
Algorithms

Classes of Problems

Polynomial Time Verification

The Classes P and NP

The Classes exp and coNP

NP-Hard and NP-Complete Problems

Proving NP-Hardness

A first NP-Complete Problem

Imdad ullah Khan

Imdad ullah Khan (LUMS) Classes of Problems 1 / 9

NP-Hard and NP-Complete Problems

A problem X is NP-Hard, if every problem in NP is polynomial time
reducible to X

X ∈ NP and ∀ Y ∈ NP, Y ≤p X

A problem X ∈ NP is NP-Complete, if every problem in NP is
polynomial time reducible to X

X ∈ NP and ∀ Y ∈ NP, Y ≤p X

These problems are at least as hard as any problem in NP

Let NPC be the (sub)class of NP-Complete problems

▷ It is the set of hardest problems in NP

If any NP-complete problem can be solved in poly time, then all problems in NP
can be, and thus P = NP

Imdad ullah Khan (LUMS) Classes of Problems 2 / 9

Proving NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is NP-Complete, and 1 X ∈ NP

2 Z ≤p X
then X is NP-Complete

1 X ∈ NP is explicitly proved

2 ∀ Y ∈ NP, Y ≤p X follows by transitivity

∀ Y ∈ NP, Y ≤p Z is true as Z is NP-Complete

[Y ≤p Z ∧ Z ≤p X] =⇒ Y ≤p X

Imdad ullah Khan (LUMS) Classes of Problems 3 / 9

A first NP-Complete Problem

To prove X NP-Complete, reduce an NP-Complete problem Z to X

Where to begin? we need a first NP-Complete Problem

Theorem (The Cook-Levin theorem)

sat(f) is NP-Complete

Proved by Stephen Cook (1971) and earlier by Leonid Levin (but became
known later)

Levin proved six NP-Complete problems (in addition to other results)

We will prove this theorem, but first we prove that the circuit-sat(C) problem
is NP-Complete and reduce it to the sat(f) problem

Imdad ullah Khan (LUMS) Classes of Problems 4 / 9

circuit-sat(C) is NP-Complete

circuit-sat is NP-Complete

First we prove that it is polynomial time verifiable

circuit-sat(C) ∈ NP

The instance C is encoded as a DAG

1 A certificate can be assignment of Boolean values to input wires

2 Verifier finds topological order of C and evaluate output of each gate (node)

3 If the value of sink node is 1, the verifier outputs Yes, otherwise No

Runtime is clearly polynomial

Topological sort takes time polynomial in size of input graph

So is linear scan of vertices to evaluate their value constant time on each

Imdad ullah Khan (LUMS) Classes of Problems 5 / 9

circuit-sat(C) is NP-Complete

circuit-sat(C) is NP-Hard ∀ X ∈ NP, X ≤p circuit-sat(C)

Use the definition of X ∈ NP critically

There is a poly-sized certificate S for every instance I of X and a
poly-time verifier V such that V(I,S) = Yes iff X (I) = Yes

I and S have a binary encoding (in digital computers)

V can be implemented in a digital computer, takes I and S and outputs 1/0
in poly number of clock cycles

A computer has a configuration/state (values of all registers (memory),
control registers, program counters etc.)

State changes after each clock cycle according to instruction of V that are
executed by a Boolean combinatorial circuit (the ALU)

V outputs 1/0 depending on the final state

Ignore the clock and replicate the circuit mapping states to next states

Imdad ullah Khan (LUMS) Classes of Problems 6 / 9

circuit-sat(C) is NP-Complete

circuit-sat(C) is NP-Hard ∀ X ∈ NP, X ≤p circuit-sat(C)

Figure Credit: https://courses.cs.washington.edu/courses/cse421/12wi/

V

I

Imdad ullah Khan (LUMS) Classes of Problems 7 / 9

circuit-sat(C) is NP-Complete

circuit-sat(C) is NP-Hard ∀ X ∈ NP, X ≤p circuit-sat(C)

Figure Credit: Figure 34.9, Introduction to Algorithms, CLRS

Imdad ullah Khan (LUMS) Classes of Problems 8 / 9

circuit-sat(C) is NP-Complete

circuit-sat(C) is NP-Hard ∀ X ∈ NP, X ≤p circuit-sat(C)

Let A be an algorithm to decide the circuit-sat(C) problem

We use A to decide the problem X ∈ NP on an instance I

Construct a circuit C ′ from the digital implementation of V on input I

A(C ′) = Yes ⇐⇒ circuit-sat(C ′) = Yes means

there is an input for which C ′ outputs Yes,

meaning there is a certificate S (since I is hard-coded), on which the
verifier V outputs Yes

Since V(I,S) = Yes ⇐⇒ X (I) = Yes, we get an answer for X (I)

Number of stages in C ′ is polynomial (equal to number of clock cycles,
which is polynomial since V is polynomial time in |I|)

Number of gates in C ′ is polynomial, hence constructing it takes poly time

Imdad ullah Khan (LUMS) Classes of Problems 9 / 9

