Proving NP-COMPLETE Problems

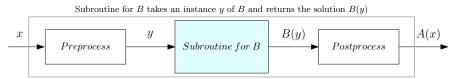
- The Cook-Levin Theorem: SAT is NP-COMPLETE
- NP-COMPLETE Problems from known Reductions
- DIR-HAM-CYCLE is NP-COMPLETE
- DIR-HAM-PATH is NP-COMPLETE
- HAM-CYCLE is NP-COMPLETE
- TSP is NP-Complete
- SUBSET-SUM is NP-COMPLETE
- PARTITION is NP-COMPLETE

Imdad ullah Khan

Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B, $A \leq_{\rho} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B



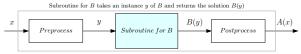
Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose $A \leq_p B$. If B is polynomial time solvable, then A can be solved in polynomial time

Reduction as a tool for hardness

Problem A is polynomial time reducible to Problem B, $A \leq_{\rho} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B



Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

A problem X is NP-COMPLETE, if

1
$$X \in NP$$

2 $\forall Y \in NP \ Y \leq_p X$

Suppose $A \leq_p B$. If A is NP-COMPLETE, then B is NP-COMPLETE

Why? By transitivity of reduction

IMDAD ULLAH KHAN (LUMS)

Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
1 X ∈ NP
2 ∀ Y ∈ NP Y ≤_p X

To prove X NP-COMPLETE, reduce an NP-COMPLETE problem Z to X

If Z is NP-COMPLETE, and

$$X \in NP$$

 $Z \leq_p X$
then X is NP-COMPLETE

Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
1 X ∈ NP
2 ∀ Y ∈ NP Y ≤_p X

How to prove a problem NP-COMPLETE?

To prove X to be NP-COMPLETE

1 Prove $X \in NP$

2 Reduce some known NP-COMPLETE problem Z to X

Again! Reduce a known NP-COMPLETE problem to X

> Not the other way round. A very common mistake!

A first NP-COMPLETE Problem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

- Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became known later)
- Levin proved six NP-COMPLETE problems (in addition to other results)
- We prove this by reducing CIRCUIT-SAT(C) problem to SAT(f) problem

A first NP-COMPLETE Problem

To prove X NP-COMPLETE, reduce an NP-COMPLETE problem Z to X

Where to begin? we need a first $\operatorname{NP-COMPLETE}$ Problem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

- Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became known later)
- Levin proved six NP-COMPLETE problems (in addition to other results)

We prove the theorem by reducing CIRCUIT-SAT(C) problem to SAT(f) problem

Theorem (The Cook-Levin theorem)

SAT(f) is NP-COMPLETE

We already showed that $\ensuremath{\operatorname{SAT}}$ is polynomial time verifiable

$\mathrm{SAT}\,\in\,\mathrm{NP}$

Now we prove that

CIRCUIT-SAT $(C) \leq_{p} \text{SAT}(f)$

This proves that ${}_{\rm SAT}$ is ${\rm NP}\text{-}{\rm HARD}$ and completes the proof

- Suppose A is an algorithm to decide SAT(f)
- Given an instance *C* of the CIRCUIT-SAT(*C*) problem
- In polynomial time we transform C into an equivalent CNF formula f
- Make a call $\mathcal{A}(f)$ to decide whether or not CIRCUIT-SAT(C) =**Yes**

The Cook-Levin theorem

CIRCUIT-SAT(C) \leq_p SAT(f)

Make a variable for each input wire and output of each gate of the circuit C

For each not gate make equi-satisfiable clauses

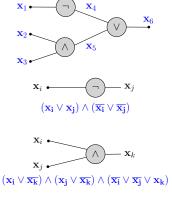
• These clauses are satisfied iff $x_j = \overline{x_i}$

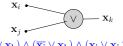
For each and gate make equi-satisfiable clauses

• These clauses are satisfied iff $x_k = x_i \wedge x_j$

For each or gate make equi-satisfiable clauses

• These clauses are satisfied iff $x_k = x_i \lor x_j$





 $(\overline{\mathbf{x}_i} \lor \mathbf{x}_k) \land (\overline{\mathbf{x}_j} \lor \mathbf{x}_k) \land (\mathbf{x}_i \lor \mathbf{x}_j \lor \overline{\mathbf{x}_k})$

CIRCUIT-SAT(C) \leq_{ρ} SAT(f)

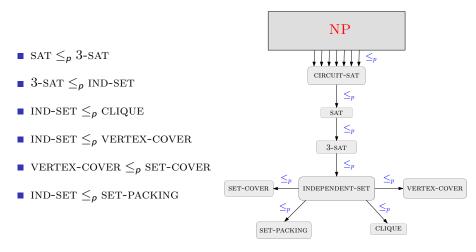
- Easy to verify that the gates and corresponding formula are equisatisfiable
- The output gate value is encoded with a clause containing the corresponding variable
- The final formula f is a grand conjunction of all the clauses made for each gate and output of the circuit C
- f is equisatisfiable with the C

▷ i.e. CIRCUIT-SAT(C) = Yes if and only if A(f) = Yes

The reduction takes polynomial time, requires one traversal of the DAG, constant time per gate

Implied NP-COMPLETE Problems

From known reductions, the following problems are $\operatorname{NP-COMPLETE}$



We show a few more reductions to prove problems to be $\operatorname{NP-COMPLETE}$

We showed $\ensuremath{\operatorname{DIR}}\xspace+\ensuremath{\operatorname{HARDNESS}}\xspace$ we prove

 $3-\operatorname{sat}(f) \leq_{p} \operatorname{DIR-HAM-CYCLE}(G)$

Let f be an instance of 3-SAT on n variables and m clauses

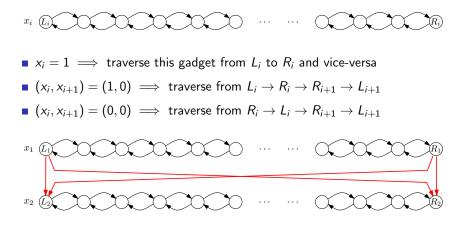
Let x_1, \ldots, x_n be the variables and C_1, \ldots, C_m be the clauses of f

Construct a digraph G that has a Hamiltonian cycle iff f is satisfiable

- In G there will be 2ⁿ sub-Hamiltonian cycles corresponding to the 2ⁿ possible assignments to variables x₁,..., x_n
- 2 We introduce a structure for each clause such that these sub-Hamiltonian cycles can be combined if and only if all clauses are satisfiable

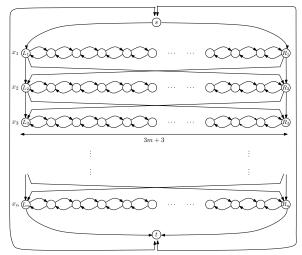
3-sat $(f) \leq_{p} \text{ Dir-ham-cycle}(G)$

For each x_i make a sequence of 3(m + 1) bidirectionally adjacent vertices



$3-\operatorname{sat}(f) \leq_p \operatorname{DIR-HAM-CYCLE}(G)$

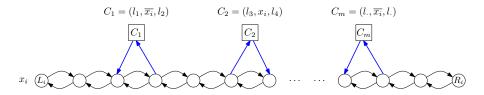
Make nodes s and t and combine all the gadgets as follows



IMDAD ULLAH KHAN (LUMS)

3-sat(f) \leq_p dir-ham-cycle(G)

- 2ⁿ Ham cycles traversing each gadget in either direction
- These correspond to the 2ⁿ possible assignments to the n variables
- Make a Hamiltonian cycle exist iff there is a satisfying assignment
- Have to incorporate clauses. Make nodes for each clause
- If a variable satisfy a clause, traverse it by a detour from that gadget



$3-\operatorname{sat}(f) \leq_{p} \operatorname{Dir-ham-cycle}(G)$

Given f, make G as described above

G has a directed Hamiltonian cycle iff f is satisfiable

The construction takes polynomial time (about O(nm))

DIR-HAM-PATH is NP-COMPLETE

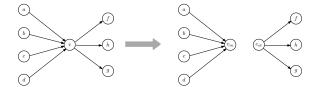
DIR-HAM-CYCLE(G) \leq_p DIR-HAM-PATH(G')

Let G = (V, E) be an instance of the DIR-HAM-CYCLE(G) problem

• For any arbitrary $v \in V$, make G' on $V(G) \setminus \{v\} \cup \{v_{in}, v_{out}\}$

 \triangleright i.e. remove v and add two new vertices v_{in} and v_{out}

- v_{in} has all incoming edges of v directed to it from in-neighbors of v
- v_{out} has all outgoing edges of v directed from it to out-neighbors of v



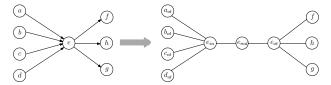
G has a directed Hamiltonian cycle iff G' has a directed Hamiltonian path

We proved its polynomial time verifiability earlier, now we show that

DIR-HAM-CYCLE(G) \leq_p HAM-CYCLE(G')

Let G = (V, E) be an instance of the DIR-HAM-CYCLE(G). |V| = n , |E| = m

- Make an undirected graph G' = (V', E), |V'| = 3n and |E'| = m + 2n
- Split every vertex $v \in V$ into three vertices v_{in}, v_{md}, v_{ot} and add to V'
- Add edges (v_{in}, v_{md}) and (v_{md}, v_{ot}) in E'
- For each directed edge $(x, y) \in E$, make the edge (x_{ot}, y_{in}) in E'



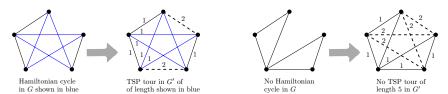
G has a dir-Ham cycle iff G' has an (undirected) Hamiltonian cycle

HAM-CYCLE(G) $\leq_p \operatorname{TSP}(G', k)$

• TSP(G', k) requires weighted graph and a number k

- Given an instance G = (V, E) of HAM-CYCLE(G), |V| = n
- Make a complete graph on n vertices G' with weights as follows

$$w(v_i, v_j) = \begin{cases} 1 & \text{if } (v_i, v_j) \in E(G) \\ 2 & \text{else} \end{cases}$$



G has a Hamiltonian cycle iff G' has a TSP tour of length k = n

IMDAD ULLAH KHAN (LUMS)

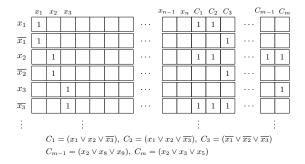
Proving NP-COMPLETE Problems

- Given a set $U = \{a_1, a_2, \ldots, a_n\}$ of integers
- A weight function $w: U \to \mathbb{Z}^+$, and a positive integer C
- The SUBSET-SUM(U, w, C) problem: Is there a $S \subset U$ wiht $\sum_{a_i \in S} w_i = C$?
- If w_i 's and C are given in unary encoding
 - then O(nC) dynamic programming solution is a polynomial time
- But this is exponential in size of input if C is provided in binary (or decimal)
 We prove that

 $3-\operatorname{SAT}(f) \leq_{p} \operatorname{SUBSET-SUM}(\bullet, \bullet, \bullet)$

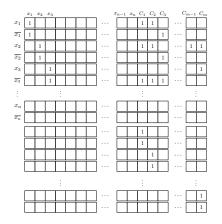
$3-\operatorname{SAT}(f) \leq_{p} \operatorname{SUBSET-SUM}(\bullet, \bullet, \bullet)$

- Given an instance f of 3-SAT(f) with n variables and m clauses
- Construct 2n + 2m weights: 2 objects for each variable and each clause
- Each is a n + m-digits integer (a digit for each variable and each clause)
- The weight for literal x_i and $\overline{x_i}$ have digit 1 corresponding to the variable x_i
- The digit for clause C_j is 1 if the literal appears in clause C_j

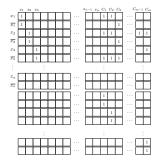


 $3-\operatorname{SAT}(f) \leq_{p} \operatorname{SUBSET-SUM}(\bullet, \bullet, \bullet)$

■ Remaining 2m weights set so as last sum of digits at each position from n+1 to n+m is 5 ▷ details in notes



 $3-\operatorname{SAT}(f) \leq_{p} \operatorname{SUBSET-SUM}(\bullet, \bullet, \bullet)$



The SUBSET-SUM instance with 2n + 2m weights as shown above and $C = \overbrace{111...,11}^{n} \overbrace{333...33}^{m}$ is **Yes** if and only the *f* is satisfiable

PARTITION is NP-COMPLETE

SUBSET-SUM $(U, w, C) \leq_{p} \text{PARTITION}(U', k)$

• Let
$$U' = \{w_1, w_2, \dots, w_n, w_{n+1}, w_{n+2}\}$$

• $w_{n+1} = 2\left[\sum_{i=1}^n w_i\right] - C$ and $w_{n+2} = \left[\sum_{i=1}^n w_i\right] + C$

SUBSET-SUM(U, w, C) = Yes iff PARTITION $(U', \mathbf{0}) =$ Yes (balanced)

$$\sum_{x \in U'} x = \sum_{a_i \in U} w_i + 2 \left[\sum_{i=1}^n w_i \right] - C + \left[\sum_{i=1}^n w_i \right] + C = 4 \sum_{a_i \in U} w_i$$

• Let P_1 and P_2 be a balanced bipartition of U'

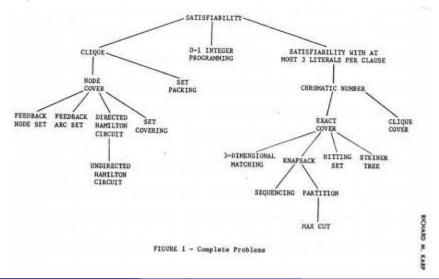
- Both w_{n+1} and w_{n+2} cannot be in the same part, assume $w_{n+1} \in P_1$
- Both P_1 and P_2 cannot contain only one element, so $\sum_{x \in P_1 \setminus \{w_{n+1}\}} w_x = C$

$$P_1 \qquad P_2$$

$$w_{n+1} = 2\sum_i w_i - C \qquad C \qquad w_{n+2} = \sum_i w_i + C \qquad \sum_i w_i - C$$

NP-COMPLETE Problems

21 problems were shown to be NP-COMPLETE in a seminal paper: Richard Karp (1972), "Reducibility Among Combinatorial Problems"



IMDAD ULLAH KHAN (LUMS)