition

Can’t really do better than that . . .

Imdad ullah Khan (LUMS) Basic Arithmetic 14 / 29

Adding two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: A + B (n + 1-digit array)

A =
6 5 4 3 2 1 0

4 6 9 2 7 5 8

B =
6 5 4 3 2 1 0

5 1 7 2 2 6 1
+

1 1 1

4 6 9 2 7 5 8

5 1 7 2 2 6 1

9 8 6 5 0 1 9

1: c ← 0

2: for i = 0 to n − 1 do

3: S [i]← (A[i] + B[i] + c) mod 10
4: c ← (A[i] + B[i] + c)/10

5: S [n]← c

Correct?

Runtime?

Imdad ullah Khan (LUMS) Basic Arithmetic 15 / 29

Adding two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: A + B (n + 1-digit array)

1: c ← 0

}
1 time

2: for i = 0 to n − 1 do

3: S [i]← (A[i] + B[i] + c) mod 10

 n times
4: c ← (A[i] + B[i] + c)/10

5: S [n]← c

}
1 time

6n single digit arithmetic operations

Imdad ullah Khan (LUMS) Basic Arithmetic 16 / 29

Multiplying two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: A× B (2n + 1-digit array)

1: for i = 1 to n do
2: c ← 0
3: for j = 1 to n do
4: Z [i][j + i − 1]← (A[j] ∗ B[i] + c) mod 10
5: c ← (A[j] ∗ B[i] + c)/10

6: Z [i][i + n]← c

7: carry ← 0
8: for i = 1 to 2n do
9: sum← carry

10: for j = 1 to n do
11: sum← sum + Z [j][i]

12: C [i]← sum mod 10
13: carry ← sum/10

14: C [2n + 1]← carry

7 5 8
6 3 2

1 5 1 6
2 2 7 4

4 5 4 8
4 7 9 0 5 6

×

Ops: 8n2 + 2n
arithmetic ops.

Imdad ullah Khan (LUMS) Basic Arithmetic 17 / 29

Multiplying two n digits integers

Input: Two n digits numbers A and B (n-digits arrays)
Output: (integer) C = A× B

Reformulate and apply distributive and associative laws(
A[0] ∗ 100 +A[1] ∗ 101 +A[2] ∗ 102 + . . .

)
×
(
B[0] ∗ 100 +B[1] ∗ 101 +B[2] ∗ 102 + . . .

)

1: C ← 0

2: for i = 1 to n do

3: for j = 1 to n do

4: C ← C + 10i+j × A[i] ∗ B[j]

7 5 8
6 3 2

– – – –
– – – –

– – – –
4 7 9 0 5 6

×

Ops: n2 single digit multiplications + shifting (multiplying by 10x)

Imdad ullah Khan (LUMS) Basic Arithmetic 18 / 29

Exponentiation

Input: Two integers, a and n ≥ 0
Output: an

Problem Formulation

an = a× a× . . .× a︸ ︷︷ ︸
n times

x ← 1
for i = 1 to n do
x ← x ∗ a

return x

Correct by definition

Takes n multiplications

. integer multiplications

Initializing x to a, saves one multiplication

. Careful! what if n = 0

Can we do better?

Imdad ullah Khan (LUMS) Basic Arithmetic 19 / 29

Exponentiation

Input: Two integers, a and n ≥ 0
Output: an

Problem Formulation

an =


a ∗ an−1 if n > 1

a if n = 1

1 if n = 0

function rec-exp(a,n)
if n = 0 then return 1
else if n = 1 then return a
else
return a ∗ rec-exp(a, n − 1)

Correct by the above definition

Number of operations?

. Number of recursive calls × Number of operations per call

Imdad ullah Khan (LUMS) Basic Arithmetic 20 / 29

Exponentiation

Input: Two integers, a and n ≥ 0
Output: an

Problem Formulation

an =


an/2 · an/2 if n > 1 even

a · an−1/2 · an−1/2 if n is odd

1 if n = 0

function rep-sq-exp(a,n)
if n = 0 then return 1
else if n > 0 and n is even then
z ← rep-sq-exp(a, n/2)
return z ∗ z

else
z ← rep-sq-exp(a, n−1/2)
return a ∗ z ∗ z

Correctness

Number of calls?

operations per call?

Give a non-recursive implementation of repeated squaring based
exponentiation. You can also use the binary expansion of n

Imdad ullah Khan (LUMS) Basic Arithmetic 21 / 29

Dot Product of two vectors

Input: Two n-dimensional vectors as arrays A and B

Output: A · B := 〈A,B〉 := A[1]B[1] + . . . + A[n]B[n] :=
n∑

i=1
A[i]B[i]

·

A B

=
n∑
i=1

aibi

b1

...

b2

bn

a1
a2

an

...

function dot-prod(A, B)
s ← 0
for i = i to n do
s ← s + A[i] ∗ B[i]

return s

Correctness follows from definition
Runtime is n multiplications and n − 1 additions

. integer/real additions and multiplications

At least n “operations” are required for reading the input

. Lower Bound

Imdad ullah Khan (LUMS) Basic Arithmetic 22 / 29

Matrix-Vector Multiplication

Input: Matrix A and vector b Output: c = A ∗ b

Condition: num columns of A = num rows of b

Am×n × bn×1 = cm×1

...

A b

... ...

a11 a12 a1n. . .
a21 a22 a2n. . .
a31 a32 a3n. . .

. . .am1 am2 amn

=

Dot Product

...

m× n n× 1 m× 1

c

...

b1
b2

b3

bn

Imdad ullah Khan (LUMS) Basic Arithmetic 23 / 29

Matrix-Vector Multiplication

Input: Matrix A and vector b Output: c = A ∗ b

function mat-vectprod(A, b)

c[][]← zeros(m × 1)

for i = 1 to m do

c[i]← dot-prod(A[i][:], b)

return c

Correct by definition

Runtime is m dot-products of n-dim vectors

Total runtime m × n real multiplications and additions

Imdad ullah Khan (LUMS) Basic Arithmetic 24 / 29

Matrix-Matrix Multiplication

Input: Matrices A and B Output: C = A ∗ B

Condition: num columns of A = num rows of B

Am×n × Bn×k = Cm×k

A

B

Matrix-Vector Product

m× n m× k

b11 b1k. . .

b21 b2k

bn1 bnk

c11

...
...

n× k

C

...
...

. . .

. . .

. . .

. . .

. . .

a11 a12 a1n. . .
a21 a22 a2n. . .
a31 a32 a3n. . .

. . .
...

...
...

am1 am2 amn . . .

Imdad ullah Khan (LUMS) Basic Arithmetic 25 / 29

Matrix-Matrix Multiplication

Input: Matrices A and B Output: C = A ∗ B

Condition: num columns of A = num rows of B

Am×n × Bn×k = Cm×k

function mat-matprod(A, B)

C [][]← zeros(m × k)

for j = 1 to k do

C [:][j]← mat-vectprod(A,B[:][j])

return C

k Matrix-Vector products of m × n and n × 1

Total k ×m × n real multiplications and additions

Imdad ullah Khan (LUMS) Basic Arithmetic 26 / 29

Matrix-Matrix Multiplication: Dot Product

Input: Matrices A and B Output: C = A ∗ B

A

B

Dot Product

m× n m× k

b11 b1k. . .

b21 b2k

bn1 bnk

c11

...
...

n× k

Dot Product

C

...
...

. . .

. . .

. . .

. . .

. . .

a11 a12 a1n. . .
a21 a22 a2n. . .
a31 a32 a3n. . .

. . .
...

...
...

am1 am2 amn . . .

Imdad ullah Khan (LUMS) Basic Arithmetic 27 / 29

Matrix-Matrix Multiplication: Dot Product

Input: Matrices A and B Output: C = A ∗ B

Condition: num columns of A = num rows of B

Am×n × Bn×k = Cm×k

function mat-matprod(A, B)

C [][]← zeros(m × k)

for i = 1 to m do
for j = 1 to k do

C [i][j]← dot-prod(A[i][:],B[:][j])

return C

Performs m × k dot-products of n-dim vectors

Total m × k × n real multiplications and additions

Imdad ullah Khan (LUMS) Basic Arithmetic 28 / 29

Summary

Problem formulation with precise definitions/notation is important

Definition-based (and other strategies) critically depend on it

Pseudocode is a good human-readable way to describe solution

Correctness of an algorithm is argued in view of problem statement

Runtime of an algorithm is the most basic measure of its goodness

Runtime is measured by number of well-chosen elementary operations
as a function of size of input

We usually consider the worst case runtime for a fixed input size

Discussed how an algorithm can be used as a subroutine in another

Gave different algorithms (for exponentiation) with different runtime

Always ask if a solution can be improved (usually in terms of runtime)

Lower bound means no algorithm has runtime lower than the bound

Imdad ullah Khan (LUMS) Basic Arithmetic 29 / 29

