
Algorithms

Classes of Problems

Polynomial Time Verification

The Classes P and NP

The Classes exp and coNP

NP-Hard and NP-Complete Problems

Proving NP-Hardness

A first NP-Complete Problem

Imdad ullah Khan

Imdad ullah Khan (LUMS) Classes of Problems 1 / 11



The Class P of Problems

The Class P: Decision problems that can be solved in polynomial time

▷ There exists an algorithm that correctly outputs Yes/No on any instance

Recall that polynomial time is a good notion of “reasonable/efficient time”

Mainly because polynomials are closed under composition (reduction)

In practice degrees of polynomials are small

(Appropriately defined decision versions of) all these problems are in P

mst(G , k)

shortest-path(G , s, t, k)

prime(n)

bipartite-vertex-cover(G , k)

max-flow(G , t)

Imdad ullah Khan (LUMS) Classes of Problems 2 / 11



The Class NP of Problems

The Class NP: Decision problems that can be verified in polynomial time

A problem X is efficiently verifiable if

The claim: “I is a Yes instance of X” can be made in polynomial bits

There exists a polynomial sized certificate for Yes instances of X

A certificate can be verified in polynomial time

There exists a polynomial time algorithm V that takes the instance I
and the certificate C such that V(I, C) = Yes iff X (I) = Yes

▷ NP stands for “Non-deterministic Polynomial Time”

3-sat(f )

hamiltonian-cycle(G )

knapsack(U,w , v ,C )

independent-set(G , k)

Imdad ullah Khan (LUMS) Classes of Problems 3 / 11



P ⊆ NP

P ⊆ NP

Let X ∈ P, we show that X ∈ NP

By definition, there exists a polynomial time algorithm A, which decides X

We argue existence of a poly-sized certificate for Yes instances of X and
poly-time verifier for X

The certificate could be an empty string

Given an instance I of X and a certificate C to witness that X (I) = Yes

V can be V(I, C) := A(I) ▷ polynomial time

Essentially ignore the certificate, decide the instance using A if the output is
Yes declare verified else not verified

Notice that the output of this V is V(I,C ) = Yes iff A(I) = Yes

Imdad ullah Khan (LUMS) Classes of Problems 4 / 11



P = NP?

The following problems we know or can be easily shown to be in P and NP.

Notice the corresponding problems are of similar flavor to each other

P NP

2-sat 3-sat

euler-tour hamiltonian-cycle

mst tsp

shortest-path longest-path

independent-set-tree independent-set

bipartite-matching 3d-matching

bipartite-vertex-cover vertex-cover

linear program integer linear program

prime factor

Imdad ullah Khan (LUMS) Classes of Problems 5 / 11



P = NP?

Many problems in CS, Math, OR, Engineering, etc. are polynomial time verifiable
but have no known polynomial time algorithm

Polynomial time verifiability seems like a weaker condition than polynomial time
solvability

No proof that it is weaker (i.e. NP describes a larger class of problems)

So it is unknown whether P = NP

Imdad ullah Khan (LUMS) Classes of Problems 6 / 11



P = NP?

Is P = NP?

The biggest open problem in computer science

Is verifying a candidate solution is easier than solving a problem?

Majority believes that P ̸= NP

One can check if any of possible candidate solutions verifies

But candidate space can be exponential

n! possible Hamiltonian cycles are candidates for tsp(G , k)(
n
k

)
= O(nk) possible subsets for clique(G , k)

No known “ better way” than this

No proof that there is no better way than this

Imdad ullah Khan (LUMS) Classes of Problems 7 / 11



P = NP?

To say that “P vs NP is the central unsolved problem in computer
science” is a comical understatement. P vs NP is one of the deepest
questions that human beings have ever asked.

Scott Aaronson

There is a reason it is one of 7 million-dollar prize problem of the Clay
Mathematical Institute (now one of the 6)

If P = NP, then mathematical creativity can be automated (the ability to
verify a proof would be the same as the ability to find a proof)

Since verification seems to be way easier, every verifier would have the
reasoning power of Gauss and the like

By just programming your computer in polynomial time you can solve
(perhaps) the other 5 Clay Institute problems

“just because I can appreciate good music, doesn’t mean that I would be
able to create good music”

Imdad ullah Khan (LUMS) Classes of Problems 8 / 11



P = NP?

Then why isn’t it obvious that P ̸= NP

Intuition tells us that brute-force search is unavoidable

It is generally believed that there is no general and significantly better than
brute-force method to solve NP problems

Why can’t we prove it?

It is said that the great physicist Richard Feynman had trouble even being
convinced that P vs NP was an open problem

There are many many problems where we could avoid brute-force search

▷ See the list of “hard” problems and their easier “counterparts”

Though not a decision problem, recall that we discussed that (to impress
your boss) you can say that your algorithm for sorting finds that one
unique permutation out of the n! possible ones

We try to characterize these hard problems and say that almost all of
them all essentially the same

Imdad ullah Khan (LUMS) Classes of Problems 9 / 11



P = NP?

Computational Problems

Computable Problems

NP

P

NP

P

For X ∈ NP prove that there is no polynomial time algorithm

You proved P ̸= NP (You get a million dollars and A in this course)

Imdad ullah Khan (LUMS) Classes of Problems 10 / 11



P = NP?

Computational Problems

Computable Problems

NP

P

NP

P

For X ∈ NP prove that there is no polynomial time algorithm

You proved P ̸= NP (You get a million dollars and A in this course)

Imdad ullah Khan (LUMS) Classes of Problems 11 / 11


