Polynomial Time Reduction

- Polynomial Time Reduction Definition
- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions
- Decision, Search and Optimization Problem
- Self-Reducibility

IMDAD ULLAH KHAN

Problem A is polynomial time reducible to Problem B, $A \leq_p B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

We used the following techniques for reduction

- Simple Equivalence
- Special Case to General Case
- Encoding with Gadgets

A very powerful technique is to exploit transitivity of reductions

Theorem: If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$

Problem A is polynomial time reducible to Problem B, $A \leq_p B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Theorem: If
$$X \leq_p Y$$
 and $Y \leq_p Z$, then $X \leq_p Z$

Proof: Let A_Z be an algorithm for Z

Given any instance I_X of X we will solve X on I_X using \mathcal{A}_Z^+

- There is an algorithm A_Y for Y using A_Z^+ (maybe many others too)
- lacksquare There is an algorithm \mathcal{A}_X for X using \mathcal{A}_Y^+

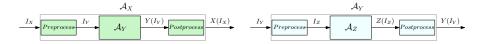
 $\mathcal{B}_{\mathcal{X}}$: the new algorithm for X uses everything as of \mathcal{A}_X but it uses the specific algorithm \mathcal{A}_Y that is built upon \mathcal{A}_Z

 $\triangleright \mathcal{B}_{\mathcal{X}}$ essentially composes the two reductions into one

Problem A is polynomial time reducible to Problem B, $A \leq_p B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

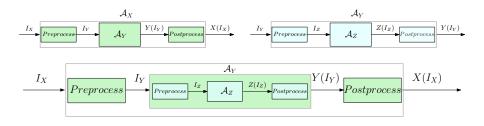
Theorem: If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$



Problem A is polynomial time reducible to Problem B, $A \leq_p B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Theorem: If $X \leq_p Y$ and $Y \leq_p Z$, then $X \leq_p Z$



Problem A is polynomial time reducible to Problem B, $A \leq_{p} B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

Theorem: If
$$X \leq_p Y$$
 and $Y \leq_p Z$, then $X \leq_p Z$

Transitivity is an extremely useful property of reduction

- SAT $(f) \leq_{p} 3$ -SAT(f') and 3-SAT $(f) \leq_{p}$ IND-SET(G, k)
 - From these we conclude that $SAT(f) \leq_p IND-SET(G, k)$
- $SAT(f) \leq_p 3$ - $SAT(f') \leq_p IND$ - $SET(G, k) \leq_p VERTEX$ - $COVER(G, t) \leq_p SET$ -COVER(U, S, I)
 - From these we conclude that $SAT(f) \leq_{p} SET-COVER(U, S, I)$
- And many others