Algorithms

Classes of Problems

Polynomial Time Verification

m The Classes P and NP

m The Classes EXP and CONP

m NP-HARD and NP-COMPLETE Problems

Proving NP-HARDNESS

A first NP-COMPLETE Problem

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Classes of Problems

1/7

NP-HARD and NP-COMPLETE

A problem X is NP-HARD, if every problem in NP is polynomial time
reducible to X J

XeNP AND VY eNP, Y <, X

A problem X € NP is NP-COMPLETE, if every problem in NP is
polynomial time reducible to X J

XeNP aAND VY eNP, YV <, X

These problems are at least as hard as any problem in NP

Let NPC be the (sub)class of NP-COMPLETE problems
> It is the set of hardest problems in NP

If any NP-complete problem can be solved in poly time, then all problems in NP
can be, and thus P = NP

IMDAD ULLAH KHAN (LUMS) Classes of Problems 2/7

How to prove NP-COMPLETENess

A problem X is NP-COMPLETE, if
X € NP
VYeNPY <, X

How to prove a problem NP-COMPLETE 7

m Proving NP is relatively easy (in many cases)

m Can we do so many reductions?

IMDAD ULLAH KHAN (LUMS) Classes of Problems

Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution B(y)

T Y

——»| Preprocess

B(y) A(z)

Subroutine for B Postprocess |——»

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A <, B.

If B is polynomial time solvable, then A can be solved in polynomial time J

IMDAD ULLAH KHAN (LUMS)

Classes of Problems 4/7

Polynomial Time Reduction: Tool to Prove Hardness

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B takes an instance y of B and returns the solution B(y)

P Yy B(y) Az)

—»| Preprocess Subroutine for B Postprocess |————»

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A <, B.
If Ais NP-COMPLETE, then B is NP-COMPLETE J

> Why?

IMDAD ULLAH KHAN (LUMS) Classes of Problems 5/7

Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
X € NP
VYEeNPY <, X

To prove X NP-COMPLETE, reduce an NP-COMPLETE problem Z to X

If Z is NP-COMPLETE, and X e NP then X is NP-COMPLETE
Z<,X

X € NP is explicitly proved

VY ecNP, Y <,X follows by transitivity
VYeNP, Y<,Z istrueas Zis NP-COMPLETE
[Y<p,Z N Z<X] = V<X

IMDAD ULLAH KHAN (LUMS) Classes of Problems 6/7

Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
X € NP
VYEeNPY <, X

How to prove a problem NP-COMPLETE?

m Proving NP is relatively easy

m Can we do so many reductions?
Template of proving problems to be NP-COMPLETE

We proved that CLIQUE(G, k) is NP-COMPLETE

Suppose we have the theorem CLIQUE(G, k) <, IND-SET(G, k)

Then we can conclude that IND-SET(G, k) is NP-COMPLETE

IMDAD ULLAH KHAN (LUMS) Classes of Problems 7/7

