Polynomial Time Reduction

- Polynomial Time Reduction Definition
- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions
- Decision, Search and Optimization Problem
- Self-Reducibility

Imdad ullah Khan

Problem A is polynomial time reducible to Problem B, $A \leq_p B$

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with *'clever'* legal inputs] to solve any instance of problem A

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

 $\operatorname{SAT}(f) \leq_{p} \operatorname{3-SAT}(f')$

Given a CNF formula f on variables $X = \{x_1, \ldots, x_n\}$

Construct an equivalent 3-CNF formula f' on variables $X \cup \{d_1, d_2, \ldots\}$

- Initialize f' = f. For a long clause $C = (x_{i1} \lor x_{i2} \lor x_{i3} \lor x_{i4} \lor ...)$ in f'
- Add the clauses $(x_{i1} \lor x_{i2} \lor d_i) \land (\overline{d_i} \lor x_{i3} \lor x_{i4} \lor ...)$ to f'

The new (long clause) is shorter than C

$$(x_{i1} \lor x_{i2} \lor \underbrace{x_{i3} \lor x_{i4} \lor \cdots}_{y}) \iff (x_{i1} \lor x_{i2} \lor d_i) \land (\overline{d_i} \lor \underbrace{x_{i3} \lor x_{i4} \lor \cdots}_{y})$$

Proof: Suppose $(x_{i1} \lor x_{i2} \lor \underbrace{x_{i3} \lor x_{i4} \lor \dots})$ is satisfiable

If $x_{i1} \lor x_{i2} = 1$. Set $d_i = 0$ \triangleright RHS is also satisfiableIf $x_{i1} \lor x_{i2} = 0$, then y = 1. Set $d_i = 1$ \triangleright RHS is also satisfiable

 $\operatorname{SAT}(f) \leq_{p} \operatorname{3-SAT}(f')$

Given a CNF formula f on variables $X = \{x_1, \ldots, x_n\}$

Construct an equivalent 3-CNF formula f' on variables $X \cup \{d_1, d_2, \ldots\}$

- Initialize f' = f. For a long clause $C = (x_{i1} \lor x_{i2} \lor x_{i3} \lor x_{i4} \lor ...)$ in f'
- Add the clauses $(x_{i1} \lor x_{i2} \lor d_i) \land (\overline{d_i} \lor x_{i3} \lor x_{i4} \lor ...)$ to f'

The new (long clause) is shorter than C

$$(x_{i1} \lor x_{i2} \lor \underbrace{x_{i3} \lor x_{i4} \lor \cdots}_{y}) \iff (x_{i1} \lor x_{i2} \lor d_i) \land (\overline{d_i} \lor \underbrace{x_{i3} \lor x_{i4} \lor \cdots}_{y})$$

Proof: Suppose $(x_{i1} \lor x_{i2} \lor d_i) \land (\overline{d_i} \lor \underbrace{x_{i3} \lor x_{i4} \lor \dots}_{y})$ is satisfiable

If
$$d_i = 1$$
, then $\overline{d_i} = 0$ and $y = 1$ \triangleright LHS is also satisfiableIf $d_i = 0$, then $\overline{d_i} = 1$ and $x_{i1} \lor x_{i2} = 1$ \triangleright LHS is also satisfiable

 $\operatorname{HAM-PATH}(G) \leq_{p} \operatorname{HAM-CYCLE}(G)$

Let \mathcal{A} be an algorithm for HAM-CYCLE(G)

Given an instance G of HAM-PATH(G)

Let G' be G plus a dummy vertex v' adjacent to all vertices in V(G)

G' has a Hamiltonian cycle if and only if G has a Hamiltonian path

 $\operatorname{HAM-PATH}(G) \leq_{p} \operatorname{HAM-CYCLE}(G)$

Let \mathcal{A} be an algorithm for HAM-CYCLE(G)

Given an instance G of HAM-PATH(G)

Let G' be G plus a dummy vertex v' adjacent to all vertices in V(G)

G' has a Hamiltonian cycle if and only if G has a Hamiltonian path

 $\operatorname{HAM-PATH}(G) \leq_{p} \operatorname{HAM-CYCLE}(G)$

Let \mathcal{A} be an algorithm for HAM-CYCLE(G)

Given an instance G of HAM-PATH(G)

Let G' be G plus a dummy vertex v' adjacent to all vertices in V(G)

G' has a Hamiltonian cycle if and only if G has a Hamiltonian path

1 Call ${\mathcal A}$ on ${\mathcal G}'$

2 If $\mathcal A$ outputs **Yes** we will output **Yes** and vice-versa

Polynomial Time Reduction: Cook Reducibility

HAM-CYCLE(G) \leq_p HAM-PATH(G)

Let \mathcal{A} be an algorithm for HAM-PATH(G) Given an instance G = (V, E) of HAM-CYCLE(G) For each edge $e = (u, v) \in E(G)$ make the graph $G_e = (V_e, E_e)$ $V_e = V \cup \{u', v'\}$ and $E_e = E \cup \{(u, u'), (v, v')\}$

 ${\it G}$ has a Hamiltonian cycle if and only if some ${\it G}_e$ has a Hamiltonian path

1 Call \mathcal{A} on each of G_{uv}

 $\triangleright O(|E|)$ calls

- 2 If \mathcal{A} outputs **Yes** on any G_e , we will output **Yes**
- **3** If \mathcal{A} outputs **No** on all G_e , we will output **No**