Algorithms

Lecture Notes — Local Search

IMDAD ULLAH KHAN

Contents

(1 Strategies for Dealing with Hard Problems| 1

2__Local Searchl 4
RI TSPlo 4
2 MaAX-CuTl. 4
2.3 Local Optimum| 4
2.4 Simulated Annealingl oo oL 4
.5 Gradient Descentl 4

1 Strategies for Dealing with Hard Problems

Suppose you are tasked with solving some kind of problems in your company. If you
are lucky, the problem is solvable using some design paradigm that we have studied so
far in this course. In particular, dynamic programming and linear programming are
able to take care of many problems. However, you may not be so lucky. Then, you
would tell your boss one of the following three things:

e “I cannot solve the problem, because I am too dumb”

e “The problem is not solvable (in poly-time)”. However, you would need a proof,
which will actually amount to P = NP (if your problem is in NP). In this case,
you would no longer need the job. Simply collect your million dollars from the
Clay Institute and enjoy your life.

e “I can not solve the problem but neither can all these extremely smart people.”
if you can prove that your problem is NP-complete. If you really worked hard to
find a solution but your attempts were fruitless, a little more work may lead you
to this proof.

The trouble with the above scenarios is that the problem at hand remains and this
theoretical exercise does not help practically. Hence, we will now study what to do in
such a case.

“NP-Completeness is not a death certificate, it is the beginning of a fascinating
adventure”

When you prove a problem to be NP-Complete (or NP-hard), then, as per popular
belief that P # N P, it essentially means that

1. There is no polynomial time
2. deterministic algorithm

3. to exactly solve this problem
4. for all possible input instances

The four keywords impose very strict requirements. Unless our goal is to prove P = NP
or P # NP | regarding which we already assume the latter, then, in practice we may
relax one of these requirements to sustain our job. It turns out that relaxing any of
these requirements does indeed help a lot practically and opens up huge avenues of
possibilities.

So what are our options to deal with NP-Hard problems? Let’s consider the following
questions:

e Do we need to solve the problem for all valid input instances?

— Sometimes, we just need to solve a restricted version of the problem that
includes realistic instances (special cases)

e [s exponential-time algorithms OK for our instances?

— The problem with exponential-time algorithms is not primarily that they are
“slow” but rather that they don’t scale well. So if our relevant instances are
small, then exponential-time may be acceptable. Moreover, we can reduce
the base or exponent in many practical cases. For example from 2" to 2V"
or 1.5™.

e [s non-optimality acceptable?

— It is OK if our algorithm just outperforms other algorithms in some cases. To
understand this idea better, consider the following scenario: A fit person and
a non-fit person are being chased by a bear. The fit person says: “Spending
so much time in the gym is worth it.” The non-fit person says: “Why? You
still won’t outrun the bear.” The fit person replies: “I don’t need to outrun
the bear. I just need to outrun you.”

Therefore, we may sacrifice one of three desired features i.e. solve any arbitrary in-
stance of the problem, optimally and in polynomial time by designing algorithms that,

respectively, solve special cases of the problem, or approximately solve problems, or
may take exponential time. We summarize these strategies to cope with the hard
requirements of NP-Complete problems by relaxing them in Table [1}

Exact/Optimal All cases/ Algorithmic

Poly-ti D inisti . .
oly-time - Deterministic solution Parameters Paradigm

Special Cases Algorithms

v / v X Fixed Parameter Tractability

Approximation Algorithms

v v X v Heuristic Algorithms
Mote Carlo
v X E(v) v Randomized Algorithm
Las Vegas
E(v) X v v Randomized Algorithm
p P / Y Intelligent

Exhaustive Search

Table 1: Coping with NP-hard Problems

We briefly describe each of the above listed approaches to tackle hard problems before
diving deeper into each one individually.

1. Special cases can be based on the structure of input instances or depend on
particular range of one or more parameters. The problem is easier for such
special cases, for which exact results are attainable in polynomial time.

2. Approximation algorithms and heuristic algorithms provide nearly exact solu-
tions, i.e. the output is ‘close’ to the optimal solution. While approximation
algorithms output solutions of guaranteed quality in poly-time, heuristics algo-
rithms do not have any guarantees on the solution which is hopefully good in
poly-time.

3. Randomized algorithms use coin flips for making decisions. In addition to being
used for approximation of hard problems, they are also used for easy problems
(in P). Monte Carlo algorithms output solutions which may not be exact but
always take polynomial time whereas Las Vegas algorithms always output the
optimal solution but not necessarily in polynomial time.

4. Intelligent exhaustive search takes exponential time in the worst case but could be
very efficient on typical more realistic instances where the base and/or exponent

are usually smaller. Techniques for this approach include Backtracking, Brand-
and-Bound, and Local Search.

2 Local Search

2.1 TSP

2.2 Max-Cut

2.3 Local Optimum

2.4 Simulated Annealing
2.5 Gradient Descent

	Strategies for Dealing with Hard Problems
	Local Search
	TSP
	Max-Cut
	Local Optimum
	Simulated Annealing
	Gradient Descent

