
Algorithms

Classes of Problems

Polynomial Time Verification

The Classes P and NP

The Classes exp and coNP

NP-Hard and NP-Complete Problems

Proving NP-Hardness

A first NP-Complete Problem

Imdad ullah Khan

Imdad ullah Khan (LUMS) Classes of Problems 1 / 7



NP-Hard and NP-Complete

A problem X is NP-Hard, if every problem in NP is polynomial time
reducible to X

X ∈ NP and ∀ Y ∈ NP, Y ≤p X

A problem X ∈ NP is NP-Complete, if every problem in NP is
polynomial time reducible to X

X ∈ NP and ∀ Y ∈ NP, Y ≤p X

These problems are at least as hard as any problem in NP

Let NPC be the (sub)class of NP-Complete problems

▷ It is the set of hardest problems in NP

If any NP-complete problem can be solved in poly time, then all problems in NP
can be, and thus P = NP

Imdad ullah Khan (LUMS) Classes of Problems 2 / 7



How to prove NP-Completeness

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

How to prove a problem NP-Complete ?

Proving NP is relatively easy (in many cases)

Can we do so many reductions?

Imdad ullah Khan (LUMS) Classes of Problems 3 / 7



Polynomial Time Reduction: Algorithm Design Paradigm

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B
x A(x)y B(y)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A ≤p B.

If B is polynomial time solvable, then A can be solved in polynomial time

Imdad ullah Khan (LUMS) Classes of Problems 4 / 7



Polynomial Time Reduction: Tool to Prove Hardness

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

Subroutine for B
x A(x)y B(y)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Suppose A ≤p B.

If A is NP-Complete, then B is NP-Complete

▷ Why?

Imdad ullah Khan (LUMS) Classes of Problems 5 / 7



Proving NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

To prove X NP-Complete, reduce an NP-Complete problem Z to X

If Z is NP-Complete, and 1 X ∈ NP

2 Z ≤p X
then X is NP-Complete

1 X ∈ NP is explicitly proved

2 ∀ Y ∈ NP, Y ≤p X follows by transitivity

∀ Y ∈ NP, Y ≤p Z is true as Z is NP-Complete

[Y ≤p Z ∧ Z ≤p X ] =⇒ Y ≤p X

Imdad ullah Khan (LUMS) Classes of Problems 6 / 7



Proving NP-Complete Problems

A problem X is NP-Complete, if

1 X ∈ NP

2 ∀ Y ∈ NP Y ≤p X

How to prove a problem NP-Complete?

Proving NP is relatively easy

Can we do so many reductions?

Template of proving problems to be NP-Complete

We proved that

Suppose we have the theorem

Then we can conclude that

clique(G , k) is NP-Complete

clique(G , k) ≤p ind-set(G , k)

ind-set(G , k) is NP-Complete

Imdad ullah Khan (LUMS) Classes of Problems 7 / 7


