
Algorithms

Proving NP-Complete Problems

The Cook-Levin Theorem: sat is NP-Complete

NP-Complete Problems from known Reductions

dir-ham-cycle is NP-Complete

dir-ham-path is NP-Complete

ham-cycle is NP-Complete

tsp is NP-Complete

subset-sum is NP-Complete

partition is NP-Complete

Imdad ullah Khan

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 1 / 25

Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B
x A(x)y B(y)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A ≤p B.

If B is polynomial time solvable, then A can be solved in polynomial time

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 2 / 25

Reduction as a tool for hardness

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B
x A(x)y B(y)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

A problem X is NP-Complete, if 1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

Suppose A ≤p B.

If A is NP-Complete, then B is NP-Complete

▷ Why? By transitivity of reduction
Imdad ullah Khan (LUMS) Proving NP-Complete Problems 3 / 25

Proving NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is NP-Complete, and 1 X ∈ NP

2 Z ≤p X
then X is NP-Complete

1 X ∈ NP is explicitly proved

2 ∀ Y ∈ NP, Y ≤p X follows by transitivity

∀ Y ∈ NP, Y ≤p Z is true as Z is NP-Complete

[Y ≤p Z ∧ Z ≤p X] =⇒ Y ≤p X

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 4 / 25

Proving NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

How to prove a problem NP-Complete?

To prove X to be NP-Complete

1 Prove X ∈ NP

2 Reduce some known NP-Complete problem Z to X

Again! Reduce a known NP-Complete problem to X

▷ Not the other way round. A very common mistake!

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 5 / 25

A first NP-Complete Problem

Theorem (The Cook-Levin theorem)

sat(f) is NP-Complete

Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became
known later)

Levin proved six NP-Complete problems (in addition to other results)

We prove this by reducing circuit-sat(C) problem to sat(f) problem

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 6 / 25

A first NP-Complete Problem

To prove X NP-Complete, reduce an NP-Complete problem Z to X

Where to begin? we need a first NP-Complete Problem

Theorem (The Cook-Levin theorem)

sat(f) is NP-Complete

Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became
known later)

Levin proved six NP-Complete problems (in addition to other results)

We prove the theorem by reducing circuit-sat(C) problem to sat(f) problem

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 7 / 25

The Cook-Levin theorem

Theorem (The Cook-Levin theorem)

sat(f) is NP-Complete

We already showed that sat is polynomial time verifiable

sat ∈ NP

Now we prove that

circuit-sat(C) ≤p sat(f)

This proves that sat is NP-Hard and completes the proof

Suppose A is an algorithm to decide sat(f)

Given an instance C of the circuit-sat(C) problem

In polynomial time we transform C into an equivalent cnf formula f

Make a call A(f) to decide whether or not circuit-sat(C) = Yes

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 8 / 25

The Cook-Levin theorem

circuit-sat(C) ≤p sat(f)

Make a variable for each input wire and output

of each gate of the circuit C
x6

x2

x3

x5

x1 x4

∨

¬

∧

(xi ∨ xk) ∧ (xj ∨ xk) ∧ (xi ∨ xj ∨ xk)

For each or gate make equi-satisfiable clauses
xk∨

xj

xi

These clauses are satisfied iff xk = xi ∨ xj

(xi ∨ xk) ∧ (xj ∨ xk) ∧ (xi ∨ xj ∨ xk)

For each and gate make equi-satisfiable clauses
xk∧

xj

xi

These clauses are satisfied iff xk = xi ∧ xj

(xi ∨ xj) ∧ (xi ∨ xj)

For each not gate make equi-satisfiable clauses xi xj¬

These clauses are satisfied iff xj = xi

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 9 / 25

The Cook-Levin theorem

circuit-sat(C) ≤p sat(f)

Easy to verify that the gates and corresponding formula are equisatisfiable

The output gate value is encoded with a clause containing the
corresponding variable

The final formula f is a grand conjunction of all the clauses made for each
gate and output of the circuit C

f is equisatisfiable with the C

▷ i.e. circuit-sat(C) = Yes if and only if A(f) = Yes

The reduction takes polynomial time, requires one traversal of the DAG,
constant time per gate

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 10 / 25

Implied NP-Complete Problems

From known reductions, the following problems are NP-Complete

sat ≤p 3-sat

3-sat ≤p ind-set

ind-set ≤p clique

ind-set ≤p vertex-cover

vertex-cover ≤p set-cover

ind-set ≤p set-packing

≤p

≤p

≤p

≤p

≤p≤p

≤p

≤p

NP

circuit-sat

sat

3-sat

independent-set vertex-cover

cliqueset-packing

set-cover

We show a few more reductions to prove problems to be NP-Complete

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 11 / 25

dir-ham-cycle is NP-Complete

We showed dir-ham-cycle to be in NP for NP-Hardness we prove

3-sat(f) ≤p dir-ham-cycle(G)

Let f be an instance of 3-sat on n variables and m clauses

Let x1, . . . , xn be the variables and C1, . . . ,Cm be the clauses of f

Construct a digraph G that has a Hamiltonian cycle iff f is satisfiable

1 In G there will be 2n sub-Hamiltonian cycles corresponding to the 2n

possible assignments to variables x1, . . . , xn

2 We introduce a structure for each clause such that these sub-Hamiltonian
cycles can be combined if and only if all clauses are satisfiable

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 12 / 25

dir-ham-cycle is NP-Complete

3-sat(f) ≤p dir-ham-cycle(G)

For each xi make a sequence of 3(m + 1) bidirectionally adjacent vertices

.Li Rixi

xi = 1 =⇒ traverse this gadget from Li to Ri and vice-versa

(xi , xi+1) = (1, 0) =⇒ traverse from Li → Ri → Ri+1 → Li+1

(xi , xi+1) = (0, 0) =⇒ traverse from Ri → Li → Ri+1 → Li+1

.L1 R1x1

.L2 R2x2

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 13 / 25

dir-ham-cycle is NP-Complete

3-sat(f) ≤p dir-ham-cycle(G)

Make nodes s and t and combine all the gadgets as follows

x1

s

t

...
...

...
...

x2

x3

xn

3m+ 3

.L1 R1

L2

L3

Ln

R2

R3

Rn

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 14 / 25

dir-ham-cycle is NP-Complete

3-sat(f) ≤p dir-ham-cycle(G)

2n Ham cycles traversing each gadget in either direction

These correspond to the 2n possible assignments to the n variables

Make a Hamiltonian cycle exist iff there is a satisfying assignment

Have to incorporate clauses. Make nodes for each clause

If a variable satisfy a clause, traverse it by a detour from that gadget

C2

C1 = (l1, xi, l2) C2 = (l3, xi, l4)

C1 Cm

xiLi Ri

Cm = (l·, xi, l·)

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 15 / 25

dir-ham-cycle is NP-Complete

3-sat(f) ≤p dir-ham-cycle(G)

Given f , make G as described above

G has a directed Hamiltonian cycle iff f is satisfiable

The construction takes polynomial time (about O(nm))

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 16 / 25

dir-ham-path is NP-Complete

dir-ham-cycle(G) ≤p dir-ham-path(G ′)

Let G = (V ,E) be an instance of the dir-ham-cycle(G) problem

For any arbitrary v ∈ V , make G ′ on V (G) \ {v} ∪ {vin, vout}

▷ i.e. remove v and add two new vertices vin and vout

vin has all incoming edges of v directed to it from in-neighbors of v

vout has all outgoing edges of v directed from it to out-neighbors of v

a

b

c

d

v

f

g

h

a

b

c

d

f

g

hvin eot

G has a directed Hamiltonian cycle iff G ′ has a directed Hamiltonian path

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 17 / 25

ham-cycle is NP-Complete

We proved its polynomial time verifiability earlier, now we show that

dir-ham-cycle(G) ≤p ham-cycle(G ′)

Let G = (V ,E) be an instance of the dir-ham-cycle(G). |V | = n , |E | = m

Make an undirected graph G ′ = (V ′,E), |V ′| = 3n and |E ′| = m + 2n

Split every vertex v ∈ V into three vertices vin, vmd , vot and add to V ′

Add edges (vin, vmd) and (vmd , vot) in E ′

For each directed edge (x , y) ∈ E , make the edge (xot , yin) in E ′

eotemde

f

h

g

f

h

g

ein

a

b

c

d dot

cot

bot

aot

G has a dir-Ham cycle iff G ′ has an (undirected) Hamiltonian cycle

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 18 / 25

tsp is NP-Complete

ham-cycle(G) ≤p tsp(G ′, k)

tsp(G ′, k) requires weighted graph and a number k

Given an instance G = (V ,E) of ham-cycle(G), |V | = n

Make a complete graph on n vertices G ′ with weights as follows

w(vi , vj) =

{
1 if (vi , vj) ∈ E (G)

2 else

No Hamiltonian
cycle in G

1

1

1
1

1

2

2

2

2

No TSP tour of
length 5 in G′

1

1

1

1

1
1

1

2

2

TSP tour in G′ of
of length shown in blue

Hamiltonian cycle
in G shown in blue

G has a Hamiltonian cycle iff G ′ has a tsp tour of length k = n

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 19 / 25

subset-sum is NP-Complete

subset-sum is NP-Complete

Given a set U = {a1, a2, . . . , an} of integers

A weight function w : U → Z+, and a positive integer C

The subset-sum(U,w ,C) problem: Is there a S ⊂ U wiht
∑
ai∈S

wi = C ?

If wi ’s and C are given in unary encoding

then O(nC) dynamic programming solution is a polynomial time

But this is exponential in size of input if C is provided in binary (or decimal)

We prove that

3-sat(f) ≤p subset-sum(•, •, •)

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 20 / 25

subset-sum is np-complete

3-sat(f) ≤p subset-sum(•, •, •)

Given an instance f of 3-sat(f) with n variables and m clauses

Construct 2n + 2m weights: 2 objects for each variable and each clause

Each is a n +m-digits integer (a digit for each variable and each clause)

The weight for literal xi and xi have digit 1 corresponding to the variable xi

The digit for clause Cj is 1 if the literal appears in clause Cj

x1 x2 x3 xn−1 xn C1 C2 C3 Cm−1 Cm

x1

x1

x2

x3

C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x1 ∨ x2 ∨ x3)

x2

x3

...
...

...
...

.

1

.

.

.

.

1

1

1

1

1

1 1

1

1 1 1

1

1

1

Cm−1 = (x2 ∨ x8 ∨ x9), Cm = (x2 ∨ x3 ∨ x5)

1

1

1

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 21 / 25

subset-sum is np-complete

3-sat(f) ≤p subset-sum(•, •, •)

Remaining 2m weights set so as last sum of digits at each position from
n + 1 to n +m is 5 ▷ details in notes

x1 x2 x3 xn−1 xn C1 C2 C3 Cm−1 Cm

x1

x1

x2

x3

x2

x3

...
...

...
...

.

1

.

.

.

.

1

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1

xn

xn

.

.

.

.

.

.

...
...

...

1

1

1

1

1

1

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 22 / 25

subset-sum is np-complete

3-sat(f) ≤p subset-sum(•, •, •)

x1 x2 x3 xn−1 xn C1 C2 C3 Cm−1 Cm

x1

x1

x2

x3

x2

x3

...
...

...
...

.

1

.

.

.

.

1

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1

xn

xn

.

.

.

.

.

.

...
...

...

1

1

1

1

1

1

The Subset-Sum instance with 2n + 2m weights as shown above and

C =

n︷ ︸︸ ︷
111 . . . , 11

m︷ ︸︸ ︷
333 . . . 33 is Yes if and only the f is satisfiable

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 23 / 25

partition is np-complete

subset-sum(U,w ,C) ≤p partition(U ′, k)

Let U ′ = {w1,w2, . . . ,wn , wn+1 , wn+2}

wn+1 = 2
[n∑
i=1

wi

]
− C and wn+2 =

[n∑
i=1

wi

]
+ C

subset-sum(U,w ,C) = Yes iff partition(U ′, 0) = Yes (balanced)

∑
x∈U′

x =
∑
ai∈U

wi + 2
[n∑

i=1

wi

]
− C︸ ︷︷ ︸

wn+1

+
[n∑

i=1

wi

]
+ C︸ ︷︷ ︸

wn+2

= 4
∑
ai∈U

wi

Let P1 and P2 be a balanced bipartition of U ′

Both wn+1 and wn+2 cannot be in the same part, assume wn+1 ∈ P1

Both P1 and P2 cannot contain only one element, so
∑

x∈P1\{wn+1}
wx = C

P1 P2

wn+1 = 2
∑

iwi − C C
∑

iwi − Cwn+2 =
∑

iwi + C

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 24 / 25

np-complete Problems

21 problems were shown to be np-complete in a seminal paper: Richard Karp
(1972), “Reducibility Among Combinatorial Problems”

Imdad ullah Khan (LUMS) Proving NP-Complete Problems 25 / 25

