
CS-510 Design & Analysis of Algorithms Fall 2020 -LUMS

Practice Problem Set: Complexity Theory
Note: NP -Complete and NP -Hard are used as names of the sets of NP -complete and NP -hard
problems in this document.

Problem 1. Prove that if a problem A ∈ P , then A ∈ NP .

Problem 2. Let A ∈ P and B ≤p A. Prove that B ∈ P .

Problem 3. Prove that “ ≤p ” is transitive, i.e if A ≤p B and B ≤p C, then A ≤p C.

Problem 4. Assuming P 6= NP , prove or give a counter example for the following statements.

1. NP -Complete = NP

2. NP -Complete ∩P = ∅

3. NP -Hard = NP

Problem 5. Let A be a NP -Complete problem and B and C are any other problems (may or
may not be in NP ). Suppose that B is polynomial time reducible to A and A is polynomial-time
reducible to C. Prove whether or not the following statements are true.

1. C is NP -complete.

2. B is NP -Hard.

3. C is NP -Hard

Problem 6. Prove that if any NP -complete problem is polynomial-time solvable, then P = NP .

Problem 7. Prove that the clique problem is NP -complete. Hint: Show that 3SAT is polynomial
time reducible to Clique problem.
The Clique Problem: Given a graph G, the clique problem asks to find the largest clique in
G, (A clique of order k is a complete graph on k vertices).
Decision Version: Given a graph G and an integer k, is there a clique of size at least k in G?

Problem 8. Prove that Vertex Cover problem is polynomial time reducible to Dominating Set
problem. Hint: Replace every edge (u, v) in G with a triangle (u, v, w) to form G′, where w ∈ G′

and w /∈ G (see Figure 1).
The Vertex Cover Problem: Given a graph G and a number k, decision version of the vertex
cover problem asks if there is a subset of size at most k in V (G) that covers all edges (i.e. every
edge in G intersects the set subset).

Complexity Theory 1



CS-510 Design & Analysis of Algorithms Fall 2020 -LUMS
Dominating Set Problem Given a graph G(V, E) and a number k, decision version of domi-
nating set problem asks if there is a dominating set of size k in V (G). Dominating set is a subset
A ⊂ V such that each vertex is either in A or has a neighbor in A.

u v

u v

w

t

t

s
G G’

Figure 1: Vertex Cover input G transformed to Dominating Set input G′

Problem 9. Prove that 3-SAT problem is polynomial time reducible to 3-coloring problem.
k-Coloring Problem Given a graph G, is there a coloring of the nodes with k colors such that
the endpoints of every edge are colored differently?
Hint: For every variable xi. create two nodes xi, xi and connect them. Make three special nodes
{Base, True, False} and connect them to form triangle. Now connect every variable node to
Base node, as shown in Figure

x1 x1 x2 x2

Base

True False

Figure 2: 3-SAT input transformed to 3-coloring input

Problem 10. Prove that Subset Sum problem is NP -complete.
Subset Sum Problem Given a set A of integers and an integer k, does there exist a subset of
A such that the sum of its elements is equal to k?

Problem 11. Prove that Hamiltonian cycle problem is NP -complete.
Hamiltonian Cycle Problem Given a graph G on n vertices, is there a cycle on n vertices in
the graph.

Problem 12. Prove that Hamiltonian Path problem is NP−Complete.
Hamiltonian Path Problem: Given a graph G, does G contain a path that visits every node
exactly once?

Hint: Prove that Hamiltonian Cycle problem is polynomial time reducible to Hamiltonian Path
problem. Pick any edge (u, v) in G, add two new vertices u1, v1 such that u1 is only connected
to u and v1 is only connected to v.

Complexity Theory 2



CS-510 Design & Analysis of Algorithms Fall 2020 -LUMS
Problem 13. Suppose we are given that the graph has no cycle. Design a polynomial time
algorithm to find the longest s− t path. Hint: You don’t have to design an algorithm, just model
is as a problem we already studied.
Longest s − t-path Problem: Given a weighted graph G = (V, E) with w : E → R and
two vertices s 6= t ∈ V , called the source and target vertex respectively, find a simple s − t
path P of maximum total weight, where weight of a path is the sum of weights of its edges, i.e.
w(P ) = ∑

e∈P w(e).

The decision version of the longest s− t-path is given an integer k, is there a s− t path of length
at least k in G.

Complexity Theory 3


