Classes of Problems

- Polynomial Time Verification
- The Classes P and NP
- \blacksquare The Classes EXP and CONP
- NP-HARD and NP-COMPLETE Problems
- Proving NP-HARDNESS
- A first NP-COMPLETE Problem

Imdad ullah Khan

A problem X is **NP-HARD**, if every problem in NP is polynomial time reducible to X

$X \in \mathrm{NP}$ and $\forall Y \in \mathrm{NP}, Y \leq_p X$

A problem $X \in NP$ is **NP-COMPLETE**, if every problem in NP is polynomial time reducible to X

$X \in \text{NP}$ and $\forall Y \in \text{NP}, Y \leq_p X$

These problems are at least as hard as any problem in NP

Let \underline{NPC} be the (sub)class of $\underline{NP-COMPLETE}$ problems

 \triangleright It is the set of hardest problems in $\rm NP$

If any $NP\mbox{-}complete$ problem can be solved in poly time, then all problems in NP can be, and thus P=NP

A problem X is NP-COMPLETE, if 1 X ∈ NP 2 ∀ Y ∈ NP Y ≤_p X

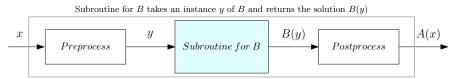
How to prove a problem $\operatorname{NP-COMPLETE}$?

- Proving NP is relatively easy (in many cases)
- Can we do so many reductions?

Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B, $A \leq_{p} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B



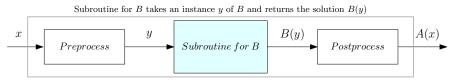
Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose $A \leq_p B$. If B is polynomial time solvable, then A can be solved in polynomial time

Polynomial Time Reduction: Tool to Prove Hardness

Problem A is polynomial time reducible to Problem B, $A \leq_{\rho} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B



Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose $A \leq_p B$. If A is NP-COMPLETE, then B is NP-COMPLETE

⊳ Why?

Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if
1 X ∈ NP
2 ∀ Y ∈ NP Y ≤_p X

To prove X NP-COMPLETE, reduce an NP-COMPLETE problem Z to X

If Z is NP-COMPLETE, and

$$Z \leq_p X$$
 then X is NP-COMPLETE

Proving NP-COMPLETE Problems

A problem X is NP-COMPLETE, if 1 X ∈ NP 2 ∀ Y ∈ NP Y ≤_p X

How to prove a problem NP-COMPLETE?

- Proving NP is relatively easy
- Can we do so many reductions?

Template of proving problems to be $\operatorname{NP-COMPLETE}$

We proved that

Suppose we have the theorem

Then we can conclude that

CLIQUE(G, k) is NP-COMPLETE CLIQUE $(G, k) \leq_p$ IND-SET(G, k)IND-SET(G, k) is NP-COMPLETE