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1 Strategies for Dealing with Hard Problems

Suppose you are tasked with solving some kind of problems in your company. If you are lucky,
the problem is solvable using some design paradigm that we have studied so far in this course.
In particular, dynamic programming and linear programming are able to take care of many
problems. However, you may not be so lucky. Then, you would tell your boss one of the
following three things:

� “I cannot solve the problem, because I am too dumb”

� “The problem is not solvable (in poly-time)”. However, you would need a proof, which
will actually amount to P = NP (if your problem is in NP ). In this case, you would
no longer need the job. Simply collect your million dollars from the Clay Institute and
enjoy your life.

� “I can not solve the problem but neither can all these extremely smart people.” if you
can prove that your problem is NP-complete. If you really worked hard to find a solution
but your attempts were fruitless, a little more work may lead you to this proof.

The trouble with the above scenarios is that the problem at hand remains and this theoretical
exercise does not help practically. Hence, we will now study what to do in such a case.

“NP-Completeness is not a death certificate, it is the beginning of a fascinating adventure”

When you prove a problem to be NP-Complete (or NP-hard), then, as per popular belief that
P ̸= NP , it essentially means that

1. There is no polynomial time
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2. deterministic algorithm

3. to exactly solve this problem

4. for all possible input instances

The four keywords impose very strict requirements. Unless our goal is to prove P = NP or
P ̸= NP , regarding which we already assume the latter, then, in practice we may relax one
of these requirements to sustain our job. It turns out that relaxing any of these requirements
does indeed help a lot practically and opens up huge avenues of possibilities.

So what are our options to deal with NP-Hard problems? Let’s consider the following questions:

� Do we need to solve the problem for all valid input instances?

– Sometimes, we just need to solve a restricted version of the problem that includes
realistic instances (special cases)

� Is exponential-time algorithms OK for our instances?

– The problem with exponential-time algorithms is not primarily that they are “slow”
but rather that they don’t scale well. So if our relevant instances are small, then
exponential-time may be acceptable. Moreover, we can reduce the base or exponent
in many practical cases. For example from 2n to 2

√
n or 1.5n.

� Is non-optimality acceptable?

– In some cases, It is OK if our algorithm just outperforms other algorithms. Consider
the following scenario: A fit person and a non-fit person are being chased by a bear.
The fit person says: “Spending so much time in the gym is worth it.” The non-fit
person says: “Why? You still won’t outrun the bear.” The fit person replies: “I
don’t need to outrun the bear. I just need to outrun you.”

Therefore, we may sacrifice one of three desired features i.e. solve any arbitrary instance of the
problem, optimally and in polynomial time by designing algorithms that, respectively, solve
special cases of the problem, or approximately solve problems, or may take exponential time.
We summarize these strategies to cope with the hard requirements of NP-Complete problems
by relaxing them in Table ??.
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Poly-time Deterministic
Exact/Optimal
solution

All cases/
Parameters

Algorithmic
Paradigm

✓ ✓ ✓ ✗
Special Cases Algorithms
Fixed Parameter Tractability

✓ ✓ ✗ ✓
Approximation Algorithms
Heuristic Algorithms

✓ ✗ E(✓) ✓
Mote Carlo
Randomized Algorithm

E(✓) ✗ ✓ ✓
Las Vegas
Randomized Algorithm

✗ ✓ ✓ ✓
Intelligent
Exhaustive Search

Table 1: Coping with NP-hard Problems

We briefly describe each of the above listed approaches to tackle hard problems before diving
deeper into each one individually.

1. Special cases can be based on the structure of input instances or depend on particular
range of one or more parameters. The problem is easier for such special cases, for which
exact results are attainable in polynomial time.

2. Approximation algorithms and heuristic algorithms provide nearly exact solutions, i.e.
the output is ‘close’ to the optimal solution. While approximation algorithms output
solutions of guaranteed quality in poly-time, heuristics algorithms do not have any guar-
antees on the solution which is hopefully good in poly-time.

3. Randomized algorithms use coin flips for making decisions. In addition to being used
for approximation of hard problems, they are also used for easy problems (in P). Monte
Carlo algorithms output solutions which may not be exact but always take polynomial
time whereas Las Vegas algorithms always output the optimal solution but not necessarily
in polynomial time.

4. Intelligent exhaustive search takes exponential time in the worst case but could be very
efficient on typical more realistic instances where the base and/or exponent are usu-
ally smaller. Techniques for this approach include Backtracking, Brand-and-Bound, and
Local Search.

2 Algorithms for Special Cases

We first see some examples of general NP-complete problems for which there are polynomial
time solutions.
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� The vertex-cover(G, k) problem is the dual of Bipartite-Matching when G is a
bipartite graph.

� The 3d−matching problem is simply the graph matching problem for the 2d case.

� The Knapsack can be solved in polynomial time if the numbers of items and maximum
capacity are polynomial.

� The general SAT(f) is NP-Hard whereas 2− sat(f) is easy to solve.

� The weighted-independent-Set(G) problem can be solved in polynomial time using
dynamic programming if G is a tree. As a result, the Independent-Set(G) problem
(i.e. G has no (or uniform) weights) is also an easy special case if G is a tree.

We discuss how the solve the last two of these special cases in detail.

2.1 2-SAT Search Problem

Given n Boolean variables x1, . . . , xn, where xi can take a value of 0 or 1, a literal is a variable
appearing in some formula as xi or x̄i and a clause of size 2 is an or of two literals. A 2-cnf
formula, which is and of one or more clauses of size 2 or less, is satisfiable if there is an
assignment of 0/1 values to the variables such that the formula evaluates to 1 (or True).

Problem 1 (2-sat(f) search problem). : Find satisfying assignment for f if one exists

For example, (x∨y)∧(x∨z)∧(z) is satisfied with x = 0, y = 1, z = 0 but (x∨y)∧(y)∧(x∨z)∧(y)
is not satisfiable

How can be easily solve the 2-SAT problem? Let’s start by analyzing what a clause in a 2-cnf
formula actually means.

Evidently, a one literal clause means that the literal must evaluate to True for the clause to
be true. For example, (ℓ1) means ℓ1 must be true (or it cannot be false). Similarly, for clause
(ℓ1∨ ℓ2) to be true, at least one of ℓ1 and ℓ2 must be true or both cannot be false. i.e. if ℓ1 = 0,
then ℓ2 = 1 and if ℓ2 = 0, then ℓ1 = 1. In other words, if ℓ1 = 1, then ℓ2 = 1 and if ℓ2 = 1,
then ℓ1 = 1. A series of implications of this form constitute a 2-cnf formula.

Note that implications are transitive i.e. [a =⇒ b and b =⇒ c] =⇒ (a =⇒ c). For
example, consider the formula (x ∨ y) ∧ (y ∨ z). From this formula, we get the implications
x = 1 =⇒ y = 1 and y = 1 =⇒ z = 1. Together, these implications mean that
x = 1 =⇒ z = 1.

To model all the implications we get from the clauses in a 2-cnf formula, we build an impli-
cation graph which is a digraph G = (V,E) where V are variables of f and their negations
(i.e. all possible literals) and E corresponds to the two implications from each clause in the
2-cnf formula. See examples of 2-cnf formulas and the corresponding implication graphs in
Figure ??.
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(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) (x ∨ y) ∧ (x ∨ z) ∧ (x ∨ z) ∧ (x ∨ y)
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Figure 1: 2-cnf formulas and the corresponding implication graphs

We have already seen that transitive of implications and this property also translates to the
implication graph. Another property of implication graphs is skew symmetry. Skew symmetry
means that if there is an edge from u to v, then there is also an edge from v to u. Skew
symmetry follows from construction. For example, there is an edge l1 to l2 because of the
clause (l1 ∨ l2), which also means there must be an edge from l2 to l1. This also generalizes to
path, i.e. if there is a path from l − 1 to l2, then there is a path from l2 to l1.

What is the purpose of these implication graphs? Note that in Figure ??, the left formula has
a satisfying solution whereas the right formula has no satisfying solution. This fact is actually
depicted in the implication graphs. We discuss how an implication graph can be used to find
a satisfying assignment, if possible, in the corresponding 2-cnf formula.

Satisfying all clauses is equivalent to ensuring that all implications (now edges in G) are true.
Since an implication x =⇒ y is always except for the case when x = 1 and y = 0. Thus, if
all edges are satisfied, this means there is no edge (x, y), with the vertex (literal) x has value
1 and the vertex (literal) y has value 0. See Figure ?? for an example.

(x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

x = 0, y = 1, z = 1 x = 0, y = 1, z = 0 x = 0, y = 0, z = 1
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Figure 2: For this formula and implication graph, assignments (x, y, z) = (0, 1, 1) and (x, y, z) =
(0, 1, 0) satisfy all edges but the assignment (x, y, z) = (0, 0, 1) does not satisfy the red edges

We want an assignment to variables such that there is no edge from 1 to 0 in the corresponding
implication graph, i.e. the assignment satisfies the formula. Therefore, we try satisfy all the
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edges of the implication graph. We can now reword the 2 − SAT problem as: Make an
implication graph from a formula and find an assignment to vertices that is not-conflicting
(ℓ ̸= ℓ) and all edges are satisfied.

1
. . .. . .

0
x y

1 0

In any assignment that satisfies all edges, there cannot be a 1 to 0 edge or, due to the transitive
property of implications, or 1 to 0 path. This means that if there is a path from u to v, we
should not assign u = 1 and v = 0. This works for unidirectional paths, but what if there are
bidirectional paths? In the case of bidirectional paths, whenever there is a path from u to v
and a path from v to u, then u and v must be assigned the same value. This implies that all
literals lying in the same strongly connected components, must be assigned the same value. We
can further deduce that if a literal and its negation are lying in the same strongly connected
components, then the formula is not satisfiable. In fact, the formula would not be satisfiable
only in this case. This observation gives us an algorithm to find a satisfiable assignment, if
possible, of a 2− cnf formula.

The algorithm for the 2− SAT problem is as follows. We first construct an implication graph
from the given formula, find its strongly connected components (SCC) and give each component
the same value. Here, the question arises that which component should get 1 which should get
0? Note that the component graph is a DAG. To ensure that there is no path from 1 to 0, we
traverse vertices in reverse topological ordering of their SCC’s and if literals in current SCC
are not assigned, then set all of them to 1 and their negations to 0.

Theorem 1. If no literal and its negation are in the same components, then the above algorithm
produces a valid and satisfying assignment. If a literal and its negation are found in the same
component, then the formula can not be satisfied.

Proof. If a literal is set to 1, then all the literals reachable from it have already been set to
1 and if a literal is set to 0, then all the literals reachable from it have already been set to
0. This is because we are processing literals in reverse topological order which means we have
made sure that all 0’s are on the left and 1’s are on the right. If u is reachable from v, then v’s
component has already been processed so it must be 1. Suppose for contradiction that u = 0,
then u = 1 must have been processed earlier, since this is the only way vertices is labelled 0.
Since there is an edge from v to u, by skew symmetry there is an edge from u to v. Because
we are processing components in reverse topological order, v = 1 since it’s negation has not
yet been processed. However, this results in a contradiction as the same label (1) is assigned
to both v nd v.

2.2 Max-Independent-Set in Trees

The max-independent-set(G) search problem is np-hard, as it can be easily reduced from
decision version, but can be solved efficiently when G is acyclic, i..e G is a tree or forest. Figure
?? shows multiple independent sets and a maximum independent set in a tree.
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A tree on 11 vertices An Independent set of size 5

An Independent set of size 6 Max Independent set of size 7

Figure 3: Examples of Independent Sets in a Tree

To solve the max-independent-set(G) search problem easily for acyclic graphs, we use a
divide and conquer approach in which subtrees rooted at node u interact with the rest of tree
only through u so that there is limited dependence among them. In this way, the u’s subtrees
problem can be decoupled from the remaining tree.

It is obvious that any tree has at least one leaf (or actually two leaves, if there are only two
vertices in the tree).

Theorem 2. For any leaf u in tree T , there is a maximum independent set containing u

Proof. Let S be a max independent set not containing u, i.e. S ̸∋ u, and let v be the only
neighbor of u (since u is a leaf and has degree 1. Now as evident in Figure ??, v ∈ S, otherwise
u can be in S contradicting the maximality of S. The validity and size of the max independent
set S remains the same if u is exchanged for v to ensure that u ∈ S.

u

v

u

v

Figure 4: There is a maximum independent set containing all the leaves in T
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The above theorem consequently means that for any leaf u in T , a max independent set is the
union of {u} and a max independent set in T \ {u}. We use this fact to design a polynomial
time algorithm, outlined in Algorithm ?? to find a maximum independent set in a forest.

Algorithm 1 Max Independent set in Forest F

S ← ∅
while E(F ) ̸= ∅ do

Let u be a leaf and v be its neighbor

S ← S ∪ {u}
Remove u, v from V (F ) and all edges incident to u and v from E(F )

The runtime of the above algorithm is clearly O(n+m).

3 Fixed Parameter Tractability

Sometimes, even the guaranteed sub-optimal solutions such as those given by approximation
algorithms may be too expensive. For such cases, we consider the parameterized complexity,
which is a measure of complexity with more than 1 input parameters. We want exact algorithms
but we allow the running time to be exponential in one parameter but polynomial in the size
of the input which constitute other parameters of the problem. For example, we would like
algorithms with time complexity of the order 2kn2 or k!n log n. Such problems are called
Fixed-Parameter Tractable and the algorithms for such problems are called Fixed-Parameter
Tractability (FPT) algorithms.

3.1 Vertex Cover

Recall that a vertex cover in a graph is subset C of vertices such that each edge has at least
one endpoint in C.
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A graph on 11 vertices A vertex cover of size 5

A vertex cover of size 6 A vertex cover of size 3

Figure 5: Examples of different vertex covers in a graph

Consider the search version of the following problem:

Problem 2. vertex-cover(G, k) search problem: Find a vertex cover of size k in G?

A brute force algorithm for search-vertex-cover is to check whether each possible k-subset
S of V is a vertex cover. To check if S is a vertex cover of G = (V,E), for each v ∈ S, traverse
adjacency list of v and count how many edges are contained in S and how many are in [S, S].
If this count is equal to |E|, then S is a vertex cover and otherwise not.

The total runtime of the brute force algorithm is O(
(
n
k

)
kn) = O(knk+1). For a small and fixed

value of k, this algorithm is polynomial in n. However, for slightly larger k and large n, this
algorithm is impractical. For example, if n = 10000, k = 20, the runtime is approximately of
the order ∼ 1082.

We will design a FPT algorithm for search-vertex-cover with runtime 2knk. Again, for
n = 10000, k = 20, the runtime of the FPT algorithm would be 220×10000×20≪ 1082, which
is much more efficient than the brute force algorithm.

The basic idea is to take full advantage of k being small and enumerate all possibilities for
some k edges. Note that if we pick an edge (u, v), then for any vertex cover S of size k (which
we will call a k-cover), either u ∈ S or v ∈ S.

For x ∈ V , let G− {x} = (V \ {x}, E \ {(a, b) ∈ E : a = x ∨ b = x}), i.e. G− {x} is the graph
after removing the vertex x and all edges incident on x.

Theorem 3. For any edge (u, v) ∈ E, G has a k-cover if and only if G− {u} or G− {v} has
a k − 1-cover.

Proof. If u ∈ S, then it is obvious that S′ = S \ {u} is a (k − 1)-cover in G − {u}. To see
the other direction, note that a (k − 1)-cover S′ in G− {u} must cover all edges except those
incident on u. Thus, S′ ∪ {u} is a k-cover in G.
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We use this theorem in an FPT algorithm for search-vertex-cover by recursively trying
to find a (k − 1)-cover in both G− u and G− v. The algorithm is outlined in Algorithm ??.

Algorithm 2 Algorithm to find vertex cover of size k

function vertex-cover(G, k)
if k = 0 then

if E(G) = ∅ then ▷ O(n) time to check if all adj. lists are empty
return ∅

else
return NF

else
e = (u, v) ∈ E(G) ▷ Pick an arbitrary edge in G

Su ← vertex-cover(G− {u}, k − 1)

Sv ← vertex-cover(G− {v}, k − 1) ▷ O(n) time to make G− {x}
if Su ̸= NF then

return Su ∪ {u}
else if Sv ̸= NF then

return Sv ∪ {v}
else

return NF

The runtime of this algorithm can be written as a recurrence relation. For an input G = (V,E)
with |V | = n and k is the size of the vertex cover to be found, the runtime T (n, k) is:

T (n, k) =

{
O(n) if k = 0

2T (n− 1, k − 1) +O(n) if k > 0

The base case is O(n) to check if all adjacency lists are empty. The recursive case takes O(n)
time in removing edges incident to u and v.
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(n, k)

(n− 1, k − 1) (n− 1, k − 1)

(n− 2, k − 2)

(n− k, 0)

(n− 2, k − 2) (n− 2, k − 2) (n− 2, k − 2)

(n− k, 0) (n− k, 0) (n− k, 0) (n− k, 0) (n− k, 0)

...

...

...

...

k

T (n, k) =

{
O(n) if k = 0

2T (n− 1, k − 1) +O(n) if k > 0

Figure 6: Recursion tree of FPT algorithm to find k-cover in G

As shown in Figure ??, the recursion tree of the algorithm is a complete binary tree with
height k. Since there are 2k leaves and 2k−1 internal nodes where each recursive invocation is
at most O(n), the total runtime of the algorithm T (n, k) is O(2kn), which is polynomial in n
but exponential in k.

Note that the optimization version of the min-vertex-cover(G) can be solved by using the
above algorithm for search-vertex-cover(G, k) at most n times. This can be done by
starting with k = n and repeatedly calling the above algorithm, each time decrementing k by
1 until the algorithm can not find a vertex cover of size k. Then, the minimum vertex cover of
G is of size k + 1.

4 Intelligent Exhaustive Search

So far, we have seen that, sometimes, specific structures in instances and parameters are helpful
to solve the problem in polynomial time. For example, Ind-Set for the case of trees, and
2 − SAT. However, sometimes, even a well-characterized special structure does not help and
the problem still may not be solvable in polynomial time. For example, Ind-Set is NP-Hard
even for planar graphs (graphs that can be drawn in the plane with no edges crossing) and
although 3-SAT is a special class of the SAT problem, but is still NP-Hard. Furthermore,
in many cases, we may not be able to characterize the particular cases neatly. Does this
mean we have no option but to solve the problem in exponential time? Definitely not. We
can still, sometimes, avoid exhaustively searching for a solution in exponential time with clever
methods. However, often these algorithms are still exponential time in the worst case, but with
the right ideas they are very efficient on typical (likely) instances. We study two such methods:
Backtracking, and Branch and Bound in the context of 3− SAT and TSP respectively.
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4.1 Backtracking

Often, a solution to a problem can be made with a series of choices, with each choice repre-
senting a partial solution. These partial solutions form a tree (or DAG). Backtracking refers
to the brute force solution where only feasible partial solutions are considered. Feasibility and
in-feasibility of partial solutions are determined given the specific problem at hand. The idea
in backtracking is that many partial solutions can be rejected very quickly without completing
them (or reading them in full), thus reducing the time taken to find the solution.

Figure 7: Finding a path in a maze: backtrack when you reach a dead-end

We now see how exhaustive search for SAT can be done.

Given a cnf formula f on n variables and m clauses , the brute force algorithm to find a
satisfying assignment for f checks all possible assignment to n variable in O(m + n) time.
Since there are 2n possible unique assignments, the total running time is O(2n(n+m)). This
brute force algorithm can be visualized as a complete full binary tree where the root of the tree
corresponds to variable x1 and the left and right branches correspond to values of 1 and 0 for
x1 respectively. The left and right sub-trees contain all possibilities for variables x2, . . . , xn.

We can also do the same exhaustive search a bit more intelligently by reducing our search
space. Instead of considering all 2n branches of the binary tree, we carefully track each branch
and stop when we reach a dead branch, i.e. a branch that can not be extended. For example,
consider a formula of the form f = (. . .) ∧ . . . ∧ (x6) ∧ . . . (. . .). We can immediately reject
all solutions (x1, . . . , xn) ∈ {0, 1}n with x6 = 0 because they will not satisfy the formula
irrespective of the values assigned to all other variables except x6, since clause (x6) would
not be satisfied. This saves us a lot of time, since out of the 2n sized search space, we have
eliminated 2n−1 solutions.
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x = 1

() ∧ (y ∨ z)

x = 0

(y ∨ z) ∧ (y) ∧ (y ∨ z)

z = 0

(x ∨ y) ∧ ()

z = 1

(x ∨ y) ∧ ()

w = 0

(x ∨ y ∨ z) ∧ (x) ∧ (x ∨ y) ∧ (y ∨ z)

w = 1

(x ∨ y) ∧ (y ∨ z) ∧ (z) ∧ (z)

y = 1

()

y = 0

(z) ∧ (z)

z = 1

()

z = 0

()

(w ∨ x ∨ y ∨ z) ∧ (w ∨ x) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ w) ∧ (w ∨ z)

Figure 8: An example of intelligent exhaustive search for SAT

As shown in the more elaborate example above in Figure ??, we can infer some general rules
for intelligent exhaustive search. Firstly, when a literal in a clause is 1, we remove the clause
since it is satisfied. Secondly, when a literal in a clause is 0, we remove the variable from the
clause since it depends on other literals in it. This means that if a clause becomes empty, none
of its literals satisfied it, at any node, then the formula is not satisfiable along this branch of
assignment. A partial assignment cannot satisfy the formula if there is an empty clause (no
literal is 1). Thus, we do not need to expand this branch any further, and we backtrack out
of the branch and prune out the search space along the branch. If (and when) the formula
becomes empty at any node in the tree, we do not need to explore further since all clauses
have been satisfied. Values of the variables corresponding to branches above are fixed, and the
remaining variables take any arbitrary values since the formula is already satisfied.

Another interesting question that arises is, which node should be expanded first? Since we
want to prune out as much of the search space as possible, we would like to explore nodes
such that the corresponding formula in the sub-problem is likely to result in empty clauses.
Therefore, we should choose a sub-problem with the smallest clause and branch on a variable
in that clause. This makes sense because if there is a singleton clause then definitely at least
one branch would be pruned. However, if there are sub-problems of the same sizes then we
should choose the one which is lowest in the tree, hoping that is the closest to a satisfying
assignment so chances of getting a partial assignment which successfully satisfies the formula
sooner is higher. Several intelligent ways to choose which node to expand further are used
practically in many SAT-Solvers.

Backtracking is a technique which systematically exploits the kind of leads we discussed above.
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Generally, a backtracking procedure requires a test that looks at a sub-problem and quickly
declares one of three outcomes: failure, success, and uncertainty. Failure implies that the sub-
problem has no solution whereas success implies that a solution to the sub-problem is found. If
the outcome is uncertain, further exploration is needed as it is not yet clear if the sub-problem
is a failure or a success. A generic backtracking algorithm for any given instance of a problem
is shown in Algorithm ??.

Algorithm 3 Backtracking procedure for Problem p, Instance I0

S ← {I0}
while S ≠ ∅ do

Choose a subproblem instance I ∈ S
S ← S \ {I}
expand I into {I1, I2, . . . , Ik}
for each Ij do

if test(pj) = success then

return the current solution

else if test(pj) = failure then

return NF

else
S ← S ∪ {Ij}

return NF

We have discussed a brute-force search algorithm for SAT that takes O(2n(n+m)) time and
also seen a variable centric approach to intelligent exhaustive search for SAT problem. Now,
we consider a clause centric approach to see how backtracking can be used for the 3 − SAT
problem.

A 3-cnf formula f = l1 ∧ l2 ∧ l3 can be thought of as (l1 ∨ l2 ∨ l3) ∧ (f ′) unless f is empty.
Note that f ′ too is a (possibly empty) 3-cnf formula. Applying the distributive law on this
representation of f , we get that f = (l1 ∧ f ′) ∨ (l2 ∧ f ′) ∨ (l3 ∧ f ′). Note that these three
disjunctions are not 3 − cnf formulae. This gives us the backtracking algorithm shown in
Algorithm ??. Let f [x = true] denote f with the value of x plugged in as true.
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Algorithm 4 Backtracking for 3-sat

function check-sat(f)

if f is empty then

return true

else
Let f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)

if check-sat(f ′[ℓ1 = true]) then ▷ implies l1 ∧ f ′ = true

return true

if check-sat(f ′[ℓ2 = true]) then

return true

if check-sat(f ′[ℓ3 = true]) then

return true

return false

Let T (n) be the runtime of this algorithm for a formula on n variables. Since, in each step,
the number of variables are reduced by at least one as one literal is fixed. Thus,

T (n) =

{
3T (n− 1) +O(poly(n,m)) if n ≥ 1

1 otherwise

A simple recursion tree expansion or substitution reveals that T (n) = O(3n · poly(n,m)).
This is even worse that the variable centric brute-force search. However, we observe that,
similar to dynamic programming, sub-problems are overlapping and result in unnecessary
repetitions. Therefore, we need to make the sub-problems mutually exclusive. Since every
satisfying assignment found by the above algorithm satisfies the clause (ℓ1 ∨ ℓ2 ∨ ℓ3), the
assignment must be exactly one of the following types: l1 = true or l1 = false ∧ l2 = true
or l1 = false ∧ l2 = false ∧ l3 = true. We can, thus, pin point any of these three types of
satisfying type assignments to three literals in exactly one of the recursive calls. The modified
clause centric algorithm based on this idea is shown in Algorithm ??
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Algorithm 5 Backtracking for 3-sat

function check-sat(f)

if f is empty then

return true

else

Let f = (ℓ1 ∨ ℓ2 ∨ ℓ3) ∧ (f ′)

if check-sat(f ′[ℓ1 = true]) then

return true

if check-sat(f ′[ℓ1 = false ∧ ℓ2 = true]) then

return true

if check-sat(f ′[ℓ1 = false ∧ ℓ2 = false ∧ ℓ2 = true]) then

return true

return false

The runtime of the modified algorithm is reduced by k when values of k literals are fixed in
the formula. Thus, T (n) now is

T (n) =

{
T (n− 1) + T (n− 2) + T (n− 3) +O(poly(n,m)) n ≥ 1

1 else

The closed form of this recurrence is T (n) = O(1.84n), which is substantially faster than the
O(2n) algorithm. For example, even for n ∼ 100, the modified algorithm is 4180 times faster.

4.2 Branch and Bound

Branch and Bound is a technique for optimization problems which is analogous to backtracking
for search problems. In fact, branch-and-bound can be viewed as a generalization of back-
trakcing for optimization problems. For our discussion, we consider a minimization problem.
Maximization problems would follow the same pattern.

In this method, we find the best way to build the solution incrementally from partial solutions
of sub-problems, rejecting a partial solution that will not lead to an optimal solution. As in
backtracking, we need a basis for eliminating partial solutions. For minimization problems, in
order to reject a partial solution, we must be certain that its cost exceeds that of some known
solution. Generally, the optimal cost is not known or cannot be computed efficiently because
otherwise the problem would already be solved. Instead, we use a quick lower bound on this
cost.

Recall that, given a complete graph G on n vertices with edge weights, a TSP tour is a
Hamiltonian cycle in G, as shown in Figure ??.

Problem 3 (tsp(G) optimization problem:). Given a complete graph G on n vertices with
edge weights, find the minimum cost Hamiltonian cycle in G .
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he naive brute-force algorithm checks all possible (n−1)! cycles in G, shown as a tree in Figure
??
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Figure 10: All possible cycles in a complete graph. The cost of the cycle is mentioned for the
first six cycles on the left.

Rather than enumerating all possible cycles, we use the branch-and-bound technique which is
to grow a tree of partial solutions, i.e. pieces of Hamiltonian paths, and at each tree node,
we check if the extension of the current partial solution could possibly be better than the best
known solution so far. If not, we do not continue exploring the branch further because we
already have a better solution (with lower cost for minimization problem). Figure ?? shows
how branch and bound reduces the search space on the concrete example in Figure ??.

For bounding a branch, values other than the minimum cost solution so far can also be used.
For example, another lower bound (that is tighter than ≥ 0) on the cost of the optimal tsp
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Figure 11: (a): Since the cost of the current partial solution is currently lower than the
minimum cost solution so far, we continue to explore the branch. (b), (c) & (d): Since the
cost of the current partial solution is now already higher than the minimum cost solution so
far, we do not further explore the branch

tour using a subset of vertices S ⊂ V using is the cost of the Minimum Spanning Tree (MST)
in G[S], i.e. 1

2

∑
v∈S(two minimum length edges incidents on v).

4.3 Pseudo Polynomial Algorithm for TSP

Recall that dynamic programming, a more general and powerful technique than divide-and-
conquer, involves breaking up a problem into sub-problems, which may be overlapping or
independent. Solutions using dynamic programming require us to identify the optimal sub-
structure, which is when optimal solution to a problem is made of optimal solution to smaller
sub-problems. We build solution to larger sub-problems, identify and avoid redundancy and
repetitions using memorization.

Dynamic programming can be used to build pseudo polynomial algorithm for the tsp problem.
It was devised by Bellman,and Held and Karp in 1962. So how is the sub-problem defined?

Note that if we can find the Hamiltonian path, we can easily also obtain the Hamiltonian
cycle, since we get the path by breaking the cycle at some vertex. A good starting point is to
construct some sub-path of a cycle. Since every vertex is included in the Hamiltonian cycle,
we can assume without loss of generality that the Hamiltonian path starts at a fixed vertex
v0. The partial solution is to find the initial part of the path/tour, for which we need to know
the last vertex of the partial solution and all vertices in between which are part of the partial
solution. As shown in Figure ??, for S ⊂ V , let C(vi, S) be the min cost path from v0 ∈ S to
vi ∈ S that visits all and only vertices in S once.
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v0

vi

S
S

C(vi, S)

Figure 12: A partial solution (sub-path) of a Hamiltonian Cycle

For some vi ̸= v0, C(vi, V ) is an optimal Hamiltonian path of G. As discussed above, adding
the edge (vi, v0) to this path gives a Ham cycle in G. Initially, S = {v0} and C(v0, S) is the
empty path with cost 0. We gradually increase S to get optimal Hamiltonian path in G. Note
that for S = {v0} and i > 0, C(vi, S) is not defined. We analyze the structure of the path
C(vi, S), without actually knowing it.

v0
vj vi

S \ {vi}

C(vj , S \ {vi}) ∪ {(vj , vi)} cannot be shorter than C(vi, S)

Figure 13: The structure of an optimal sub-path C(vi, S) in the Hamiltonian path

As shown in Figure ??, let vj ∈ S be the second to last vertex in C(vi, S). Then, C(vj , S \{vi})
is the min cost path from v0 to vj , because otherwise C(vi, S) would not be optimal. Figure ??
shows all possible Hamiltonian cycles for an example graph, and highlights the optimal cycles
found using this algorithm.
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Figure 14: All possible Hamiltonian cycles for a sample graph using a dynamic programming
formulation. The optimal cycles are highlighted.

We can formulate the following recurrence relation for C(vi, S):

C(vi, S) =


0 if S = {v0}
+∞ else if vi /∈ S ∨ i = 0

min
vj ̸=i∈S

{C(vj , S \ {vi}) + w(vj , vi)} else

Then, tsp(G)minvi∈V {C(vi, V ) + w(vi, v0)}.

To analyze the runtime, note that there are 2n− 1 possible S ⊂ V and up to n− 1 options for
the end-vertex vi. Each of the n×2n sub-problems can be solved in O(n). Therefore, the total
runtime of the dynamic programming solution for tsp is O(n22n), which is less than the O(n!)
runtime of brute force solution. However, the space complexity of the dynamic programming
solution is higher than that of the brute force solution, i.e. O(n2n) and O(n2), respectively.

Note that the formulation above only gives us the cost of the optimal Hamiltonian cycle. The
actual Hamiltonian cycle can be found by backtracking in O(n2). If previous vertex in a sub-
path (selected vj with min cost) is stored for each step during memoization, then backtracking
can be done in O(n).

So far, we have discussed coping with np-hard problems by solving for special cases of the
problems, dealing with fixed parameter tractable problems and using techniques for intelligent
exhaustive search. Next, we will study the approximation and randomized algorithms designed
for popular np-hard problems.
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