
CS-510 Design & Analysis of Algorithms Fall 2020 -LUMS

Practice Problem Set: Graphs: DFS & BFS

Problem 1. Prove the correctness of the following recursive Explore algorithm, i.e.
suppose the algorithm was given a vertex s to explore, then you must prove the following

• If u is reachable from s then visited[u] = 1

• If u is not reachable from s then visited[u] = 0

Algorithm 1 : Explore
visited← zeros(n) . Initialize the visited array to n zeros
function Explore(v)

visited[v]← 1
for (v, u) ∈ E do . for all neighbors of v

if not visited[u] then
Explore(u)

Problem 2. Write pseudocode of DFS using Stack data structure instead of recursive
Explore().

Problem 3. Analyze the runtime of the following algorithms:

1. DFS on a graph G = (V, E) if

(a) G is given as a binary adjacency matrix.
(b) G is given as an adjacency list.
(c) G is a directed connected graph.
(d) G is a directed disconnected graph.

2. BFS on a connected graph G = (V, E) if

(a) G is given as a binary adjacency matrix.
(b) G is given as an adjacency list.

Problem 4. Given an undirected graph G = (V, E), prove that if we run DFS(s) from
some s ∈ V , there cannot be a cross edge in the DFS tree.

Problem 5. Let G = (V, E) be a directed graph. Prove that G has a directed cycle iff
DFS(G) has a back edge

Problem 6. Given a digraph G = (V, E) suppose we run DFS from s ∈ V . You’re given
the arrays s and f , containing starting time and finishing time of vertices respectively,
after running DFS(s). Then, given an edge e = (v, u) ∈ E describe how would you
determine if e is a tree edge, back edge, forward edge, or a cross edge.
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Problem 7. Let G = (V, E) be a graph. For a vertex v ∈ V , let R(v) := {u ∈ V : ∃
a path from v to u}, i.e. R(v) is the set of vertices that are reachable from v. Let f [v]
denote the finishing time of a node during the DFS run. Prove that if we run DFS on G,
then for any vertex v, ∀ u ∈ R(v), f [v] ≥ f [u].

Problem 8. Let G be a directed acyclic graph (DAG). Prove that G must have a source
vertex and a sink vertex.

Problem 9. Let G = (V, E) be a directed acyclic graph. Let G′ be the transpose graph of
G (formed by reversing the edges in G), i.e. G′ = (V, E ′) and E ′ = {(u, v) : (v, u) ∈ E}).
Show that all the vertices that were sinks in G become sources in G′ and the vertices
that were sources in G become sinks in G′.

Problem 10. Show that the strongly connected components graph of any graph G is a
DAG. Strongly connected components graph is a graph where each SCC is a vertex and
there is a directed edge from SCC C1 to another SCC C2, if and only if ∃u ∈ C1, v ∈
C2, (u, v) ∈ E(G).

Problem 11. Show that If a graph G consists of only two strongly connected components
C and C ′, and there is an edge from a node in C to a node in C ′, then after DFS the
largest finish time will be of some vertex in C.

Problem 12. Prove that if we run DFS on G = (V, E), then the largest finishing time
will be for a vertex in a source component.

Problem 13. Given an undirected graph G = (V, E), find its connected components.
Analyze runtime of your algorithm.

Problem 14. For the topological sort algorithm discussed in class (repeatedly removing
source vertices, for details refer to lecture notes) describe how would you find a source
vertex in the graph and hence analyze the total runtime complexity of the algorithm.

Problem 15. Give detailed analysis of the topological sort algorithm based on finish
times, (not the one discussed above). Compare runtime of this algorithm with the one
given above.

Problem 16. Given a graph G = (V, E), prove that for s ∈ V , BFS(s) will visit only
those vertices that are reachable from s.

Problem 17. Given an undirected graph G on n vertices, design an algorithm that
determines whether G is a tree.

Problem 18. The distance between two vertices a and b, i.e. d(a, b), is defined to be the
length of the shortest path from a to b. Let L(x) be the level number of the vertex x in
the BFS tree.

1. Suppose we have a BFS(s) tree of a connected graph G = (V, E). Given (u, v) ∈ E,
prove that |L(u)− L(v)| ≤ 1.

2. Given a graph G = (V, E), show that if the shortest path from s ∈ V to t ∈ V is
s, v1, v2, . . . , vk, t , then the length of the shortest path from s to vi must be exactly
i. This is called path suboptimality.
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3. Given a graph G = (V, E), suppose we run BFS(s) for s ∈ V . Prove that a vertex

x ∈ V is in level i of the BFS(s) tree if and only if d(s, x) = i.

4. Given a connected graph G = (V, E), let s ∈ V , and u, v 6= s such that (u, v) ∈ E.
Construct an example graph on n ≤ 6 vertices such that d(s, u) ≥ d(s, v) + 2, or
prove that such a graph does not exist.

Problem 19. Communication networks can be visualized as graphs. Network nodes such
as routers, hubs, etc. are represented using vertices and the links between the network
nodes are represented by edges. Subsequently, nodes which can communicate with each
other must have at least one path between them on the graph. As such, it is of interest
to network designers to identify possible points of failure, which upon failing would leave
nodes unable to communicate with each other.

1. Given an n-node network, which is represented by the graph G = (V, E). Suppose
we are given two nodes s and t in V , such that all paths between s and t are strictly
greater than n/2. Show that there is a node v, not equal to s or t, such that
removing v from G would eliminate all s− t paths (i.e. it will disconnect s and t).

2. Devise an algorithm with runtime O(|V |+ |E|), which can find such a node v.

Problem 20. We have a connected graph G = (V, E), and a specific vertex u ∈ V .
Suppose we compute a depth-first search tree rooted at u, and obtain a tree T that
includes all nodes of G. Suppose we then compute a breadth-first search tree rooted at u,
and obtain the same tree T . Prove that G = T . (In other words, if T is both a depth-first
search tree and a breadth-first search tree rooted at u, then G cannot contain any edges
that do not belong to T .)
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