Algorithms

Polynomial Time Reduction

■ Polynomial Time Reduction Definition

- Reduction by Equivalence
- Reduction from Special Cases to General Case
- Reduction by Encoding with Gadgets
- Transitivity of Reductions

■ Decision, Search and Optimization Problem

- Self-Reducibility

Imdad ullah Khan

Hard (Intractable) Problems

Efficiently Solvable Problem

\exists an $O\left(n^{k}\right)$ worst case time algorithm for instances of size n, constant k

■ Now we study negative results
■ Characterize problems for which we don't have good news
■ Cannot say they are not efficiently solvable (just don't know yet)
■ We might need to focus on approximation or special cases

Hard (Intractable) Problem

- No known $O\left(n^{k}\right)$ algorithm
- Exponential time is sufficient $O\left(n^{n}\right), O(n!), O\left(k^{n}\right)$

We establish that these "hard problems" are in some sense are equivalent

Polynomial Time Reduction

To explore the class of computationally hard problems, we define a notion of comparing the hardness of two problems

Measures the relative difficulty of two problems

Problem A is polynomial time reducible to Problem B,
If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B
$\triangleright B$ is at least as hard as problem A (w.r.t polynomial time)
Extremely important (a building block) for complexity theory
Generally confused, make sure you understand it the right way

Polynomial Time Reduction

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

If any algorithm for problem B can be used [called (once or more) with 'clever' legal inputs] to solve any instance of problem A

Subroutine for B takes an instance y of B and returns the solution $B(y)$

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms $B(y)$ to $A(x)$

Polynomial Time Reduction to design algorithms

Problem A is polynomial time reducible to Problem B,

If any instance of problem A can be solved using a polynomial amount of computation plus a polynomial number of calls to a solution of problem B

■ FINDMIN \leq_{p} SORTING
■ SORTING \leq_{p} FINDMIN

- MEDIAN \leq_{p} SORTING
- SORTING \leq_{p} MEDIAN

■ CYCLE-DETECTION \leq_{p} DFS
■ ALL-PAIRS-PHORTEST-PATHS \leq_{p} SINGLE-SOURCE-SHORTEST-PATHS
■ SINGLE-SOURCE-SHORTEST-PATHS \leq_{p} ALL-PAIRS-PHORTEST-PATHS
■ BIPARTITE-MATCHING \leq_{p} MAXIMIMUM-FLOW
Complete details of these (toy) reductions (calls with inputs, extra computation)

