
Algorithms

Lecture Notes — Approximation Algorithms
Imdad ullah Khan

Contents

1 Hard Problems and Approximation Algorithms 2
1.1 Preliminaries and examples of hard problems 2

2 Absolute approximation guarantees 3
2.1 Planar graph coloring . 4
2.2 Negative result for absolute approximation algorithm by scaling 7

2.2.1 Impossibility result for the Max Independent set problem 8
2.2.2 Impossibility result for the knapsack problem 9

3 Relative approximation algorithms 10
3.1 Maximum Cut Problem . 11
3.2 Set Cover Problem . 12
3.3 Vertex Cover . 16
3.4 Scheduling on Parallel Machines . 18

3.4.1 List scheduling algorithm . 19

4 The TSP Problem 22
4.1 Impossibility of Relative Approximation 22
4.2 Metric TSP . 23
4.3 2-approximation for Metric TSP . 25
4.4 Christofides Algorithm: 1.5-approximation for Metric TSP 28

5 The Knapsack Problem 29
5.1 A Greedy Algorithm for the Knapsack problem 30

6 Polynomial Time Approximation Scheme 33
6.1 PTAS for the Knapsack problem . 34

7 FPTAS for the Knapsack problem 37
7.1 Dynamic programming solution . 37
7.2 Scaling Friendly Dynamic Programming 37
7.3 Scaling and Rounding . 38

1

1 Hard Problems and Approximation Algorithms

A large number of optimization problems are known to be NP -hard, which we know
from complexity theory are impossible to solve unless P = NP (which is widely believed
to be not true). We nonetheless need to solve these hard problems as they appear in
many practical scenarios.

We make the following remarks about how to go about hard problems

� Super polynomial time heuristics: Some algorithms are just barely super-
polynomial and run reasonably fast in most practical cases. For example in class
we discussed a dynamic programming based solution for the Knapsack problem
and proved that the runtime of that algorithms was pseudo-polynomial. For most
practical cases this is good enough. But there aren’t many problem for which we
can find pseudo-polynomial time algorithms.

� Probabilistic Analysis: We can also strop focusing on worst case runtime anal-
ysis, instead we may ask what is the average case runtime of the algorithm. For
some problems there are very few instances for which an algorithm takes expo-
nential amount of time. For example for the Hamiltonian cycle problem, there
is an algorithm that will find a Hamiltonian cycle in almost every Hamiltonian
graph. Such results are usually derived by assuming a probability distribution on
the input instances and then it shows that the algorithm will solve the problem
with high probability.

It is not very easy to come up with a reasonable probability distribution on the
input instance.

� Approximation Algorithms: In this strategy we drop the requirement that
the algorithm will find the optimal solution. Rather we relax the requirement
by asking for a feasible solution that is some sense “pretty close” to the opti-
mal solution. For a large body of NP-hard problems there are polynomial time
algorithms that find solution that are nearly optimal (only slightly sub-optimal).

1.1 Preliminaries and examples of hard problems

An optimization problem P is characterized by the three things

� I: Set of input instances

� S(I): solution space, set of all feasible solutions for an instance I ∈ I

� f : S(I) → R: A function f that maps solutions to a real number, this is called
the value of a solution.

2

A maximization problem is given I ∈ I, find a solution s ∈ S(I) such that f(s) is
maximum, i.e.

∀s′ ∈ S(I), f(s) ≥ f(s′).

We will sometime refer the value of the optimal solution as OPT (I) = f(s).

A minimization problem is defined analogously. Note that optimal solution need
not be unique, but it will always exist.

In this part of the course we will consider NP -hard optimization problems and assume
that P ̸= NP . This basically assume that for all problems we will consider there
is no polynomial time algorithm that finds an optimal solution for all instances of
the problem. Examples of hard problems that we discussed in class are maximum
independent set in a graph, maximum clique in a graph, Hamiltonian cycle in a graph,
minimum set cover, set packing, minimum vertex cover in a graph, graph coloring, the
knapsack problem, optimal scheduling on parallel machine. There are thousands of
problems that are NP hard, we will define only those problems that we will study.

Definition 1. An approximation algorithm A for an optimization problem P , is
a polynomial time algorithm such that given an input instance I of P , it outputs a
solution s′ ∈ S(I). Some time we will denote by A(I) both the value of the solution
f(s′) or the solution itself i.e. s′ (it will be clear from the context).

We need to extend this definition to be able to compare the value A(I) with OPT (I).
So far this only asks for a feasible solution. For example for the maximum independent
set problem in a graph G, since every vertex is an independent set of G, the algorithm
that arbitrarily outputs a vertex of G satisfies this definition, which clearly is a trivial
solution. We need to be able to measure the goodness of approximation algorithms,
by asking for certain performance guarantees of approximation.

2 Absolute approximation guarantees

Definition 2. An absolute approximation algorithm for a problem P is a poly-
nomial time approximation algorithm such that there is some constant k > 0 such
that

∀ I ∈ I, |A(I)−OPT (I)| ≤ k.

Let us restate it for minimization problem

Definition 3. An absolute approximation algorithm for a minimization problem
P is a polynomial time approximation algorithm such that there is some constant k > 0
such that

∀ I ∈ I, A(I) ≤ OPT (I) + k.

3

Equivalently it means that f(s′) ≤ f(s) + k.

This is clearly the best possible solution for a NP -hard minimization problem.

2.1 Planar graph coloring

The graph coloring problem is to color vertices of the graph with a minimum number
of colors such that no adjacent vertices get the same color. More formally the graph
coloring problem has

� I: Graphs

� S(I): An assignment of colors to vertices of input graph, in other words such
that no two adjacent vertices have the same color.

� f(s): number of colors used in the coloring s.

We denote by χ(G) the minimum number of colorings needed to color a graph G.

Following is an example graph, with two different colorings.

Figure 1: Original graph
Figure 2: Graph colored
with 4 colors

Figure 3: Graph colored
with 3 colors

Here is another example from our slides

4

A graph G on 8 vertices A coloring with 6 colors

A coloring with 8 colors A coloring with (optimal) 3 colors

Definition 4. A graph is planar, if it can be drawn on a plane without any edge
crossing.

Note that the definition says that it can be drawn, a planar graph could be drawn with
edges crossing.

Figure 4: Planar graph with non-planar and planar drawing

Figure 5: A planar graph K4

Theorem 5 (Euler’s formula). A planar graph with n ≥ 3 vertices and m edges has
m ≤ 3n− 6

An immediate corollary of the above fact using the handshaking lemma is that

5

K5 K3,3

Figure 6: Non planar graphs K5 and K3,3

Corollary 6. Every planar graph has a vertex with degree at most 5.

A well known result about complexity of planar graph coloring is given in the following
theorem.

Theorem 7. The decision problem of whether or not a planar graph is 3-colorable is
NP -complete.

A very easy observation following from the above minimum degree condition is the
following positive result about coloring planar graphs.

Theorem 8. Any planar graph is 6 colorable.

v v

Proof. The proof is by induction with base case |V | ≤ 5, is trivial. Let v be a vertex
such that deg(v) ≤ 5, by the above corollary there must exist such a vertex. Consider
the graph G − v, Since G is planar, G − v is also planar. By induction G − v is 6
colorable. Consider a coloring of G − v and add back to it v. Neighbors of v, (N(v))
are already colored, but the maximum number of color used for N(v) is at most 5 and
one of the 6 colors is available and legitimate to be used for v, we use that available
color to cold v with and thus extend the coloring to the whole G.

Note that the above consecutive proof readily gives us a recursive algorithm for 6
coloring of graph. Consider the following algorithm as our approximation algorithm to
color planar graphs.

6

Algorithm Approx-Planar-Color(G)
if G is bipartite then ▷ Easy to check with a BFS

Color G with the obvious 2 coloring
else

Color G with the 6 coloring as in Theorem 8

Theorem 9. The algorithm PlanarColor is a 3-absolute approximation algorithm. In
other words

Proof. If G is not bipartite, then the minimum colors needed to color G is at least 3
(OPT (G) ≥ 3) and PlanarColor uses at most 6 colors (PlanarColor(G) ≤ 6), hence
the statement follows.

Actually it is well known that any planar graph is 5 colorable. There is an easy
algorithm for 5-coloring of planar graphs.

Theorem 10. Any planar graph is 5-colorable.

Proof. Please check out its proof online, I may include it in an appendix.

This theorem immediately gives us a 2-absolute approximation algorithm. In fact the
famous 4 color theorem gives us a 1-absolute approximation algorithm. Read online
about the 4 color theorem.

Figure 7: UIUC postage stamps in honor the 4 color theorem

2.2 Negative result for absolute approximation algorithm by
scaling

Generally absolute approximation algorithms exists for problems where one can find
a rather small range of values where the optimal value lies. The hardness of such
problems is determining the exact value of the optimum solution within this range.

7

Such an absolute approximation algorithm merely uses the fact that the range is very
small to come up with a tight absolute approximation guarantee.

Not many hard problems have an absolute approximation algorithm. Typically such
impossibility results use the technique of scaling. The broad idea is as follows: We first
scale up certain parameter(s) associate with the instance, secondly we show that if there
is an absolute approximation algorithm for the sacred up instance, then the solution
can be rescaled to get an optimum solution for the original instance. But this imply
an efficient algorithm to solve the optimization problem, which by our assumption of
P ̸= NP is not possible.

2.2.1 Impossibility result for the Max Independent set problem

The maximum independent set problem is that of finding the largest subset of vertices
in the graph such that no pair of them is adjacent. As we saw earlier this an NP -hard
problem.

Theorem 11. If P ̸= NP , then there is no k-absolute approximation algorithm for
the maximum independent set (MIS) problem.

The proof uses the so-called scaling technique. We first give a specific example on how
the scaling technique works, later we give a general proof.

In I Max Ind. set is of size 5 In 2I Max Ind. set is of size 10

Note: f(OPT (2I)) = 2f(OPT (I))

We assume that there is a k-absolute approximation algorithm. We scale the original
instance I by a factor of 2 (call this instance 2I). Note that OPT (2I) = 2OPT (I). We
run the above assumed algorithm on the instance 2I to get an approximate result of size
at least OPT (2I)−k = 2OPT (I)−k. We divide this solution by 2 to get a solution for

I of size at least 2OPT (I)−k
2

= OPT (I)− k
2
. Hence we got a even better approximation

algorithm, namely a k
2
-absolute approximation algorithm. Now it is easy to see that

if we keep on applying the scaling trick at some point the approximation guarantee
will drop below 1. At this point typically we appeal to the integrality of the optimal
solution and argue that we actually found an optimal solution.

8

Proof. Assume the contrary, that is assume that there is k-absolute approximation
algorithm A for MIS. For any G = (V,E), let G′ be made of k + 1 disjoint copies of G
(there are no edges between them). It is easy to see that the MIS of G′ is composed of
one MIS in each copy of G. This implies that OPT (G′) = (k + 1)OPT (G).

G G G G G. . .

G:(k+1) copies with no edges between copies︷ ︸︸ ︷
G

Note: f(OPT (G′)) = (k + 1)f(OPT (G))

Now run A on G′, it will return an independent set of size at least OPT (G′) − k (by
its quality guarantee), which is composed of independent sets in each copy of G. By
the pigeon hole principle, at least one copy of G must contain an independent set of
size at least

OPT (G′)− k

k + 1
=

(k + 1)OPT (G)− k

k + 1
≥ OPT (G)− 1

k
≥ OPT (G).

Hence we can find the optimum solution in G in polynomial time, which by our as-
sumption (P ̸= NP), is not possible.

2.2.2 Impossibility result for the knapsack problem

In this section we show that it is impossible to come up with an absolution approx-
imation algorithm for the knapsack problem. We didn’t cover this in the class, but
since we discuss it in great details in terms of positive result, it is worth noting why
we didn’t give an absolute approximation algorithm for it.

Recall the knapsack problem, where an instance of it consists of

� Items U = {1, 2, . . . , n}

� Weights (or sizes) W = {w1, w2, . . . , wn}, where wi is the weight of item i ∈ U .

� Values (or profits) V = {p1, pw, . . . , pn}, where vi is the value of item i ∈ U .

� Knapsack capacity (or budget) C.

9

A feasible solution to the problem is a subset U ′ ⊆ U , such that
∑

i∈U ′ wi ≤ C. Our
goal is to maximize f(U ′) =

∑
i∈U ′ vi.

Informally we would like to pack some items of different sizes into a knapsack of fixed
capacity so as to maximize the total profits from the packed items.

This problem is NP -hard. There is no k-absolute approximation algorithm for the
knapsack problem.

Theorem 12. If P ̸= NP , then there is no k-absolute approximation algorithm for
the knapsack problem.

Proof. Suppose there is a k-absolute approximation algorithm A for the knapsack prob-
lem. Given an instance I of the knapsack problem (where all sizes and profits are
integers), let (2k)I be the instance such that everything remains the same as I ex-
cepts profits are scaled up by a factor of 2k, i.e. p′i = 2k · pi. It is easy to see that
OPT ((2k)I) = 2kOPT (I), because same capacity and same weights implies we can
take the same items as in optimal solution to I, the only difference is that the value of
solution for (2k)I is 2k times OPT (I).

Running algorithm A on (2k)I by its performance guarantee gives us a solution such
that A((2k)I) ≥ OPT ((2k)I)− k. Dividing value of each selected item in this solution
by 2k we get a solution s′ to the original instance I, whose value is at least

OPT ((2k)I)− k

2k
=

2kOPT (I)− k

2k
≥ OPT (I)− 1

2
.

Since by our assumption I has integer weights and values, the maximum achievable
value (OPT (I)) is also an integer, hence f(s′) ≥ OPT (I)− 1

2
must be equal to OPT (I).

This clearly gives us a polynomial time algorithm to solve optimally any integer instance
of the knapsack problem, contradicting our assumption that P ̸= NP .

3 Relative approximation algorithms

Given that we can’t always find the most desirable absolute approximation algorithm
(indeed very few problems admit absolution approximation guarantees as discussed
above), the reasonable thing to do is to relax the definition of “pretty good” requirement
for approximation algorithm.

Definition 13. A relative approximation algorithm A for a maximization problem
P is a polynomial time approximation algorithm such that there is some constant α > 0

10

such that

∀ I ∈ I, |A(I) ≥ OPT (I)

α
.

In other words if s′ is the solution given by A and s is the optimal solution, then
f(s′) ≥ f(s)/α.

For a minimization problem it is analogously defined, except for the requirement is
f(s′) ≤ αf(s). We call such algorithms α-approximate algorithm.

3.1 Maximum Cut Problem

Given an undirected graph G = (V,E). A cut in G is a subset S ⊂ V , it is denoted by
[S, S]. The size (or cost) of a cut in the number of crossing or cut edges. If the graph
has weights on its edges, then the cost of the cut is defined to be the sum of weights
of cut edges.

A

F

E

G

D

C

B

cu
t
ed
ge
s

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

The maximum cut problem is to partition V into two subsets S and S = V \ S such
that the number of edges in the cut [S, S] is the maximum.

A cut of size 3 A min cut of size 2

The problem is NP -hard; we give an approximation algorithm for it. The algorithm is
very simple, in iterates over all the vertices in an arbitrary order and keep each vertex
either in A or B = V \ A that are initially empty. In each step if the current vertex v
has more neighbors in A, then it keeps v in B and vice-versa. If v has no neighbors in

11

either or has equal number of neighbors in both, then it arbitrarily keeps v in either A
or B.

Algorithm Greedy-Max-Cut(G = (V,E))

A← ∅
B ← ∅
for v ∈ V do

if degA(v) ≥ degB(v) then ▷ degX(v) = N(v) ∩X

A← A ∪ {v}
else

B ← B ∪ {v}
return [A,B]

The main problem about max cut is that it is not easy to come up with upper bounds
on the optimum max cut.

Theorem 14. The above greedy algorithm is a 2-approximation algorithm for max cut.

Proof. We prove that in every iteration the number of cut edges (among the vertices
already assigned to A and B) is at least as large as the number of uncut edges. Initially
both of these numbers are 0 and at every step some more edges are now cut and uncut,
meaning some non-negative integers are added to both the number of cut edges and the
number of uncut edges. By the greedy choice the number of cut edges always remain
larger than the number of uncut edges.

The optimal solution might include at most all the edges of G, i.e. |E|. Our algorithm
has the guarantee of number of cut edges is at least as large as the number of uncut

edges, i.e. f(s′) ≥ |E| − f(s′) =⇒ f(s′) ≥ |E|
2

. Which proves the statement.

3.2 Set Cover Problem

An instance of the set cover problem consists of a set U of n elements, a collection of
subsets of U and S = {S1, S2, . . . , Sm}, where each Si ⊆ U . A cover is a collection of
subsets from S whose union is equal to U . Our goal is to find a cover with minimum
number of subsets.

12

S1

S2

S3

S4

S5

S6

U
S1

S2

S3

S4

S5

S6

U

This is a very general optimization problem, that models for example the following
scenario. Suppose we have m application softwares with different capabilities, U is the
set of n capabilities we must have in our system. We want to choose the smallest (least
cost) set of softwares that in total will meet our requirement specs.

Consider the following simple greedy algorithm for this problem. It Iterates over sets
until all elements of U are covered. While there is an uncovered element choose a set
Si from S which covers the most number of (yet) uncovered elements.

Algorithm greedy-set-cover(U,S)
X ← U ▷ Yet uncovered elements
C ← ∅
while X ̸= ∅ do

Select an Si ∈ S that maximizes |Si ∩X| ▷ Cover most elements
C ← C ∪ Si

X ← X \ Si

return C

13

S1

S2 S3

U

� The algorithm will select S1, S2, and S3. While optimal is S2 and S3

Here is another run of the greedy-set-cover on the following instance.

� U = {1, 2, 3, 4, 5} and

� S = {{1, 2}, {1}, {1, 4}, {4}, {1, 2, 3, 5}, {4, 5}}

We will first pick {1, 2, 3, 5} as this cover 4 elements, next we can pick {1, 4} or {3, 4}
or {4, 5}. Either of them will cover all elements of U . Hence this algorithm picks two
sets to cover all element of U , which clearly is the best possible solution.

Consider the following example.

� U = {1, 2, 3, 4, 5, 6, 7, 8}

� S = {{1, 2, 3, 4, 5}, {6}, {7, 8}, {1, 2, 3, 8}, {4, 5, 6, 7}}

Algorithm A will pick {1, 2, 3, 4, 5}, {4, 5, 6, 7} and {1, 2, 3, 8}. while the best solution
clearly is {1, 2, 3, 8} and {4, 5, 6, 7}.

Hence greedy-set-cover might not always produce an optimal solution. We prove
a performance guarantee for greedy-set-cover.

Theorem 15. The above greedy algorithm is a log n-approximation algorithm for the
set cover problem (where n = |U |).

Proof. Let f(s) = OPT = k, i.e. there exists k sets in S that cover all elements of U .

By the pigeon-hole principles, this immediately implies that there exists a set Si ∈ S
that covers at least n

k
elements. Hence the first set that our algorithm will pick have

at least n
k
elements. Let n1 be the number of elements that remain uncovered after

the first set is picked. We get that n1 ≤ n − n
k
= n(1 − 1

k
). Again by the pigeon-hole

principle one of the remaining sets in S must contain at least n1

k−1
of the uncovered

14

elements, as otherwise the optimal solution would have to contain more than k sets. Our
greedy algorithm will pick the largest such set and the number of remaining uncovered
elements is at most n2 ≤ n1 − n1

k−1
= n1(1− 1

k−1
) ≤ n(1− 1

k
)(1− 1

k−1
) ≤ n(1− 1

k
)2.

In general after the iteration, for the number of remaining uncovered elements we have
ni ≤ n(1− 1

k
)i.

Let us see in how many iterations does this number goes below 1 (at which point we
have a cover) and this is the number of sets we have. The following calculation gives
us a bound on the number of iterations.

ni ≤ n

(
1− 1

k

)i

< 1(
1− 1

k

) ki
k

<
1

n

e−
i
k <

1

n
using the fact that (1− x)

1
x ∼ e−1

i

k
< lnn

i < k lnn

This implies that the number of set we choose i ≤ k lnn = lnnf(s), hence this algo-
rithm is lnn-approximate.

This analysis is tight in the sense, that there are instances on which the greedy-set-
cover indeed selects a cover of size log n · opt.

15

|R1 ∩ Ci| = |R2 ∩ Ci| = 2i−1

C1 C2 C3 C4 |Ci| = 2i |Ct| = 2t

R1

R2

|R1| = |R2| =
t∑

i=1

2i−1 = 2t − 1 n = |U | =
∣∣∣∣ t⋃
i=1

Ci

∣∣∣∣ = t∑
i=1

2i = 2t+1 − 2

� greedy-set-cover selects Ct, Ct−1, . . . , C1

� The optimal solution is R1 and R2

� On this example, the algorithm achieves approximation factor is O(log n)

The natural question that every algorithm designer ought to ask at this point, is can we
do better? Meaning can we design another algorithm that will outperform greedy-
set-cover. Unfortunately the answer to this question is No, i.e. a lower bound is
known for this problem. The theorem is

Theorem 16. Unless P = NP, there is no approximation algorithm for set-cover
problem that achieves an approximation ratio better than log n

We discuss inapproximability results later. However we can do much better for a special
instance of set cover, namely the vertex cover problem.

3.3 Vertex Cover

In the vertex cover problem, given a graph G = (V,E), out goal is to find the smallest
subset of vertices such that for every edge at least one end point is selected. We
studied it earlier and show that it was a special case of set cover problem. We can of
course use the above set cover algorithm (at each step choose a vertex that covers the
maximum number of remaining uncovered edges) to get a performance guarantee of
ln |E| = O(log n).

16

Consider the following instance of set cover problem (which is exactly the vertex cover
problem for a given graph G = (V,E).

� U = {e1, . . . , em}, the set of edges in G that we want to cover.

� S = {E1, E2, . . . , En} where each Ei ⊂ U , is the set of edge incident on vi. i.e.
Ei = {e : e is incident on vi}. One can think of them as the set of edges covered
by vi.

A natural greedy algorithm for the vertex cover problem would be as follows: While
there is an uncovered edge, choose one of its two endpoints to cover it. Clearly one of
the two endpoints is in the optimal cover, but we can be unfortunate at every step and
choose the wrong one at every step. Consider the following graph.

v0

v1

v2

v3

v4v5
v6

v7

v8

Figure 8: The optimal vertex cover is {v0} while to cover each edge we might choose
all other vertices.

But we can modify the first greedy algorithm to improve the approximation guarantee.
This algorithm proceeds as follows. If there is an uncovered edge e = (u, v) choose
both of its endpoints to the cover.

Algorithm vertex-cover(G)

C ← ∅
while E ̸= ∅ do

pick any {u, v} ∈ E
C ← C ∪ {u, v}
Remove all edges incident to either u or v

return C

Theorem 17. The greedy algorithm that repeatedly picks both endpoints of an uncov-
ered edge that remains is 2-approximate.

17

Proof. Since for each edge e = (u, v), the optimal solution must include either u or
v, while this algorithm at worst picks both u and v. Hence if s′ is solution by this
algorithm and s is the optimal solution then f(s′) ≤ 2f(s).

Actually we might actually do this bad, consider the example in Figure 9

a b

c d

Figure 9: To cover the edge (a, b) we will choose a and b, while to cover (c, d), we will
choose c and d, while an optimal solution is {a, d}

Remark 18. The best known algorithm for vertex cover has an approximation guar-
antee of 2−O(log log n/ log n), while the best known lower bound is 4/3. To close the
gap is an open problem.

3.4 Scheduling on Parallel Machines

This is a general problem of load balancing a classic NP-hard problem that has many
applications. An instance of such a scheduling problem consists of

� P : Set of n jobs (processes) {p1, p2, . . . , pn}

� Each job pi has a time ti

� M : Set of k parallel machines {m1, . . . ,mm}

We want to schedule these processes, (assign jobs to machines). Let A(j) be the set of
jobs assigned to mj. The load of a machine Tj is the total time of processes assigned
to it, i.e. Tj =

∑
pi∈A(j) ti. The makespan of a schedule (an assignment of jobs to

machine), T (P,M) is the maximum load of any machine, i.e. T (P,M) = maxj Tj =
maxj

∑
pi∈A(j) ti.

p1 2

p2 3

p3 4

p4 6

p5 2

p6 2 m1 m2 m3

2 4

62

2
3

m
a
k
e
spa

n
︷

︸︸
︷ 2

4

2

2

3

m
a
k
e
spa

n
︷

︸︸
︷

4

6

2
3

m
a
k
e
spa

n
︷

︸︸
︷

2

2

m1 m2 m3 m1 m2 m3

6

18

3.4.1 List scheduling algorithm

We give a simple greedy algorithm for this problem. This algorithm iterates over each
process and assign pi to a machine that currently has the lowest load, i.e. assign each
job to a least loaded machine.

Algorithm Greedy Load Balance(G)
for j = 1 to k do

A(j)← ∅
Tj ← 0

for i = 1 to n do
Let mj be a machine that has the minimum load at this time, i.e. mj = mink Tk

A(j)← A(j) ∪ pi
Tj ← Tj + ti

Consider the following example of 6 jobs and 3 machines illustrated in Figure 10. If
the order of jobs was 2, 3, 4, 6, 2, 2 the above greedy algorithm will schedule them as
in Figure 11 for a total makespan of 8 (T1 = 8). This is clearly not optimal if the job
order was 6, 4, 3, 2, 2, 2 the scheduling would have been as in Figure 12 for a makespan
of 7, which is optimal.

p1

p2

p3

p4

p5

p6

2

3

4

6

2

2

Figure 10: 6 jobs with
times 2, 3, 4, 6, 2, 2

M1

M2

M3

62

3

4 2

2

Figure 11: Schedule for
order 2, 3, 4, 6, 2, 2

M1

M2

M3

6

24

3 2 2

Figure 12: Schedule for
order 6, 4, 3, 2, 2, 2

Theorem 19. The list scheduling algorithm is (2 − 1
k
)-approximate, where k is the

number of machines.

Proof. First we need to derive a lower bound on OPT (I) for a general instance I.

� We can lower bound OPT (I) by considering the total processing time
∑

i ti. By

the pigeon-hole principle one of the k machines must do at least

∑
i ti
k

amount of

19

total work (if every one does less than 1/k fraction of total work, then the total
work done will be less than

∑
i ti. So we get that

OPT (I) ≥
∑

i ti
k

.

� We also have the following obvious lower bound on OPT (I). Since the machine
to which the maximum time consuming process tmax will take at least tmax time
to finish, hence the makespan will be at least tmax. We get

OPT (I) ≥ max
i

ti = tmax.

In other words it gives us that

∀ pi OPT (I) ≥ ti.

WLOG assume that by the above algorithm, machine m1 has the maximum load, let
this load be cmax = T1. Let pi be the last job placed at machine m1. At the time pi
was assigned to m1, by design the load of m1 at that time was the minimum across
alll machines at that time. Let L1 be the load of m1 at that time. Since we know that
pi is the last job placed at m1, we get that L1 = T1 − ti. Since this is the least loaded
machine, at that time all other machines must have load at least T1 − ti too.

Adding up the load of all machines we get that∑
j

Tj ≥ k(T1 − ti) + ti.

The quantity on the right hand side is exactly the total time of all the jobs (since very
job is assigned to exactly one machine), combining it with our first lower bound we get
that

20

kOPT (I) ≥
∑
i

ti =
∑
j

Tj ≥ k(T1 − ti) + ti

kOPT (I) ≥ k(T1 − ti) + ti

OPT (I) ≥ (T1 − ti) +
ti
k

OPT (I) ≥ T1 −
(
1− 1

k

)
ti

OPT (I) ≥ T1 −
(
1− 1

k

)
OPT (I) using the second lower bound

T1 ≤
(
2− 1

k

)
OPT (I)

Hence the approximation ratio of the above list scheduling algorithm is
(
2− 1

k

)
, where

k is the number of machines.

We give an example to show that the above approximation guarantee is tight for this
algorithm.

p1
p2
p3

pk(k−1)

pk2−k+1

1

1

1

...
1

k

Optimal Schedule
Output

m1 m2 mk

. . .1 1 1

1 1 1

1 1 1

...
...

...

k

k
−
1

︷︸
︸︷

m
a
k
e
s
p
a
n

︷
︸︸

︷ . . .1 1

1 1

1 1

...
... k

m
a
k
e
s
p
a
n

︷
︸︸

︷

1 1

k
︷

︸︸
︷

m1 m2 mk

Let n = k(k− 1)+ 1, let the first n− 1 jobs have runtime of 1 and the last job job has
runtime k. In other words for 1 ≤ i ≤ n− 1, ti = 1, while tn = k. It is easy to see that
OPT (I) for this I is k, (i.e. assign pn to m1 and distribute the remaining k(k−1) jobs
equally among the remaining k − 1 machines.) Think about what our algorithm will
do in this case, it balances the first n− 1 jobs among the k machines and then assign
the giant job to one of the machines, resulting in makespan of 2k − 1. This achieves
equality in the above upper bound.

21

4 The TSP Problem

Recall that, given a complete graph G on n vertices with edge weights w : E 7→ R, a
tsp tour is a Hamiltonian cycle in G. The tsp problem is to find a minimum length
tsp tour in G.

K5 with edge weights A TSP tour of length 11 A TSP tour of length 9

a

2

2

4

2
1 3

1

3

3

5

2

2

4

2
1 3

1

3

3

5

2

2

4

2
1 3

1

3

3

5

2

2

4

2
1 3

1

3

3

5

a a aa

c d

b

c d

e b

c d

e b e

c d

A TSP tour of length 15

e b

Figure 13: Examples of tsp tours

4.1 Impossibility of Relative Approximation

Theorem 20. If P ̸= NP, then for any α > 1, there is no α-approximation for tsp

Proof. We prove this by reducing theHamiltonian-Cycle(G) to the α-approximate-tsp(G)
problem. Consider an instance G = (V,E) of ham-cycle(G), |V | = n. Next, con-
struct a complete graph G′ on n vertices with weights as follows:

w(vi, vj) =

{
1 if (vi, vj) ∈ E(G)

αn+ 1 else

Now, if there is a Hamiltoninan Cycle in G, then the same cycle is a tsp tour T in
G′. Note that T uses all edges (from G) of weight 1 and is of length n. Thus, T is an
α-approximate tour in G′. If there is no Hamiltonian Cycle in G, then any tsp tour T
in G′ must use an edge of weight αn+ 1. Thus, T is an α-approximate tour in G′.

22

No Hamiltonian
cycle in G

Hamiltonian cycle
in G shown in blue

TSP tour in G′ of length
5 = n shown in blue

1

1

1

1

1
1

1

αn+ 1

αn+ 1

αn+ 1
1

1

1
1

1

αn+ 1

αn+ 1

αn+ 1

Any TSP tour must use
an edge of weight αn+ 1

Figure 14: Reducing the Hamiltonian-Cycle(G) to the α-approximate-tsp(G)
problem

Suppose there is an algorithm A for the α-approximate-tsp(G) problem. For an
instance G = (V,E) of ham-cycle(G), |V | = n, make Kn = G′ with

w(vi, vj) =

{
1 if (vi, vj) ∈ E(G)

αn+ 1 else

If G has a ham-cycle, then opt-tsp(G′) = n. If G has no ham-cycle, then
opt-tsp(G′) ≥ αn+1 We have used A to solve Ham-Cycle(G) in polynomial time,
which implies P = NP . This contradicts out assumption that P ̸= NP .

4.2 Metric TSP

Before we define metric-tsp, recall the properties of the distance metric and metric
space.

A distance d(u, v) is a distance metric if it satisfies the following 4 axioms

1. Non-negativity: d(u, v) ≥ 0

2. Indiscernibility: d(u, v) = 0 ⇔ u = v

3. Symmetry: d(u, v) = d(v, u)

4. Triangle Inequality: d(u,w) ≤ d(u, v) + d(v, w)

Now we can define Metric tsp as: Given a complete graph G on n vertices with metric
edge weights w : E 7→ R+, a tsp tour is a Hamiltonian cycle in G. Note that for all
vertices x, y, z w(x, z) ≤ w(x, y) + w(y, z) For a Euclidean tsp vertices are points in
a plane and distance is the Euclidean distance

23

x

y

z

w(x, y) w(y, z)

w(x, z) ≤ w(x, y) + w(y, z)

Figure 15: Direct distance is shorter than the distance via an intermediate point

Not a metric-tsp instance A metric-tsp instance

2

2

4

2
1 3

1

3

3

5

a

c d

b e

5

8

4

3
3 5

3

7

6

2

a

c d

b e

We can show that metric tsp isNP-hard by reducing ham-cycle(G) tometric-tsp(G′, k)
where G′ is a weighted graph and k is the required length of the tsp tour. We construct
G′ as follows. Given an instance G = (V,E) of ham-cycle(G) where |V | = n, make a
complete graph on n vertices G′ with weights defined such that they induce a distance
metric.

w(vi, vj) =

{
1 if (vi, vj) ∈ E(G)

2 else

No Hamiltonian
cycle in G

1

1

1
1

1

2

2

2

2

No TSP tour of
length 5 in G′

Hamiltonian cycle
in G shown in blue

1

1

1

1

1
1

1

2

2

TSP tour in G′ of
length 5 shown in blue

Now, if there is a Hamiltoninan Cycle in G, then the same cycle is a tsp tour in G′

which uses all edges (from G) of weight 1 and is of length n. If there is no Hamiltonian
Cycle in G, then any tsp tour T in G′ must use an edge of weight 2 and the length of
the tour is greater than n. Therefore, G has a Hamiltonian cycle if and only if G′ has
a tsp tour of length k = n.

24

4.3 2-approximation for Metric TSP

We observe a simple lower bound on metric-tsp:

Theorem 21. If C is ham-cycle and T ∗ is a mst in G, then w(T ∗) ≤ w(C)

Proof. Let e ∈ C be any edge. Then, T = C \ e is a spanning tree in G ▷ C is a ham-
cycle. Since T ∗ is a minimum spanning tree, w(T ∗) ≤ w(T) ≤ w(C \ e) ≤ w(C).

e

Figure 16: A Hamiltonian Cycle C can be obtained by adding an edge to the MST T ∗

.

Before we use this to show a 2-approximation algorithm for tsp, let’s recall Eulerian
Graphs. A Euler Circuit: is a closed walk in graph G containing every edge of G. A
Euler Path is a walk in G containing every edge of G.

Theorem 22. G has an Euler circuit if and only if every vertex has even degree

Theorem 23. G has an Euler path if and only if it has exactly two vertices of odd
degree

We use a spanning tree T to find a tsp tour C on a metric-tsp instance G. Suppose
each edge in T is duplicated, i.e. can be used twice. Consider some vertex s to be the
root of the T .

Let L be an Euler tour on T (∗) starting from s (the root). We list vertices in order of
L including repetitions. The length of L is w(L) =

∑
e∈L w(e).

Let C∗ be an optimal tsp tour in G. L is not equal to C∗ since C∗ must visit each
vertex only once except the first. To convert L to a tsp tour C, we remove duplicate
vertices, while the retaining the first and last vertex, by short-circuiting L. We do
this by traversing L and keeping only the first occurrence of a vertex. When a vertex

25

19

8

54

53

a

c d

b e

53

54

19

8

A metric-tsp instance

19

8

99

99
54

89

99

53

88

a

c d

b e

99

An mst T

19

8

54

53

a

c d

b e

T rooted at c and edges duplicated

Figure 17: Duplicating each edge in MST T in G

An mst T T rooted at d and edges duplicated

a

c d

b e

a

c d

b e

d , c , e , c , a , b , a , c , dL

a

c d

b e

Figure 18: An Euler tour on MST T (∗) in G

is about to be revisited, we skip it and simply visit the last vertex. Only the repeated
root at the last vertex is retained to complete the cycle C.

The algorithm can be summarized as follows:

Algorithm double-tree-tsp(G)

T ← mst(G) ▷ e.g. Kruskal algorithm
T (∗) ← duplicate edges of T ▷ every vertex has even degree
L← Euler tour of T (∗) ▷ Fleury or Hierholzer algorithm
C ← short-circuit(L)

return C

Runtime of each step in the above algorithm is polynomial: Kruskal’s algorithm takes

26

d c e c a b a c d

C2 = short-circuited L2d , c , e , c , a , b , a , c , dL2

a

c d

b e

d c e c a b a c d

a

c d

b e

Figure 19: Short-Circuiting L to obtain C

O(|E| log n), duplicating edges is O(n) while Euler tour can be obtained in O(|E|2)
using Fleury’s algorithm. and in O(|E|) using Hierholzer’s algorithm. Finally, short
circuiting takes O(n). Therefore, the overall runtime is clearly polynomial.

Theorem 24. The double-tree-tsp is a 2-approximation for metric-tsp

Proof. Since edges were duplicated in T to obtain a Euler tour L on T , w(L) = 2w(T).
Then, since w(T) ≤ w(C), w(L) ≤ 2w(C∗). Since edges were only removed during
short circuiting, and edge weights in T (or G) are a distance metric, w(C) ≤ w(L).

x

y

z

w(x, y) w(y, z)

w(x, z) ≤ w(x, y) + w(y, z)

C = short-circuited L

x y z

L

x y z

Figure 20: Removing duplicate vertices during short-circuiting

Therefore, we can conclude that

w(C) ≤ w(L) = 2w(T) ≤ 2w(C∗)

Can we do any better? The factor 2 in the double-tree-tspalgorithm appeared
because of duplicating all edges of T since we needed all vertices to have an even
degree for an Euler tour. Therefore, we do not need to alter vertices which already

27

have an even degree. The interesting question now is, is there a less costly way to make
degrees of select vertices even? We see that we can indeed do so in the Christofides’
Algorithm which gives us a 1.5-approximation for metric-tsp.

4.4 Christofides Algorithm: 1.5-approximation for Metric TSP

We make the following observation about the MST T in G.

Theorem 25. The number of odd-degree vertices in T is even.

Let O be the set of odd degree vertices in T . By the above theorem, |O| is even. Let
M be the minimum cost perfect matching in subgraph in G induced by vertices in O.
M can be obtained using Micali and Vazirani algorithm in O(n2.5). In order to make
all vertex degrees even, combine edges of M and T to get a multigraph H. Then, a
Euler tour in L can be found and C can be obtained by short-circuiting L, similar to
the double-tree-tsp algorithm.

cba

d

h

e

gf

cba

d

h

e

gf

cba

d

h

e

gf

Spanning tree T H = M ∪ T Euler tour L C : short-cutLMatching M among
odd degree vertices

cba

d

h

e

gf

cba

d

h

e

gf

Figure 21: Example: Obtaining ham-cycle C fromMST T in Christofides’ Algorithm

Algorithm Christofides-Algo-tsp(G)

T ← mst(G) ▷ e.g. Kruskal algorithm
G′ ← Subgraph in G induced by odd degreed vertices in T .
T (′) ← Min-Cost-Perfect-Matching(G′) ▷ Micali & and Vazirani’s Algorithm
O(n2.5)
H ←M ∪ T ▷ every vertex has even degree in H
L← Euler tour of H ▷ Fleury or Hierholzer algorithm
C ← short-circuit(L)
return C

The runtime of above algorithm is evidently polynomial.

Theorem 26. The Christofides’ algorithm is a 1.5-approximation for metric-tsp.

28

Proof. The length of Euler tour L on H is w(L) = w(T) +w(M). Since w(C) ≤ w(L)
and w(T) ≤ w(C∗), w(C) ≤ w(C∗) + w(M).

First, we show that, given a ham-cycle C in G = (V,E) and U ⊆ V with |U | is even,
for a min-cost perfect matching M on U , w(M) ≤ 1/2w(C).

A ham-cycle C C short-cut to even

number of vertices, C′
C′ decomposed into
2 perfect matchings

Figure 22: If C is short-circuit C ′ on vertices in U , C ′ can be decomposed into two
perfect matchings on U

Since M is a min-cost perfect matching w(M) ≤ 1/2w(C ′). Also note that w(C ′) ≤
w(C) by the triangle inequality. The above two facts imply that w(M) ≤ 1/2w(C).Furthermore,
since we earlier saw that w(C) ≤ w(C∗) + w(M) and now given w(M) ≤ 1/2w(C ′), we
can conclude that w(C) ≤ (1 + 1/2)w(C∗).

5 The Knapsack Problem

Recall the knapsack problem, where an instance of it consists of

� Items U = {1, 2, . . . , n}

� Weights (or sizes) W = {w1, w2, . . . , wn}, where wi is the weight of item i ∈ U .

� Values (or profits) V = {p1, pw, . . . , pn}, where vi is the value of item i ∈ U .

� Knapsack capacity (or budget) C.

A feasible solution to the problem is a subset U ′ ⊆ U , such that
∑

i∈U ′ wi ≤ C. Our
goal is to maximize f(U ′) =

∑
i∈U ′ vi.

Informally we would like to pack some items of different sizes into a knapsack of fixed
capacity so as to collect the maximum total profit from the packed items.

29

In the following we will assume that all weights and values are integers.

5.1 A Greedy Algorithm for the Knapsack problem

Earlier we looked at some greedy approaches but they could result in arbitrarily bad
solutions. A greedy approach could be to take the highest value item as long as
the total does not go over capacity. Consider the instance Consider C = 100 and
V = W = {51, 50, 50}; In this instance, we would select {51} and stop, while clearly a
better answer would be to take {50, 50}.

Another greedy approach would be to take the lowest weight items, so as to use up the
least capacity. Consider the instance C = 100 and V = W = {1, 50, 50}; , in this case,
we would select {1, 50}, whereas a better option was to take {50, 50}.

Yet another greedy algorithm is given as follows.

Algorithm GreedyByRation(G)

if
n∑

i=1

wi ≤ C then ▷ If all items fit in the sack, then take all

S ← U

return S

Sort items by vi
wi

into an array S ▷ WLOG assume that v1
w1
≥ v2

w2
≥ . . . ≥ vn

wn

Weight← 0 ▷ We store the total weight collected so far in Weight

V alue← 0 ▷ We store the total value collected so far in V alue

S ← ∅ ▷ Initially the knapsack is empty

for i = 1 to n do

if Weight+ wi < C then

S ← S ∪ ai
V alue← V alue+ vi
Wt← Weight+ wi

It turns out that this algorithm too can be arbitrarily bad. Consider the following
instance W = {1, C} and V = {2, C}, so items have value to weight ratio as 2 and 1.
So we will pick item item 1 first as its ratio is 2, but then there is no more capacity
for the second item. While the optimal solution clearly is to take item 2. The ration
vi/wi is called the density of items. The problem is that density is not necessarily a
good measure of profitability. In the above example more dense item blocks the more
profitable item.

30

We can fix this with an extremely simple trick. We also run another simple greedy
algorithm that chooses the first item that GreedyByRatio algorithm misses. We return
the best of the two algorithms. Following is a pseudocode for this algorithm.

Algorithm ModifiedGreedyByRation(G)

if
n∑

i=1

wi ≤ C then ▷ If all items fit in the sack, then take all

S ← U

return S

Sort items by vi
wi

into an array S ▷ WLOG assume that v1
w1
≥ v2

w2
≥ . . . ≥ vn

wn

Weight← 0 ▷ We store the total weight collected so far in Weight

V alue← 0 ▷ We store the total value collected so far in V alue

S ← ∅ ▷ Initially the knapsack is empty
for i = 1 to n do

if Weight+ wi < C then

S ← S ∪ ai
V alue← V alue+ vi
Wt← Weight+ wi

k ← |S|
if V alue ≥ vk then

return S

else
return {ak}

Theorem 27. The above algorithm is 2-approximate.

Proof. Let f(s′) be the value of solution by this algorithm. Let k be the last item
added to S by the algorithm (as in the code). Clearly we have that

∑k
i=1 vi ≤ OPT .

Let c =
C − (w1 + w2 + . . .+ wk)

wk+1

. The numerator is the remaining capacity of the

knapsack after packing the first k items. So c is the fraction of the (k+ 1)st item that
can be packed (if we were allowed to take fractions of item). Note that c < 1, because
otherwise all of item k + 1 can be packed and the algorithm would have packed it.

31

We get that
k∑

i=1

vi + c · vk+1 ≥ OPT, (1)

by explanation of c above, (if we were allowed fractional packing) this packing consumes
all the capacity of the Knapsack since and uses the capacity optimally (if fractional
items were allowed), as we always selected items with largest density (largest value per
unit capacity).

Actually we are going to refer to this fact later (a few times) so lets give it a name.

Lemma 28. If ak is the last item chosen by the ModifiedGreedyByRatio algorithm,
then

k∑
i=1

vi + c · vk+1 ≥ OPT,

where c =
C − (w1 + w2 + . . .+ wk)

wk+1

.

As an immediate corollary we get that
∑k+1

i=1 vi ≥ OPT , as c < 1.

Now our approximation guarantee follows. Since f(s′) = max
{∑k

i=1 vi, vk+1

}
, if∑k

i=1 vi < OPT
2

, then vk+1 ≥ OPT
2

, because otherwise using that fact c < 1, we get
a contradiction to (1).

This analysis is tight. Consider the following instance where the performance guarantee
is matched. Let U = {a1, a2, a3}, V = {1 + ϵ

2
, 1, 1}, W = {1 + ϵ

3
, 1, 1}, and C = 2.

The densities are given as {(1+ ϵ/2)/(1+ ϵ/3), 1/1, 1/1}. The above greedy algorithm
will choose a1 as this is equal to S (by the algorithm) and v1 > v2. While the optimal
solution clearly is {a2, a3}. f(s′) = (1 + ϵ/2), so f(s) = 2 = 2f(s′) − ϵ, which is
arbitrarily close to 2 by choosing a sufficiently small ϵ.

Note that the runtime of this algorithm is n log n for sorting (Each of the n divisions
takes time proportional to log(P.C), where P is the sum of alll values). So if we sacrifice
quality of solution we brought down runtime to n log n from the dynamic programming
pseudo-polynomial time algorithm that took O(nC).

32

6 Polynomial Time Approximation Scheme

How good are the approximation algorithm we have seen so far. Consider the 2-
approximate algorithm for vertex cover, while this is much better than applying the
more general set cover approximate algorithm, but think about it, the solution we give
is a 100% more than the optimal. The set cover solution is even worse O(log n) times
more than the optimal.

An important fact about approximation algorithms and approximability is that while
all NP -Complete problem are equivalent in terms of polynomial time solvability. But if
P ̸= NP , they differ substantially in terms of approximability. For instance we could
find a 1-absolute approximate algorithm for planar graph coloring, while we proved
that the independent set problem cannot have a k-absolute approximate algorithm.

While we didn’t cover any inapproximability results for relative approximation algo-
rithm, it can be shown that the set cover O(log n)-approximate algorithm is essentially
the best possible (assuming P ̸= NP). Similarly, as we remarked earlier that ver-
tex cover doesn’t admit an approximation ratio better than 4/3. Inapproximability
results are known for many other NP -complete problems too. Such results are part
of a fascinating research area called hardness of approximation or lower bounds on
approximability.

In the next section we will discuss algorithms that achieve any desired approximation
ratio guarantee. Meaning the user inputs in addition to the problem instance the
desired precision required and the algorithm guarantees to outputs a result within that
error bound.

Definition 29. A Polynomial Time Approximation Scheme (PTAS) is an ap-
proximation algorithm that takes as input in addition to the problem instance a pa-
rameter ϵ > 0, and produces a solution that is (1 ± ϵ)-approximate. The running is
polynomial in the size of the problem instance (generally n) its dependency on ϵ can be
exponential however.

� (1± ϵ)-approximate means that for minimization problem the value of solution is
at most (1+ϵ) ·OPT and that for maximization problem is at least (1−ϵ) ·OPT .

� Runtime of such algorithm could be for example O(21/ϵn3), or O(n1/ϵ), or

Definition 30. A Fully Polynomial Time Approximation Scheme (PTAS) is
a PTAS whose running time is polynomial in both n and 1/ϵ.

33

6.1 PTAS for the Knapsack problem

First we make a few observation about the ModifiedGreedyByRatio algorithm and
Lemma 28. Above we gave an instance where this algorithm actually about 1/2 the
optimal solution. We argue that in some cases the solution by the algorithm is not
very bad, we actually identify when is the solution bad.

Lemma 31. If there is an 0 < ϵ < 1/2, such that for every items wi ≤ ϵC, then
ModifiedGreedyByRatio algorithm gives a (1− ϵ) approximation.

Proof. First since we sorted items by value to weight ratio, we have that

∀ 1 ≤ i ≤ k + 1,
vi
wi

≥ vk+1

wk+1

=⇒ vi ≥ wi
vk+1

wk+1

.

Adding up all these inequalities we get that

v1 + v2 + . . .+ vk+1 ≥ (w1 + w2 + . . .+ wk+1)
vk+1

wk+1

wk+1 ·
v1 + v2 + . . .+ vk+1

w1 + w2 + . . .+ wk+1

≥ vk+1

By definition of k (the last item that the algorithm chose, actually ak+1 is first item that
the algorithm rejected is the more important fact), we have that w1+w2+ . . .+wk+1 >
C, plugging this in the above inequality we get that

vk+1 ≤
wk+1

C
· v1 + v2 + . . .+ vk+1.

Using every wi ≤ ϵC, pluggin in wk+1 ≤ ϵC, in the above inequality we get

vk+1 ≤ ϵ · (v1 + v2 + . . .+ vk+1)

≤ ϵ · (v1 + v2 + . . .+ vk)/(1− ϵ)

Now if (v1+v2+. . .+vk) ≥ (1−ϵ)·OPT , then we are done (got a (1−ϵ)-approximation).
If (v1+ v2+ . . .+ vk) < (1− ϵ) ·OPT , then we get from the above vk+1 ≤ ϵ ·OPT (just
substitute this in the above inequality for vk+1.

Combining these two implies that v1+v2+. . .+vk+vk+1 < (1−ϵ)·OPT+ϵ·OPT < OPT ,
contradicting Lemma 28 (the corollary). Hence at least one of them must be at least
(1− ϵ) ·OPT .

34

Lemma 32. If there is an 0 < ϵ < 1/2, such that for every items vi ≤ ϵOPT , then
ModifiedGreedyByRatio algorithm gives a (1− ϵ) approximation.

Proof. By Lemma 28 (the corollary) we have that (v1 + v2 + . . .+ vk+1) ≥ OPT , while
by the premise of this statement we have that vk+1 ≤ ϵOPT , hence we must have
that (v1 + v2 + . . .+ vk) ≥ (1− ϵ) · OPT . Hence in this case ModifiedGreedyByRatio
algorithm gives a (1− ϵ) approximation.

We will next design a PTAS for the Knapsack problem (using ideas from the above
two lemmas). First we state a simple but nonetheless very useful fact.

Fact 33. In any optimal solution with total value OPT and any 0 < ϵ < 1, there are
at most ⌈1

ϵ
⌉ items with values at least ϵ ·OPT .

The above fact and lemma gives us the following idea for designing a PTAS. We will
first try to guess the heavier items (values larger than ϵ ·OPT) in the optimal solution,
(by the above fact there aren’t too many), then for the remaining items we will use
our old ModifiedGreedyByRatio algorithm, by the lemma it will give us quite good
solution (because the remaining items have values at most ϵ · OPT). The problem
is how to guess the heavier items (actually since we don’t know OPT , we can’t even
define heavy items). All we know is a bound on their number. But that’s good enough
information, since there can only be ⌈1

ϵ
⌉ of them. We will try all subsets of U of sizes

at most ⌈1
ϵ
⌉. There are at most n⌈ 1

ϵ
⌉+1 subsets of U of size at most ⌈1

ϵ
⌉.

Here is the algorithm. For a set S ⊆ U we define w(S) =
∑

i∈S wi and v(S) =
∑

i∈S vi
(the total weight and value of items in S).

35

Algorithm KnapsackPTAS(G)

h← ⌈1
ϵ
⌉

currentMax← 0

for each H ⊆ U , such that |H| ≤ h do

Pack H in knapsack with capacity C (if possible)

Let vm be the minimum value of any item in H

Let H ′ be items in U \H with value greater than vm
Run ModifiedGreedyByRatio algorithm on U \{H∪H ′} with capacity C−w(H)

Let S be the solution returned

if currentMax < v(H) + v(S) then

currentMax← v(H) + v(S)

We can easily keep track of the best solution too, by keeping the current best pair of
H and S.

Theorem 34. The above algorithm is a PTAS for the knapsack problem, with runtime
n⌈ 1

ϵ
⌉+1

Proof. There are O(nh+1) subsets of U of size at lest h. For each subset we do a linear
amount of work and then call the ModifiedGreedyByRatio algorithm. Note that we do
sorting only once, but that is immaterial as it is dominated by the above O(nh) term.

O(nh+1) = O(n⌈ 1
ϵ
⌉+1), hence it is polynomial in n (and exponential in 1/ϵ).

For the approximation ratio, note that since we are iterating over all subsets of size at
most h, so in one of these iterations we will actually consider the correct set H (which
the optimal solution has) (we know it cannot have more than h items of value more
than ϵ ·OPT). Consider that iteration. U ′ = U \ {H ∪H ′}, Let OPT ′ be the optimal
way to pack items in U ′. So OPT = v(H) + OPT ′. In this iteration we removed all
the items that have value at least larger than ϵ ·OPT , because by the fact above they
cannot be part of the solution (OPT ′). Since for every item in U ′, vi ≤ ϵ ·OPT , by the
above lemma we can get a solution that is at least (1− ϵ)OPT ′. Hence our solution is
v(H) + (1− ϵ)OPT ′ ≥ (1− ϵ)OPT (v(H) could be 0, the optimal solution might not
include any heavier item).

36

7 FPTAS for the Knapsack problem

We first develop a dynamic programming solution to solve the knapsack problem, which
we use to develop a FPTAS for the problem.

7.1 Dynamic programming solution

We discussed a dynamic programming solution in great length in the class, see lecture
notes for dynamic programming. We quickly review that solution and identify problems
with that we solve in the next section, by developing a more scaling friendly dynamic
programming solution.

Given an instance (U, V,W,C) of the knapsack problem, where |U | = |V | = |W | = n,
V,W ⊂ Z and C ∈ Z. Let OPT (i, c) and O(i, c) be the value of the optimal solution
and the optimal solution (the actual subset) respectively, of the (sub)problem U =
{a1, . . . , ai}, W = {w1, . . . , wi} and V = {v1, . . . , vi} and capacity c. We discussed the
optimal substructure property and got the following recurrence

OPT (i, c) =

0 if c ≤ 0

0 if i = 0

max{OPT (i− 1, c− wi) + vi, OPT (i− 1, c)} else

As we discussed earlier we can find OPT (n,C) (and O(n,C)), which is our goal exactly
in time O(nC). This is not polynomial in the size of the input as unless we are using
a unary system C can be described in O(log n) bits.

But can we use this solution to design a FPTAS? Earlier we saw that if all weights are
not very large (≤ ϵC) then we get (1− ϵ)-approximation. So we can scale down all the
weights and B and solve the problem exactly using this algorithm and then scale up
the solution. There could be a problem; during scaling up we might end up with an
infeasible solution (violating the capacity constraint), which is a hard constraint. In
the following we give another dynamic programming formulation which is more scaling
friendly. That solution actually scales all the values (and use the second lemma, when
all values are small), here we can scale up with care so as to not end up with infeasible
solution, but value is kind of a soft constraint (it is in our objective function and we
are allowed to make bounded error).

7.2 Scaling Friendly Dynamic Programming

We want to develop an algorithm with running time depending on n and P =
∑

i vi
and as we mentioned earlier scaling P up and down is relatively in our control, so it

37

will be easy to use it as a subroutine for a FPTAS. Recall that all of the values are all
integers. For the previous dynamic programming solution we essentially answered the
question “what is the maximum value that we can gain if capacity is c”? Here we turn
this question to “what is the minimum weight that we need if want to gain a value of
p”? Let’s define OPT (i, v) to be the smallest capacity needed to get the target value
v from the sub-instance U = {a1, . . . , ai}, W = {w1, . . . , wi} and V = {v1, . . . , vi}.
The maximum target one can achieve is at most P =

∑
i vi, we we have to compute a

OPT (i, v) for each 0 ≤ i ≤ n and 0 ≤ v ≤ P . Let vm be the maximum value of any
item, then P ≤ nvm, the total number of subproblems are at most O(n · nvm).

Remark 35. Remember none of these subproblems is our actual goal, but if we have
solution to these subproblems, then we can compute a solution to our problem instance.
The solution to our instance is the largest v such that OPT (i, v) ≤ C.

It is easy to see that the following recurrence can be used to solve these subproblems.

OPTi, v =

0 if v = 0

∞ if i = 0 and v > 0

OPTi− 1, v if i ≥ 1 and 1 ≤ v < vi

min{OPT (i− 1, v), OPT (i− 1, p− vi) + wi if i ≥ 1 and v ≥ vi

This recurrence might not be clear immediately so think about it until it is. Try
to formally prove it, it just uses the definition of OPT (i, v). You may consult your
textbook for a formal proof.

As usual this immediately gives us a dynamic programming algorithm, (a bottom-up)
iterative procedure that runs in O(n2vm) that in view of the above remark computes
OPT (n,C). Note that this too is a pseudo-polynomial time algorithm but as we will
see below we have achieved a lot.

7.3 Scaling and Rounding

Now we use the above dynamic programming solution to design a FPTAS for the
knapsack problem. We cannot directly use the above procedure if the values are too
large (or they are not integers). Here are some immediate observations.

� If in our instance vm is small (polynomial in n, say vm = nk), this means all
values are small, then we can run the above dynamic programming solution to
solve the problem optimally in polynomial time O(n2vm) = O(n2nk).

38

� If the values are large, then we will scale them down, as we don’t have to deal
with them exactly, since we are only seeking an approximate solution.

We are going to scale down all the values so they are not too large and also round them
so they are integral. This scaling and rounding will introduce some error, because the
algorithm may prefer some subset over another erroneously as the exact values are
unknown. We, therefore, want to do scaling and rounding such that the error is small
(bounded). Since we want to get a (1 − ϵ)-approximation we want the error to be no
more than ϵ ·OPT .

Let b = ϵ
n
· OPT . Suppose we change every value vi to v′i such that v′i is the smallest

integers such that vi ≤ v′i · b. The number v′i satisfying the above bound is given by

v′i =
⌈vi
b

⌉
.

There are two things to notice about this transformation.

1. if vi ≤ vj, then v′i < v′j for all 1 ≤ i, j ≤ n

2. lets see how large can the new values be? let v′m be the maximum new values,
(By the above property we know that this corresponds to vm). We know that
OPT ≥ vm, so

v′m ≤
⌈vm
b

⌉
=

⌈
vm

ϵ/n ·OPT

⌉
≤

⌈
n · vm
ϵ · vm

⌉
=

⌈n
ϵ

⌉
.

So all new values are at most ⌈n/ϵ⌉, a good news as now the total profit can’t be
much (≤

∑
i v

′
i ≤ nv′m). Since running the scaling friendly dynamic programming

we will give us an optimal solution with v′i in time O(n · n · vm) = O(n2 · vm) =
O(n3 · 1

ϵ
) (polynomial in n and 1/ϵ).

3. Lets see what is the error in using v′i instead of vi in the dynamic programming
run. Let S ′ be the solution returned by this dynamic programming algorithm
with values v′i. Let S be the optimal solution to the original instance, i.e OPT =∑

i∈S vi. Since we didn’t change the weights wi or the capacity C we have the
w(S ′) < C. We will show that v(S ′) ≥ (1− ϵ)v(S). Note that since S ′ is optimal
w.r.t v′i, we have that v

′(S ′) ≥ v′(S) (as S is a feasible solution in the scaled down
version too). One last thing and the rest is calculations, we have by construction
we have

vi
b
≤ v′i ≤

vi
b
+ 1.

39

Hence we get

OPT =
∑
i∈S

v(i)

≤
∑
i∈S

b · v′i

≤ b ·
∑
i∈S

v′i

≤ b · v′(S)
≤ b · v′(S ′)

≤ b ·
∑
i∈S′

v′i

≤ b ·
∑
i∈S′

(
vi
b
+ 1)

= b ·
∑
i∈S′

vi + b

b

= b · 1
b

∑
i∈S′

(vi + b)

=
∑
i∈S′

vi + b · |S ′|

≤ v(S ′) + n · b
= v(S ′) + ϵ ·OPT

Hence v(S ′) ≥ (1−ϵ)·OPT , therefore, S ′, the solution given by the scaling friendly
dynamic programming with scaled down values is at least (1− ϵ)-approximate.

Here is a huge problem. How do we know the value of OPT , that we used throughout
in the form of b. Actually we don’t know value of OPT , but we know a good lower
bound on that i.e. OPT ≥ vm (assuming all items have weight at most C, since
larger weighing items can be ignored in the pre-processing). So we take b = ϵ

n
· vm

and do all the calculations with this new b. All the above three points go through
with this new b, in the third point at the end of the chain of inequalities we get that
OPT ≤ v(S ′) + ϵ · vm, so we plug in vm ≤ OPT there and get OPT ≤ v(S) + ϵ ·OPT .

40

	Hard Problems and Approximation Algorithms
	Preliminaries and examples of hard problems

	Absolute approximation guarantees
	Planar graph coloring
	Negative result for absolute approximation algorithm by scaling
	Impossibility result for the Max Independent set problem
	Impossibility result for the knapsack problem

	Relative approximation algorithms
	Maximum Cut Problem
	Set Cover Problem
	Vertex Cover
	Scheduling on Parallel Machines
	List scheduling algorithm

	The TSP Problem
	Impossibility of Relative Approximation
	Metric TSP
	2-approximation for Metric TSP
	Christofides Algorithm: 1.5-approximation for Metric TSP

	The Knapsack Problem
	A Greedy Algorithm for the Knapsack problem

	Polynomial Time Approximation Scheme
	PTAS for the Knapsack problem

	FPTAS for the Knapsack problem
	Dynamic programming solution
	Scaling Friendly Dynamic Programming
	Scaling and Rounding

