### Classes of Problems

- Polynomial Time Verification
- The Classes P and NP
- The Classes EXP and CONP
- NP-HARD and NP-COMPLETE Problems
- Proving NP-HARDNESS
- A first NP-Complete Problem

#### IMDAD ULLAH KHAN

### Computing solution to a problem vs checking a proposed solution

- Sometimes computing and verifying a solution are both "easy"
  - e.g. we can compute a MST of a graph and verify whether a claimed solution is indeed a MST in polynomial time
- Sometimes computing is not easy (yet) but verifying is easy
  - e.g. 3-SAT(f) we don't know how to find a satisfying solution (or decide if one exists)
  - But verifying a claimed solution can be done in one scan of *f*
- Sometimes both computing and verifying a "claim" are not easy
  - e.g. not even clear how to "make" the claim that "G has no Hamiltonian cycle"?

Need to formalize "checking a solution easily" independent of computation

A decision problem X is efficiently verifiable if

- **1** The claim: " $\mathcal{I}$  is a **Yes** instance of X" can be made in polynomial bits
  - lacktriangle There exists a polynomial sized certificate for **Yes** instances of X
- 2 A certificate can be verified in polynomial time
  - There exists a polynomial time algorithm  $\mathcal V$  that takes the instance  $\mathcal I$  and the certificate  $\mathcal C$  such that  $\mathcal V(\mathcal I,\mathcal C)=\mathbf{Yes}$  iff  $\mathcal X(\mathcal I)=\mathbf{Yes}$

It takes some time to comprehend this, examples should make it clear

The MST(G, k) problem: Is there a spanning tree of G of weight  $\leq k$ ?

#### MST(G, k) is polynomial time verifiable

- A certificate could be the "claimed spanning tree" T for G
  - T can be written by writing vertices ids in some order  $\triangleright O(n \log n)$  bits
  - Adjacency matrix of edges in T

 $\triangleright O(n^2)$  bits

- A verifier can check
  - if vertices of T are in G
  - If all edges in *T* are actually from *G*
  - If sum of weights of edges is k
- Alternatively, a certificate could be an empty string

⊳ 0 bits

- $lue{}$  A verifier can run Kruskals's algorithm to find a MST T of G
- If  $w(T) \le k$ , it verifies the claim otherwise rejects the claim

### 3-SAT(f) is polynomial time verifiable

- A certificate would be the assignment of 0 and 1's to all variables
- A verifier can evaluate f with the assignment and if the value of f is 1 it outputs **Yes** (=verified) otherwise **No** (=not verified)

Note that we do not have to design a verifier or a technique for certifying, we only need to prove their existence

- Verifier does not have to be unique
- There can be many ways to certify
  - $\triangleright$  e.g. an independent set can be certified as the set of vertices, set of edges, complements thereof
- Verifier does not have to read the certificate, recall the requirement  $\mathcal{V}(\mathcal{I},\mathcal{C}) = \mathbf{Yes}$  iff  $X(\mathcal{I}) = \mathbf{Yes}$

### CLIQUE(G, k) is polynomial time verifiable

Given an instance [G, k] of CLIQUE(G, k)

- What could be a certificate of claim "[G, k] is **Yes** instance of CLIQUE $(\cdot, \cdot)$ "?
  - $\triangleright$  What evidence prove that G has a clique of size k?
- Is the certificate of polynomial length?
- lacksquare How can we verify that indeed [G,k] is a **Yes** instance of  $\mathtt{CLIQUE}(G,k)$ 
  - ▶ Does the verifier need to read the certificate?
- Is the verifier a polynomial time algorithm?

### PRIME(n) and COMPOSITE(n) are polynomial time verifiable

Note that they are complement of each other

- A certificate for the COMPOSITE(n) problem can be a factor d
- lacksquare A verifier can just confirm that 1 < d < n and d | n

#### Theorem (AKS(2004))

There exists a polynomial time algorithm to check whether an integer is prime

- A certificate for PRIME(n) can be an empty string
- lacksquare A verifier exists by the above theorem, using that if n is prime we verify the claim if n is not a prime we reject the claim

### VERTEX-COVER(G, k) is polynomial time verifiable

- What could be a certificate of claim "G has a vertex cover of size k"?
- How can we verify that indeed "G has a vertex cover of size k?

#### HAMILTONIAN(G) is polynomial time verifiable

- What could be a certificate of claim "G has a Hamiltonian cycle?"
- How can we verify that indeed *G* has a Hamiltonian cycle?

Are all problems "efficiently" verifiable?

$$\overline{3}$$
-SAT $(f)$ 

It decides whether the given formula f is not satisfiable

 $\triangleright$  sometime referred to as UNSAT(f)

Suppose one wants to claim that the formula f is not satisfiable

ightharpoonup Meaning this f is a **Yes** instance of  $\overline{3\text{-}\mathrm{SAT}}(f)$ 

How can one make a polynomial sized certificate to make the claim?

#### Are all problems "efficiently" verifiable?

Are the following problems polynomial time verifiable?

- $\overline{\text{HAMILTONIAN}}(G)$ :
  - $\triangleright$  It requires **Yes** output, if *G* does not have a Hamiltonian cycle
- NO-INDEPENEDENT-SET(G, k):
  - $\triangleright$  It requires **Yes** output, if *G* does not have an independent set of size *k*
- MOSTLY-LONG-PATHS(G, s, t, k):
  - $\triangleright$  Are majority of paths from s to t in G have length at least k