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Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B, A ≤p B

If any instance of problem A can be solved using a polynomial amount of
computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with
‘clever’ legal inputs] to solve any instance of problem A

Subroutine for B
x A(x)y B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)
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Reduction by encoding with gadgets

sat(f ) ≤p 3-sat(f ′)

Given a cnf formula f on variables X = {x1, . . . , xn}
Construct an equivalent 3-cnf formula f ′ on variables X ∪ {d1, d2, . . .}

Initialize f ′ = f . For a long clause C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .) in f ′

Add the clauses (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .) to f ′

The new (long clause) is shorter than C

(xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ · · ·︸ ︷︷ ︸
y

) ⇐⇒ (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ · · ·︸ ︷︷ ︸
y

)

Proof: Suppose (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) is satisfiable

If xi1 ∨ xi2 = 1. Set di = 0 ▷ RHS is also satisfiable

If xi1 ∨ xi2 = 0, then y = 1. Set di = 1 ▷ RHS is also satisfiable
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Initialize f ′ = f . For a long clause C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .) in f ′

Add the clauses (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .) to f ′
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(xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ · · ·︸ ︷︷ ︸
y

) ⇐⇒ (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ · · ·︸ ︷︷ ︸
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Proof: Suppose (xi1 ∨ xi2 ∨ di ) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) is satisfiable

If di = 1, then di = 0 and y = 1 ▷ LHS is also satisfiable

If di = 0, then di = 1 and xi1 ∨ xi2 = 1 ▷ LHS is also satisfiable
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Reduction by encoding with gadgets

ham-path(G ) ≤p ham-cycle(G )

Let A be an algorithm for ham-cycle(G )

Given an instance G of ham-path(G )

Let G ′ be G plus a dummy vertex v ′ adjacent to all vertices in V (G )

vi = v′
vi+1

vi−1G
v′

G′

G ′ has a Hamiltonian cycle if and only if G has a Hamiltonian path

Call A on G ′

If A outputs Yes we will output Yes and vice-versa
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Polynomial Time Reduction: Cook Reducibility

ham-cycle(G ) ≤p ham-path(G )

Let A be an algorithm for ham-path(G )

Given an instance G = (V ,E ) of ham-cycle(G )

For each edge e = (u, v) ∈ E (G ) make the graph Ge = (Ve ,Ee)

Ve = V ∪ {u′, v ′} and Ee = E ∪ {(u, u′), (v , v ′)}

G

u′

Guv

v′
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v

x

G

x′
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x

G Gab
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x

a

b

a′

b′

G has a Hamiltonian cycle if and only if some Ge has a Hamiltonian path

1 Call A on each of Guv ▷ O(|E |) calls
2 If A outputs Yes on any Ge , we will output Yes

3 If A outputs No on all Ge , we will output No
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