Algorithms

Polynomial Time Reduction

■ Polynomial Time Reduction Definition

- Reduction by Equivalence

■ Reduction from Special Cases to General Case

- Reduction by Encoding with Gadgets
- Transitivity of Reductions

■ Decision, Search and Optimization Problem

- Self-Reducibility

Imdad ullah Khan

Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with 'clever' legal inputs] to solve any instance of problem A

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

Reduction by encoding with gadgets

$$
\operatorname{SAT}(f) \leq_{p} 3-\operatorname{SAT}\left(f^{\prime}\right)
$$

Given a CNF formula f on variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Construct an equivalent 3-CNF formula f^{\prime} on variables $X \cup\left\{d_{1}, d_{2}, \ldots\right\}$
■ Initialize $f^{\prime}=f$. For a long clause $C=\left(x_{i 1} \vee x_{i 2} \vee x_{i 3} \vee x_{i 4} \vee \ldots\right)$ in f^{\prime}

- Add the clauses $\left(x_{i 1} \vee x_{i 2} \vee d_{i}\right) \wedge\left(\bar{d}_{i} \vee x_{i 3} \vee x_{i 4} \vee \ldots\right)$ to f^{\prime}
- The new (long clause) is shorter than C

$$
(x_{i 1} \vee x_{i 2} \vee \underbrace{x_{i 3} \vee x_{i 4} \vee \cdots}_{y}) \Longleftrightarrow\left(x_{i 1} \vee x_{i 2} \vee d_{i}\right) \wedge(\bar{d}_{i} \vee \underbrace{x_{i 3} \vee x_{i 4} \vee \cdots}_{y})
$$

Proof: Suppose ($x_{i 1} \vee x_{i 2} \vee \underbrace{x_{i 3} \vee x_{i 4} \vee \ldots}_{y}$) is satisfiable

- If $x_{i 1} \vee x_{i 2}=1$. Set $d_{i}=0$
- If $x_{i 1} \vee x_{i 2}=0$, then $y=1$. Set $d_{i}=1$
\triangleright RHS is also satisfiable
\triangleright RHS is also satisfiable

Reduction by encoding with gadgets

$$
\operatorname{SAT}(f) \leq_{p} 3-\operatorname{SAT}\left(f^{\prime}\right)
$$

Given a CNF formula f on variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
Construct an equivalent 3-CNF formula f^{\prime} on variables $X \cup\left\{d_{1}, d_{2}, \ldots\right\}$
■ Initialize $f^{\prime}=f$. For a long clause $C=\left(x_{i 1} \vee x_{i 2} \vee x_{i 3} \vee x_{i 4} \vee \ldots\right)$ in f^{\prime}
■ Add the clauses $\left(x_{i 1} \vee x_{i 2} \vee d_{i}\right) \wedge\left(\overline{d_{i}} \vee x_{i 3} \vee x_{i 4} \vee \ldots\right)$ to f^{\prime}

- The new (long clause) is shorter than C

$$
(x_{i 1} \vee x_{i 2} \vee \underbrace{x_{i 3} \vee x_{i 4} \vee \cdots}_{y}) \Longleftrightarrow\left(x_{i 1} \vee x_{i 2} \vee d_{i}\right) \wedge(\overline{d_{i}} \vee \underbrace{x_{i 3} \vee x_{i 4} \vee \cdots}_{y})
$$

Proof: Suppose $\left(x_{i 1} \vee x_{i 2} \vee d_{i}\right) \wedge(\overline{d_{i}} \vee \underbrace{x_{i 3} \vee x_{i 4} \vee \ldots}_{y})$ is satisfiable

- If $d_{i}=1$, then $\overline{d_{i}}=0$ and $y=1$
- If $d_{i}=0$, then $\overline{d_{i}}=1$ and $x_{i 1} \vee x_{i 2}=1$
\triangleright LHS is also satisfiable
\triangleright LHS is also satisfiable

Reduction by encoding with gadgets

$$
\operatorname{HAM}-\operatorname{PATH}(G) \leq_{p} \quad \operatorname{HAM}-\operatorname{CYCLE}(G)
$$

Let \mathcal{A} be an algorithm for Ham-CYCle (G)
Given an instance G of $\operatorname{HAm}-\operatorname{Path}(G)$
Let G^{\prime} be G plus a dummy vertex v^{\prime} adjacent to all vertices in $V(G)$

G^{\prime} has a Hamiltonian cycle if and only if G has a Hamiltonian path

Reduction by encoding with gadgets

$$
\operatorname{HAM}-\operatorname{PATH}(G) \leq_{p} \quad \operatorname{HAM}-\operatorname{CYCLE}(G)
$$

Let \mathcal{A} be an algorithm for Ham-CYCle (G)
Given an instance G of $\operatorname{HAm}-\operatorname{Path}(G)$
Let G^{\prime} be G plus a dummy vertex v^{\prime} adjacent to all vertices in $V(G)$

G^{\prime} has a Hamiltonian cycle if and only if G has a Hamiltonian path

Reduction by encoding with gadgets

$$
\operatorname{HAM}-\operatorname{PATH}(G) \leq_{p} \quad \operatorname{HAM}-\operatorname{CYCLE}(G)
$$

Let \mathcal{A} be an algorithm for Ham-CYCle (G)
Given an instance G of $\operatorname{HAM}-\operatorname{Path}(G)$
Let G^{\prime} be G plus a dummy vertex v^{\prime} adjacent to all vertices in $V(G)$

G^{\prime} has a Hamiltonian cycle if and only if G has a Hamiltonian path
1 Call \mathcal{A} on G^{\prime}
2 If \mathcal{A} outputs Yes we will output Yes and vice-versa

Polynomial Time Reduction: Cook Reducibility

$$
\operatorname{HAM}-\operatorname{CYCLE}(G) \leq_{p} \quad \operatorname{HAM}-\operatorname{PATH}(G)
$$

Let \mathcal{A} be an algorithm for $\operatorname{HAM-Path(~} G$)
Given an instance $G=(V, E)$ of Ham-CYCLE (G)
For each edge $e=(u, v) \in E(G)$ make the graph $G_{e}=\left(V_{e}, E_{e}\right)$
$V_{e}=V \cup\left\{u^{\prime}, v^{\prime}\right\} \quad$ and $\quad E_{e}=E \cup\left\{\left(u, u^{\prime}\right),\left(v, v^{\prime}\right)\right\}$

G has a Hamiltonian cycle if and only if some G_{e} has a Hamiltonian path
1 Call \mathcal{A} on each of $G_{u v}$
2 If \mathcal{A} outputs Yes on any G_{e}, we will output Yes
3 If \mathcal{A} outputs No on all G_{e}, we will output No

