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1 Efficiently Solvable problems

So far in the course we have developed algorithms for sorting of n integers, finding closest pair
of 2d points, shortest paths and minimum spanning trees in graphs, the best alignment of two
sequences, maximum flows in networks, and so on. All these algorithms are “efficient”, because
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in each case their time requirement grows as a polynomial function nk, for some constant k,
of the size of the input. We call them efficient algorithms because the search space (solution
space) in many cases is exponential in size, and we could find the solution in polynomial time
(such as n+m, n log n, n2, n3).

To better appreciate such efficient algorithms, consider the alternative: In many of these
problems we are searching for a solution (path, tree, permutation, matching, etc.) among
exponentially many possibilities. The brute-force algorithms would check all possibilities and
select the best or correct one. There are n! factorial different orderings of n numbers, only
one of them is ascending order sorted, there are nn−2 spanning trees of a graph on n vertices
(out of which only a unique one could be the MST if all weights are unique), there could be
exponentially many paths from s to t in general.

The efficient algorithms we designed bypass the process of exhaustively searching candidate
solutions (hence avoid exponential time), using clues from the input in order to dramatically
narrow down the search space. We employed algorithm design paradigms to avoid exponen-
tial time algorithms such as greedy algorithms, dynamic programming, network flow based
techniques. Divide and conquer based strategies generally give us reduced running times than
already polynomial time brute force algorithm. For example, such as closest pair can be found
by the O(n2) brute-force algorithm of checking all pairwise distances, but we divide and con-
quer strategy resulted in O(n log n) algorithm.

If there is an Polynomial-time algorithm for a problem, we call the problem efficiently
solvable. If there exists an algorithm whose worst-case running time is O(nk) (polynomial) for
some constant k on input of size n, for a problem, then that problem is designated is efficiently
solvable. This does not mean that n70 is OK, or there is no difference between n2 and n3. But
generally, when polynomial time algorithms exist, we can do more theoretical analysis such as
divide and conquer to design a new algorithm (such as the Karatsuba algorithm or the divide
and conquer based algorithm for counting inversions and finding closest pair). Some we need
to design better data structures to improve the running time of the same algorithm (such as
what we did for the Dijkstra, Prim and Kruskal’s algorithms)

2 Problems that we don’t know if they are efficiently solvable

One might wonder whether all problems can be solved in polynomial time. In complexity
theory we generally study negative results, i.e. we try to characterize problems about which we
typically don’t have a good news. In many cases we cannot say they are not efficiently
solvable (just that we do not know yet). Once we characterize a problem to be “Hard”
(not yet known to be efficiently solvable), we generally design approximation algorithm for
them, or employ heuristic techniques or focus on special and more realistic cases of the problem.

A rough definition of “Hard” problems is as follows: the problems for which exponential
time is enough to solve them (such as O(nn), O(n!), O(kn)) and for which no algorithm with
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runtime O(nk) is known. Note that there are problems much harder than them,
some are not even computable. We shall see many problems which just like the efficiently
solvable problems have exponential sized solution space but none of the above (or other known)
strategies seem to be give us efficient algorithms. For many of these problems we cannot
say that they are not efficiently solvable, just that we don’t an efficient algorithm
“yet”.

We will give precise definitions of these hard problems and in an attempt to characterize these
“hard” problems we establish that in some sense they are equivalent. First we briefly review
some of the most well-known problems that are very useful in many practical situations but
we do not yet know if they are efficiently solvable.

2.1 Independent Set in Graph

Definition 1 (Independent Set). Given graph G = (V,E), a set of nodes S ⊆ V is called an
independent set if no two nodes in S are adjacent.

A graph on 12 vertices An independent set of size 4

An independent set of size 3 An independent set of size 5 (max)

The INDPENDENT-SET(G, k) problem is defined as follows.

PROBLEM 1 (INDPENDENT-SET(G, k) problem). Is there an independent set of size k
in G?

2.1.1 Applications of INDPENDENT-SET(G, k)

There are many practical applications of this classical problem. We give a few in very different
areas.

� Site Seleciton: Suppose n potential sites are identified for opening up restaurants or
franchises of a certain company. Some pairs of sites cannot have the franchises at both
of them (perhaps they are too close to each other, result in unnecessary competitions, or
due to some regulatory or operational constraints). Selecting k feasible sites for franchises
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is the problem of finding an independent set in a graph with vertices corresponding to
sites and edges representing the pairwise constraints.

� The SNP (Single Nucleotide Polymorphism) Assembly Problem: In computa-
tional biology (biochemistry) given a set of sequences we want to resolve inter-sequential
conflicts by excluding some sequences. Conflicts between two sequences are due to their
biochemical properties and our goal is to select a large number of conflict-free sequences.
This means in a graph with vertices representing sequences and edges representing con-
flicts, we want to find a large independent set.

� Diversifying Investment Portfolio: Different stocks are available in a market. Let
Pi(t) be the price for stock i at time t and let Ri(t) = log Pi(t)

Pi(t−1) be the return or trading
volume of stock i at time t. Overtime one calculates the correlation between the returns
of two stocks, essentially measuring the likelihood of both stocks simultaneously going
up or down. We can represent each stock by a node in a graph and two stocks have edge
between them if the correlation of their returns is≥ θ for some threshold−1 ≤ θ ≤ 1. The
parameter θ is set depending on potential risk (degree of diversification). For example
two adjacent vertices in Gθ=.9 represent very high risk investment pair, i.e. if one invest
in both of them the risk of losing is high (though the chances of earning more is also
high). General θ is set depending on investment policy of an individual, a risk averse
investor would for instance set θ < −0.5. An independent set in Gθ represents a portfolio
with “small” risk (diverse set of investments)

� Shannon Capacity of a graph: Suppose you are sending a message (a sequence of
symbols from an alphabet) through a noisy channel.

Because of noise some characters can be confused at the receiving end. We want to
determine how many 1-length strings can be sent without confusion?

To answer this question, make each symbol a node in a graph and introduce an edge
between a pair of nodes if and only if the corresponding symbols can be confused. This
depends on the SNR of the channel and the similarity of codes for the symbols. The
maximum number of messages (size 1) that can be sent without confusion is the size of
maximum independent set in this graph. For the more practical scenario of finding the
number of k-length strings that can be sent on this channel without confusion. We need
to find the size of maximum independent set in Gk (strong product of graphs). Please
read the wikipedia article for strong product of graphs and make a small example to
understand the product and why an independent set in Gk correspond to the confusion
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free messages.

2.2 Clique in a Graph

Definition 2 (Clique). Given graph G = (V,E), a set of nodes S ⊆ V is called an independent
set if every pair of nodes in S are adjacent.

A graph on 12 vertices A clique of size 3

A clique of size 3 A clique of size 4 (max)

The CLIQUE(G, k) problem is defined as follows.

PROBLEM 2 (CLIQUE(G, k) problem). Is there a clique of size k in G?

2.2.1 Applications of CLIQUE(G, k)

There are many practical applications of the clique problem. Think about it is in some sense
the “opposite” of the INDEPENDENT-SET(G, k) problem. So all the application that we
studied for that will work here too in an appropriately defined graph.

� Cliques in Market Graphs: A clique in the market graph defined above (e.g. Gθ=.5

represents a high risk portfolio. Cliques in this graph can also be of interest to a regulatory
body as it could represent some kind of collusion or market manipulation.

� Organized Tax Fraud Detection by IRS: Clustering similar objects is widely used
in many applications. Ideally clusters are cliques in a graph. Generally, a community in
a graph is characterized by high internal degrees, low internal distances, or large internal
densities etc. so subgraphs that are close to cliques.

In tax returns one can submit many phony tax returns (of small amounts) to get un-
deserved returns. The IRS constructed a graph, where each tax form is a vertex and
edges between two vertices means the “similarity” between the two forms is above some
threshold. A large clique in this graph points to a potential fraud

� To see some more problems of the cliques please search the keywords
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� Location Covering Using Clique Partition

� Protein Docking Problem

2.3 Vertex Cover

Definition 3 (Vertex Cover). Given a graph G = (V,E), a set of nodes S ⊆ V is called a
vertex cover if every edge e ∈ E has at least one endpoint in S.

A graph on 11 vertices A vertex cover of size 5

A vertex cover of size 6 A vertex cover of size 3

The VERTEX-COVER(G, k) problem is defined as follows.

PROBLEM 3 (VERTEX-COVER(G, k) problem). Is there a vertex cover of size k in G?

2.3.1 Applications of VERTEX-COVER(G, k)

� The Art Gallery Problem: Suppose you want to assign traffic wardens to different
intersections (or install cameras) in a city. Your goal is cover all street segments, so you
can keep an eye on every single street. Construct a graph where intersections are nodes
and streets between them are edges. You can find a vertex cover and install cameras on
those intersection, this way you can keep an eye on all the streets.

� Network Security- Rout Based Filtering: In network design or administration, we
would like to identify a small set of routers/AS, so that all packets can be monitored
at those routers/switches (check if the source/destination addresses is valid given the
routing table and network topology). This is important for Route-based distributed
packet filtering or preventing distributed denial of service (DDOS) attacks. We would
like to cover every single transmitted packet in the network but have a limited budget
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(a set of k routers with enhanced capabilities). A vertex cover of size k in the naturally
defined graph would do the job.

� See also vertex cover application in Dynamic Detection of Race Condition in
Shared Memory Parallel Processing

2.4 Set Cover

Definition 4 (Set Cover). Given a set U of n elements and a collection S of m subsets
S1, S2, . . . , Sm ⊆ U . A Set Cover is a sub-collection I ⊂ {1, 2, . . . ,m} such that

⋃
i∈I

Si = U

To see an example,

U = {1, 2, 3, 4, 5, 6}
Sets: {1, 2, 3}, {3, 4}, {1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6}, {1, 2, 4, 5, 6}

Cover {1, 2, 3}, {3, 4},{1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6}, {1, 2, 4, 5, 6}

Cover {1, 2, 3}, {3, 4}, {1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6},{1, 2, 4, 5, 6}

Cover {1, 2, 3}, {3, 4},{1, 3, 4, 5}, {2, 4, 6}, {1, 3, 5, 6},{1, 2, 4, 5, 6}

The first cover has size 3, the latter two have size 2 each

S1

S2

S3
S4

S5

S6

U

S1

S2

S3
S4

S5

S6

U

The SET-COVER(U,S, k) problem is defined as follows.

PROBLEM 4 (Set-COVER(U,S, k) problem). Is there a cover of size k for U?

2.4.1 Applications of SET-COVER(U,S, k)
� Application Software with different capabilities: Let U be the set of capabilities
or functionalities we want in a software system. Let S : be the set of available softwares
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in the market each providing a subset of capabilities in U . We would like to select a
(small) subset of softwares for our system to provide all required functionalities.

� IBM antivirus tool: Suppose U is a set of (500) known viruses describe by their
binaries. There is a set of 9000 strings of 20 bytes or more that occur in the binaries of
viruses but not in “clean” codes. In order to determine whether a given binary is a virus,
one would need to check a code for any of the 9000 strings. To do it more efficiently, we
make a collection S of subsets of U as follows. For each string i, let Si be the subsets of
viruses containing this string. Find a set cover of size k in U,S to get k (small) strings
to search for in codes to detect any virus.

2.5 Set Packing

Definition 5 (Set Packing). Given a set U of n elements and a collection S of m subsets
S1, S2, . . . , Sm ⊆ U . A Packing is a sub-collection I ⊂ {1, 2, . . . ,m} such that no two of them
intersect, i.e. ∀ i ̸= j ∈ I, Si ∩ Sj = ∅
U = {1, 2, 3, 4, 5, 6}
Sets: {1, 2, 3}, {4, 5}, {4, 6}, {2, 3}, {1, 6}, {4, 5, 6}

Pack: {1, 2, 3}, {4, 5}, {4, 6}, {2, 3}, {1, 6}, {4, 5, 6}
Pack: {1, 2, 3},{4, 5}, {4, 6}, {2, 3}, {1, 6}, {4, 5, 6}

Pack: {1, 2, 3}, {4, 5}, {4, 6}, {2, 3}, {1, 6},{4, 5, 6}

The first and third pack has size 2 each, the second has size 3

S1

S2

S3
S4

S5

S6

U

S1

S2

S3
S4

S5

S6

U

The SET-PACKING(U,S, k) problem is defined as follows.

PROBLEM 5 (SET-PACKING(U,S, k) problem). Is there a packing of size k for U?
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2.5.1 Applications of Set Packing(U,S, k)
� Resource Sharing U is the set of non shareable resources and each subset Si ∈ S
corresponds to the subset of resources required by the ith process. Two processes pack
together if they do not have any common resource in their requirements. We want to
select a (large) subset of k processes (requests) to allocate resources from U .

� Airline Crew Scheduling: In this U is the set of crew members (pilots, copilots,
navigators,stewards and stewardesses etc.). Each set Si ∈ S is a subset of crew members
(one pilot, one copilot, and 10 steward(esses) for a flight) who are willing to work with
each other, know each other languages, eligible to enter certain territories etc. The
problem of scheduling k flights become that of finding a set packing of size k from (U,S.

2.6 The Satisfiability Problem: SAT and 3− SAT

Given n Boolean variables x1, . . . , xn, (each can take a value of 0/1 (true/false)). A literal is a
variable appearing in some formula (expression) as xi or x̄i. A clause is an OR of one or more
literals.

Definition 6 (CNF formula). A CNF formula (conjunctive normal form) is a Boolean ex-
pression that is AND of one or more clauses.

A (CNF) formula is satisfiable, if there is an assignment of 0/1 values to the variables such
that the formula evaluates to 1 (or true). Note that for a formula to satisfy every clause has
to evaluate to true which happens when at least one literal in every clause is set to true.

1. f1 = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x̄2) ∧ (x2 ∨ x̄3) is a CNF formula, that is satisfiable (the
assignment is x1 = 1, x2 = 1, x3 = 1). x1 = 1, x2 = 0, x3 = 0 is also a satisfying
assignment.

2. f2 = (x1 ∨ x̄2) ∧ (x1 ∨ x2) ∧ (x̄1 ∨ x̄2) ∧ (x̄1 ∨ x2) is not satisfiable.

The SAT(f) problem is defined as follows.

PROBLEM 6 (SAT(f) problem:). Is there a satisfying assignment for f?

Definition 7 (3-CNF formula). A 3-CNF formula is a CNF formula such that every clause
has at most 3 literals.

The 3-SAT(f) problem is defined as follows.

PROBLEM 7 (3-SAT(f) problem:). Is there a satisfying assignment for the 3-CNF formula
f?
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2.6.1 Applications of Satisfiability Problems

Figure 1: From slides of Emina Torlak (CS@ Uni. of Washington)

� Many applications in hardware/software verification

� Also in planning, partitioning, scheduling

� Model all kinds of constrained satisfaction problem

� Many hard problems can be stated in terms of SAT

A scheduling Problem as Constraint satisfaction problem

� Consider the following constraints:

� John can only meet either on Monday, Wednesday or Thursday

� Catherine cannot meet on Wednesday

� Anne cannot meet on Friday

� Peter cannot meet neither on Tuesday nor on Thursday

� Question: When can the meeting take place if at all?

Encode then into the following Boolean formula: (Mon ∨Wed ∨ Thu) ∧ (¬Wed) ∧ (¬Fri) ∧
(¬Tue ∨ ¬Thu)
The meeting must take place on Monday

2.7 Hamiltonian Cycle and Paths in Graphs

Definition 8 (Hamiltonian Cycle (Path)). A Hamiltonian Cycle in a graph G = (V,E) is a
simple cycle (path) that visits every vertex in V exactly once.
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If the graph G is directed, then we refer to them as Directed Hamiltonian Cycle and Path,
respectively.

Hamiltonian cycle in G No Hamiltonian cycle in G
Hamiltonian path in blue

No Hamiltonian path in G
So no hamiltonian cycle

The HAM-CYCLE(G) problem is defined as follows.

PROBLEM 8 ( HAM-CYCLE(G) problem:). Is there a Hamiltonian cycle in G?

The problems HAM-PATH(G), DIR-HAM-CYCLE(G), and DIR-HAM-PATH(G) are de-
fined analogously.

2.7.1 Applications of Hamiltonian Cycle and related problems

� Re-entrant Knight’s Tours Is there a sequence of moves that takes the knight to each
square on a chessboard exactly once, returning to the original square. This problem was
solved for 8 × 8 Abu Bakr Muhammad bin Yahya al-Suli; he discovered a tour in the
9th century. For n × n chessboard we construct a graph by defining a vertex for each
position and connect vertex vij to vertex vkl if there is a legal knight’s move between the
position i, j to position k, l on the board. A Hamiltonian Cycle in this graph correspond
to a re-entrant knight’s tour.

� Mapping of Genomes Scientists must combine many tiny fragments of genetic codes
(call “reads”), into one single genomic sequence (a ‘superstring’). If we consider each of
the reads as a node in a graph and each overlap (place where the end of one read matches
the beginning of another) is considered an edge. A Hamiltonian Cycle in this graph is a
mapping of genomes.
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� Route for School Bus We need to find a route for bus that passes each student’s house
exactly once to save fuel and time. Houses of school students in a district are considered
nodes in graph and paths between them are edges. Find a Hamiltonian Cycle in the
graph for a route for the bus (starting and ending at the school).

2.8 Longest Path Problem

As in the shortest path problem, Given an edge-weighted graph G = (V,E) with w : E → R.
Two vertices s ̸= t ∈ V, called the source and target vertex, respectively are identified. The
goal is to find a simple s − t path P of maximum total weight, where weight of a path is the
sum of weights of its edges, i.e. w(P ) =

∑
e∈P w(e).

The Longest-Path(G, s, t) problem is defined as follows.

PROBLEM 9 (Longest-Path(G, s, t, k) problem:). Is there a s− t path in G of weight at
least k?

2.8.1 Applications of Longest Path problem

� Character Segmentation for OCR:The first step in any OCR (Optical Character
Recognition) system is that of character segmentation. That is given a hand-written text,
we would like to isolate individual characters, that can be passed through a character
recognition system. Salvi et.al. (2013). “Handwritten Text Segmentation using Average
Longest Path Algorithm” proposed the following algorithm based on average longest
paths.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 32 4 5 6 7 8 9 10 11 12 13 1514

Character Recognition)

Edge Weight Evaluation

(Feature Extraction &

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Boundaries

Candidate Segmentation

Average Longest Path

Text Segmentation

Text Image(a)

(b)

(d)

(e)

(c)

Figure 2. An illustration of the components of the proposed method.

boundaries actually represents a text segment that merges

multiple partitions from Component 1. An example is il-

lustrated in Fig. 2, where edge e14 actually indicates that

the first three partitions from Component 1 are merged as a

text segment. If this edge is included in the identified aver-

age longest path, this merged text segment will constitute a

single character in the final text segmentation.

In the following, we first present a method that uses char-

acter recognition for measuring the character likeliness of a

text segment, and use this character likeliness as the edge

weight in the constructed graph. We then develop a graph

algorithm to find the average longest path for text segmen-

tation.

2.1. Character Likeliness Measure

The edge weight w(eij) describes the character likeli-

ness of the text segment between candidate segmentation

boundaries Si and Sj , where i < j. The basic idea is to feed

this text segment (a subimage) into an adapted character

classifier to ascertain its character likeliness: a text segment

fully and tightly covering a single character is expected to

return a high character likeliness while a text segment cov-

ering part of a character, or overlapping multiple characters,

is expected to return a low character likeliness. In this paper,

we train a set of support vector machine (SVM) classifiers

for this purpose.

In this paper, we focus on text consisting of the 26 Ro-

man alphabetic characters. Thus we have 26 classes of char-

acters. We train a binary SVM classifier [4] for each class

of characters. For this purpose, we collect a set of isolated

handwritten characters as training samples. In training the

binary SVM classifier for a specific character class, say “a”,

the training samples in this class are taken as positive sam-

ples and the training samples in the other 25 classes are

taken as negative samples. When a new test sample is fed

into this binary SVM classifier, we obtain a class likeliness

associated with this character class. By testing against all 26
SVM classifiers, we obtain the class likeliness associated

with each of these 26 character classes, and we simply take

the maximum class likeliness as the character likeliness.

More specifically, in this paper we use the lib-

SVM [4] implementation for each binary SVM classi-

fier, which has two outputs: a classification indicator of

positive (+1)/negative (−1), and a probability estimate p
in [0, 1] that describes the confidence of the classification.

If the indicator is +1, we simply take p as the class like-

lihood. If the indicator is −1, we take 1 − p as the class

likelihood because, in this case, p is the negative classifica-

tion confidence.

For a text segment, we extract the HOG (Histogram of

Oriented Gradients) based features [13] as the input for the

SVM classifiers. We first normalize the size of the text seg-

ment to a 28 × 28 image. Each pixel in the image is as-

signed an orientation and magnitude based on the local gra-

dient. The histograms are then constructed by aggregating

the pixel responses within cells of various sizes. Histograms
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� Static timing analysis (STA): is a widely used method in circuit design and embedded
systems. Static timing analysis (STA) is a simulation method of computing the expected
timing of a digital circuit without requiring to simulate the full circuit. Longest path is
used to identify critical paths in a digital integrated circuit (IC), or VLSI system and
STA is performed only on these critical paths.

2.9 Traveling Salesman Problem

Given a graph with weights on edges, we want to find a Hamiltonian path (or cycle) in G,
that has the least total weight. This path or cycle is called the traveling salesman tour. Note
that in the Hamiltoninan cycle the problem is to find if there exist a tour that visits every city
exactly once. Here we know that Hamiltonian Tour exists (because we assume the graph is
complete, by adding non-existing edges with weights equal to ∞) so in fact many such tours
exist, the problem is to find a minimum weight Hamiltonian Cycle.

K5 with edge weights A TSP tour of length 11 A TSP tour of length 9
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1 3
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A TSP tour of length 15

e

The TSP(G, k) problem is defined as follows.

PROBLEM 10 ( TSP(G, k) problem:). Is there a TSP tour in G of weight at most k?

2.9.1 Applications of TSP

� Transportation: The obvious application is in logistics and transportation. Where a
salesman (trucker, delivery guy) wants to visit all cities (houses or any other locations)
with minimum total cost (or traveling the least total length).

� Manufacturing Tool Optimization: Suppose you have a tool that is used for manu-
facturing equipment. We would like to optimize the path of the tool so as it spends the
least time in moving from one place to another.
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2.10 Graph Coloring

Definition 9 (Graph Coloring:). A graph (vertex) coloring is to assign a color to each vertex
such that no two adjacent vertices get the same color.

A graph G on 8 vertices A coloring with 6 colors

A coloring with 8 colors A coloring with (optimal) 3 colors

Clearly, any graph can be colored with |V | colors, the goal in coloring is to use as few colors
as possible, while satisfying the constraint. The Minimum number of colors needed to color a
graph is called the chromatic number of G and this number is denoted by χ(G).

The k-Colring(G) problem is defined as follows.

PROBLEM 11 (k-Coloring(G) problem:). Is there a coloring of G with k colors?

2.10.1 Applications of Graph Coloring

� Map Coloring: Given map of a certain area or country, we would like to color its region
such that no two neighboring regions (countries, cities, towns, electoral constituencies)
get the same color. Otherwise those region will not be distinguishable. This is accom-
plished by constructing a graph with vertices corresponding to regions and two vertices

15



have an edge between them if the corresponding regions share a boundary. This graph is
called the the Dual Graph of the region. A k-coloring of this graph yields a coloring
of map satisfying the given constraint.

� GSM Frequency Bands Assignment In cellular networks (GSM) coverage area is
divided into a hexagonal grid, each cell (a hexagon) is served by an antenna. Each
cell uses a frequency band (one of 850, 900, 1800, 1900 MHz). The requirement is that
frequency of a cell must be different from adjacent cells (hexagons sharing a line segment).
We can achieve this by four coloring the vertices of the dual graph of the hexagonal grid.

� Final Exam Scheduling: Suppose we want to schedule exams for n courses. The
obvious requirement is that no student should have two exams at the same time-slot.
This correspond to scheduling exams for the courses that have common students in
different time-slots. We want to determine how many time-slots are needed? This can
be achieved by considering each course a vertex in a graph. In this graph two vertices
are adjacent if the corresponding courses have a common student. Then we want to find
the chromatic number of this graph or determine what is the minimum number of colors
needed to color this graph.
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2.11 Knapsack and Subset Sum Problem

We studied both of these problems in the class. In the following we describe a version of
the problem that is consistent with all the above problems described above, i.e. a version
of the problem, where the answer is Yes or No. In these problems we are given a set U =
{a1, a2, . . . , an} of integers, a weight function w : U → Z+, a value function v : U → R+, and
a positive integer C.

The KNAPSACK(U,w, v, C, k) problem is defined as follows.

PROBLEM 12 (KNAPSACK(U,w, v, C, k) problem:). Is there a subset S ⊂ U such that∑
ai∈S

wi ≤ C and
∑
ai∈S

vi = k.

In the subset problem, which is a special case of the knapsack problem, we do not have a
distinct value function (or value of each item is equal to its weight).

The SUBSET-SUM(U,w,C) problem is defined as follows.

PROBLEM 13 (SUBSET-SUM(U,w,C) problem:). Is there a subset S ⊂ U such that∑
ai∈S

wi = C

2.11.1 Applications of Knapsack and Subset Sum Problems

� Suppose we have borrowed a server that has capacity C MFLOPS (Mega Floating Point
Operations Per Second). We have n processes (jobs) such that job i requires wi MFLOPS.
The question of whether there is a subset of jobs that can feasibly (total MFLOPS
requirement at most C) be scheduled to run in parallel on the server and consumes at
least k MFLOPS, is just the SUBSET-SUM(U,w,C, k), where U is the set of jobs.

� In many logistic or freights transportation problems we would like to allocate space in
a fixed capacity container to items with certain volumes and values (e.g. rents). Such
problems are modeled by the KNAPSACK(U,w, v, C, k) problem.
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2.12 Partition Problem

Given a set of n positive integers U = {a1, a2, . . . , an}. We would like to partition U into two
subsets U1 and U2, such that the sum of values in each subset is equal (balanced partition).
In other words,

∑
a∈U1

a =
∑

a∈U2
a. This problem is also called Number Partition Problem.

PROBLEM 14 (PARTITION(U, k) problem:). Is there a biparition of U into U1 and U2

such that |∑a∈U1
a−∑

a∈U2
a| = k.

2.12.1 Applications of the Partition Problem

This problem has application in minimizing VLSI circuit size and delay, assigning tasks to
2 machines such that the finishing time (the larger of the two) is as small as possible (or is
equal). You might recall from your childhood, the method of choosing teams was actually
an algorithm for this problem. In that method two captains (often self-appointed) will take
rounds and alternatively pick a player in each round until all players are assigned to one of
the sides. This method actually is a greedy algorithm to solve the bipartition or balanced
bipartition problem.

2.13 Number Theoretic Problems: Prime, Composite and Factoring

In this subsection, I just list the problems, which are quite easy to understand and have many
applications in public key cryptography.

PROBLEM 15 (prime(n)). Is the given number n a prime?

PROBLEM 16 (composite(n)). Is the given number n a composite number?

PROBLEM 17 (factor(n, k)). Is there a factor d of n such that 2 ≤ d ≤ k

2.14 Circuit Satisfiability

A combinatorial circuit is a generalization of logic gates, which takes n Boolean inputs and
produces a single Boolean output. It is implemented with basic logic gates AND, OR, and
NOT. We say that a combinatorial circuit is satisfiable if there is an input combination (an
assignment of 0 and 1’s to it’s input) on which the circuit outputs 1.

18



x1
x2

x3

x1
x2

x3

Figure 2: Two instances of the Circuit-SAT problem. The circuit on the left is satisfiable
with the assignment (x1, x2, x3) = (1, 1, 0), while the circuit on the right is not satisfiable.
Figure adapted from CLRS Figure 34.8

The circuit is encoded as a Directed Acyclic Graph (DAG), where nodes correspond to gates,
the output wire and the input wires.

� AND gates and OR gates have indegree 2

� NOT gates have indegree 1

� Known input writes (constant inputs) have no incoming edges and are labeled with input
values

� Unknown input writes have no incoming edges and are labeled with variable names

� The node corresponding to the output gate is designated as the sink in the DAG

Given an assignment of values to the unknown inputs, we can evaluate the gates of the circuit
in topological order, using the rules of Boolean logic (such as false OR true = true) until
we obtain the value at the output gate. This is the value of the circuit for the particular
assignment to the inputs. The DAGs corresponding to the above two circuits are depicted
below.

x1
x2

x3

x1

x2

x3 ¬ ¬

∧

∨

∧
∧

∨

∧

∨

Please verify that the assignment above does make the circuit output 1, by traversing the DAG
in topological sorted order.
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PROBLEM 18 (CIRCUIT-SAT(C)). Is the given Boolean Circuit C satisfiable?

2.14.1 Applications of CIRCUIT-SAT(C)

� Computer-Aided Circuit (Hardware) Optimization: If a digital circuit or one of
its sub-circuits is not satisfiable (i.e. it never outputs 1), then that (sub)circuit is not
doing any thing (it is useless), so we do not need to waste any gates on it and replace it
with a constant output.

� Complexity Theory This a fundamental construct in complexity theory, it turns out
that a huge number of problems (including all listed above) can be phrased in terms of
CIRCUIT-SAT(C) for appropriately defined circuit C, hence it is worthwhile studying
and analyzing this problem in detail.

3 Versions of Problems

You should have noticed that all of the above problems are phrased so as the answer to them
is either Yes or No. Some problems like CIRCUIT-SAT(C) and SAT(f) are inherently of
this nature, others are artificially turned into this form. For instance we are interesting in
finding a Hamiltonian cycle or computing the maximum independent set in a graph, yet we
turned them into Yes/No problems. The reasons for this will soon be clear, once we study
that the same problem can be phrased in different ways (called versions of the problem). We
will also see that this transformation does not result in any loss and that different versions are
essentially equivalent. Computational problems basically come in the following three versions.

3.1 Decision Problem

A decision problem is characterized by an algorithm, which returns Yes or No based on certain
criteria being fulfilled by the given instance of the problem or not.

For example the INDEPENDENT-SET(G, k) problem described above is the decision version
of the broader independent set problem. If there exists an independent set of size k, the
algorithm will answer Yes otherwise the output will be No.
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Similarly SAT(f) is inherently a decision problem, if the given formula is satisfiable the output
will be Yes otherwise No.

All the problems we described above are decision problems (or decision versions of the problem).

Note that the algorithm is not supposed to compute a solution and it is not restricted on how
it computes the binary answer.

3.2 Search Problem

A search problem or (the search version of a problem) are characterized by an algorithm that
given an instance of the problem returns a structure satisfying certain property (ies) or it
returns the Not-Found flag in case there is no structure with the required property (ies).

For example, Search versions of SAT(f) and 3-SAT(f) ask for an assignment to the variables
of the formula that satisfies f . Note that the output is a n-bit strings (specifying values for
variables (ordered)). In case there is no satisfying assignment the algorithm is supposed to
ouput Not-Found = NF.

Search version of CLIQUE(G, k) asks for a clique in G of size k or NF. Again the answer is a
subset of vertices that constitute a clique. Similarly, the output of SET-COVER(U,S, k) is
a subcollection of S and in case no subcollection of size k exists that covers U , it will output
NF.

Please go through all the problems above try to phrase their search versions, argue about the
format or structure of the output.

3.3 Optimization Problem

An optimization problem is a bit different from search and decision problem as it is supposed
to search for an optimal solution. These problems asks for a structure that satisfies certain
property (feasibility) such that no other feasible structure have better “value”. In a sense, this
is a search problem but it searches for an optimal structure. For example, the optimization
version of the CLIQUE(G, k) problem, does not specify the number k and can be stated as
follows. Given a graph G, find the largest clique in G. Since we studied many optimization
problems in the course so far. There could be in a sense two subverisons of an optimization
problem, the OPT −V al(·) and the Opt−Soln(·) versions but this distinction generally is not
very important.

Optimization version of CLIQUE(G, k), INDEPENDENT-SET(G, k), VERTEX-COVER(U,S, k),
SET-PACKING(U,S, k) are naturally termed asMAX-CLIQUE(G),MAX-INDEPENDENT-
SET(G), MIN-VERTEX-COVER(U,S), MAX-SET-PACKING(U,S). Notice the argu-
ment k is dropped. For other problems you should be able to phrase the optimization versions
where possible.

In some cases the optimization version does not make much sense. For instance for the SAT(f)
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problem, one can define it’s optimization as that of finding an assignment, which satisfies the
maximum number of clauses in f . But the formula may still not be satisfiable.

One final point, for some problem the optimization version just does not make any sense, for
instance the Hamiltonian Cycle problem. So is the 3-Coloring problem. Please spend some
time on it, to make it clear.

In summary,

� Decision Problem: answer is Yes/No

� Search Problem: answer is a feasible structure of certain value or the flag NF.

� Optimization Problem: answer is a feasible structure of optimal “value” (where value is
defined depending on the problem, e.g. for vertex cover it is the cardinality of the set,
for TSP tour it is the sum of weights of edges in the tour).

Remark: Many authors only use decision problems and search problems. Where search problem
there actually means the optimization problem. This is perhaps a better notion, as if you know
value of the optimal solution (which is quite easy to find through decision version of a problem),
then one can use search problem (our notion) with the input value equal to the optimal value.

4 Polynomial Time Reduction

In an attempt to explore the class of computational hard problems, we first define a notion
of comparing the hardness of two problems; the relative difficulty of a pair of problems. We
would like to formally express “Problem A is at most as hard as problem B”. This is formalized
through the notion of reduction: we will show that problem A is at most as hard as another
problem B by arguing that, if we had a “black box” capable of solving B, then we could solve
A.

Suppose we had a black box for solving problem B; Given any instance of B, the black box
will return the correct answer. If any instance of problem A can be solved using a polynomial
amount of computation plus a polynomial number of calls to this solution of problem B, then
we say that A is ploynomial time reducible to B. This is denoted by A ≤p B.

We say that problem A reduces to problem B, if any subroutine (think of it as C++ function)
for problem B can also be used (called (one or more times) with well thought of legal inputs)
to solve any instance of problem A. The following diagram show it schematically,

Definition 10 (A ≤p B). Problem A is polynomial time reducible to Problem B, A ≤p B ,
if any instance of problem A can be solved using a polynomial amount of computation plus a
polynomial number of calls to a solution of problem B

In other words, A ≤p B, If a subroutine (e.g a C++ function) for problem B can be used
(called once or more times with clever legal inputs) to solve any instance of problem A.
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Subroutine for B
x A(x)y B(y)

Algorithm for A transforms an instance x of A to an instance y of B. Then transforms B(y) to A(x)

Preprocess Postprocess

Subroutine for B takes an instance y of B and returns the solution B(y)

4.1 Polynomial Time Reduction to Design Algorithm

An important consequence is that supposeA ≤p B. IfB is polynomial time solvable, thenA can
be solved in polynomial time. In practice we use the contrapositive of this statement, because
we do not actually know whether the problem we are studying can be solved in polynomial
time or not, we will be using ≤p to establish relative levels of difficulty among problems.

For now let us see what reducibility among easy problems that we have already studied in the
course. We have actually used some of these reduction in the course. Please think about it
and convince yourself that these are polynomial time reductions.

� FindMin ≤p Sorting

� Sorting ≤p FindMin

� Median ≤p Sorting

� Cycle Detection ≤p DFS

� All Pairs Shortest Paths ≤p Single Source Shortest Paths

� Single Source Shortest Paths ≤p All Pairs Shortest Paths

Next we see some polynomial time reductions among the “hard” problems. For now the purpose
is establishing the positive results, i.e. using reduction as an algorithm design paradigm. The
idea is to get you familiar with the idea of polynomial time reduction. Later we will see more
polynomial time reduction and your problem set also contains exercise related to it.

4.2 Reduction by (Complementary) Equivalence

Poly-time reduction of Clique to Independent Set Problem

Recall that for G = (V,E), the complement of G is the graph G = (V,E), where E = {(u, v) :
(u, v) /∈ E}. We first establish the so-called ‘complementary equivalence’ between cliques and
independent set.
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A graph G G

It is not very hard to argue that

Theorem 11. G has an independent set of size k if and only if G has a clique of size k

An independent set of size 3 The same 3 vertices make a clique in G

Using this theorem we prove that

Theorem 12. Clique(G, k) ≤p Independent-Set(G, k)

Proof. Let A be an algorithm solving Independent-Set(G, k) problem for any G and k ∈ Z.
Let [G, k] be an instance of the Clique(G, k) problem. Compute the complement G of G.
Call algorithm A on [G, k]. If it outputs YES, output YES for the problem Clique(G, k).
Else output NO.

A
[G, k] B(G, k)[G, k] A(G, k)

Algorithm B solves clique(G,k) problem using a solution A for independent-set problem

Complement G Check output

Algorithm B takes an instance [G, k] of clique returns Yes if G has a clique of size k else returns No

The schematic representation of the reduction algorithm is provided in the picture. This is
clearly a polynomial time reduction, since the preprocessing can be done in linear time (by
visiting every pair of vertices or cell in the adjacency matrix).
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Poly-time reduction of Independent Set to Vertex Cover Problem

Here we first establish he dual relationship between independent set and vertex covers in
graphs.

Theorem 13. Let G = (V,E) be a graph. Then S ⊂ V is an independent set if and only if
its complement V \ S is a vertex cover.

Proof. First, suppose that S is an independent set. Consider an edge e = (u, v). Since S is an
independent set, both u and v cannot be in S, at least one of them must be in V \ S. Thus
every edge has at least one endpoint in V \ S implying that V \ S is a vertex cover.

Conversely, suppose that C is a vertex cover. Consider any two vertices u and v in V \ C. If
they were joined by an edge e, then neither endpoint of e would lie in C, contradicting our
assumption that C is a vertex cover. It follows that no two vertices in V \ C are joined by an
edge, hence V \ C is an independent set.

Next we use this duality between them to give a polynomial time reduction from Independent
Set(G, k) problem to the Vertex Cover(G, k) problem.

Theorem 14. Independent Set(G, k) ≤p Vertex Cover(G, k)

Proof. Let A be an algorithm solving Vertex-Cover(G, k) for any G and k ∈ Z. Let [G, t]
be an instance of the Independent Set problem. We call A on the instance (i.e. with input)
[G,n − t]. If it outputs Yes, we also output Yes for Independent-Set(G, t). If it outputs
No we also output No.

A
[G, k] B(G, k)[G, n− k] A(G, n− k)

Algorithm B solves Independent-Set(G,k) problem using solution, A for Vertex-Cover problem

nothing Check output

B takes an instance [G, k] of Independent-Set returns YES if G has an indep.set of size k else returns NO
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Note that given this duality relation we can also prove that Vertex Cover(G, k) ≤p Inde-
pendent Set(G, k).

4.3 Reduction from Special Case to General Case

Reduction from Vertex Cover to Set Cover

Theorem 15. Vertex-Cover(G, k) ≤p Set-Cover(U,S, k)

Proof. Let A be an algorithm solving Set-Cover(U,S, k). Suppose we have an instance [G, k]
Vertex-Cover problem, let G = (V,E) with |V | = n and |E| = m. We will transform this
instance to an instance of Set-Cover and use the algorithm A to solve it.

Make U = E and construct the collection of subsets of U as follows:

S = {S1, . . . , Sn}, where Si = {e ∈ E | e is incident on vi}

See the following figure for an example.

U = {e1, e2, e2, e4, e5, e6, e7, e8}

v1

v2

v3

v4

v5

v6

e1

e2 e3

e4 e5

e6

e7
e8

S1 = {e1, e2, e8}
S3 = {e2, e3}
S2 = {e1, e4}
S4 = {e3, e4, e5, e6, e8}
S5 = {e5, e7}
S6 = {e6, e7}

We argue the following property of the constructed Set-Cover instance.

Lemma 16. [U,S] has a set cover of size k if and only if G has a vertex cover of size k

Proof. if part: Suppose there is a vertex cover V ′ of size at most k. By definition of vertex
cover for each e = (x, y) ∈ E, either x ∈ V ′ or y ∈ V ′. The collection of subsets Si′ , (vi′ ∈ V ′)
is a set cover of the instance (U, {S1, . . . , Sn}.
only if part: Suppose U can be covered with at most k sets in S1, . . . , Sn, then G has a vertex
cover of size at most k. Let the set cover be {Si1 , ..., Sik} ⊂ S, then every edge in G is incident
to one of the vertices vi1 , . . . , vik and so the set vi1 , . . . , vik is a vertex cover in G of size k.

Using the lemma, we process the output of A as follows. If A(U,S, k′) = YES, then output
YES, else output NO.
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Reduction from Independent Set to Set Packing

Theorem 17. Independent Set(G, k) ≤p Set-Packing(U,S, k)

Proof. Given an instance of Independent Set, you should be able to create an instance of Set
Packing (this is exactly the same construction as above for Set Cover).

Another example of reduction from special case to general case is the following.

Theorem 18. 3-SAT(f) ≤p SAT(f)

Proof. 3-SAT is in Any 3-CNF formula is a CNF formula, so a solution for SAT(f) can
trivially be used to solve an instance of 3-SAT(f).

4.4 Reduction via encoding with ”Gadgets”

The more challenging way of reduction and more versatile way is to reduction through encoding
a problem instance with cleverly defined gadgets.

Theorem 19. SAT(f) ≤p 3-SAT(f ′)

Proof. Given an instance f of the SAT(·) problem, we will construct a 3-CNF formula f ′ as
an instance of the 3-SAT(·) problem and show that f ′ is equisatisfiable with f . Since f may
have longer clauses (containing more than 3 literals), we proceed clause by clause and make a
collection of 3-CNf clauses that are together equisatifiable with the given clause.

Lemma 20. C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) and C ′ = (xi1 ∨ xi2 ∨ di) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

)

are equisatisfiable.

Proof. We will show that if there is a satisfying assignment for C, then there is also a satisfying
assignment for C ′ and vice-versa.

1. If C is satisfiable, then C ′ is also satisfiable: Suppose C = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸
y

) is

satisfiable. In a satisfying assignment if xi1 ∨ xi2 = 1, then setting di = 0, we get that
both clauses of C ′ are also satisfiable. On the other hand if in the satisfying assignment
for C, xi1 ∨ xi2 = 0, hence y = 1. Setting di = 1 we again get that both clauses of
C ′ are satisfiable. Therefore, if there is a satisfying assignment for C, we showed by
construction that there is a satisfying assignment for C ′ too.

2. If C ′ is satisfiable, then C is also satisfiable: Suppose C ′ = (xi1 ∨ xi2 ∨ di) ∧ (di ∨
xi3 ∨ xi4 ∨ . . .︸ ︷︷ ︸

y

) is satisfiable. In a satisfying assignment if di = 1 (di = 0 and y = 1),

the same values of x2 . . . would satisfy C (in other words y). On the other hand, in the
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satisfying assignment for C ′ if di = 0, then di = 1 and xi1 ∨ xi2 = 1, therefore the values
of xi1 and xi2 would satisfy C.

The reduction now is straight-forward. Let X = {x1, . . . , xn} be the set of variables in the
formula f , let D := {d1, d2, . . .} be a set of new (dummy) variables that we will introduce. The
3-CNF formula will be on variables X ∪D.

Initialize f ′ := f . Let Ci = (xi1 ∨ xi2 ∨ xi3 ∨ xi4 ∨ . . .) be a long clause in f . Add two clauses
(xi1 ∨ xi2 ∨ di) ∧ (di ∨ xi3 ∨ xi4 ∨ . . .) to f ′. Note that the new (longer) clause is shorter than
Ci. Repeat until there is no longer clause in f ′.

After the above procedure terminates, we have a 3-CNF formula f ′, which is equisatisfiable
as f . This is so because f is satisfiable if every clause of f is satisfiable, and by the Lemma
each clause of f is satisfiable if and only if the clauses in f ′ constructed for the corresponding
clause of f are satisfiable.

Now suppose A is an algorithm that decides the satisfiability of any 3-CNF formula. Then
given an instance f of SAT(f), we transform it into 3-CNF formula f ′ and call A on f ′. If
A(f ′) returns Yes we also return Yes, else we return No.

Suppose f has n variables and m clauses. By construction f ′ has at most O(m× n) variables
and clauses and the transformation takes times O(m × n). Hence this is a polynomial time
reduction.

The next is an important reduction, it is a bit tricky but not very difficult. It uses a very
clever idea of reducing a problem about Boolean formula to a problem in graph theory.

Theorem 21. 3-SAT(f) ≤p Independent-Set(G, k)

Proof. Suppose there is an algorithm A that takes as input a graph G and an integer k and
decides whether or not G has an independent set of size k.

In the 3-SAT(f) instance we have a formula f and we want to decide whether f is satisfiable.
Looking at f we will construct a graph G such that G has an independent set of size k if and
only if f is satisfiable. Then we will input this G to A and return the answer.

Suppose f has n variables (x1, x2, . . . , xn) and m−clauses (so 3m literals). In order to satisfy
the formula, we need to set each of x1, x2, . . . , xn to 0 or 1 so as f evaluates to 1. Alternatively,
we need to pick a literal from each clause and set it to 1. But we cannot make conflicting
setting, i.e. we cannot set a literal value to 1 for a clause and for another clause we set the
same literal to 0.

Keeping this in mind we construct m triangles with vertices of ith triangle corresponding to
literals in the ith clause.
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(x11 ∨ x12 ∨ x13) ∧ . . . ∧ (xi1 ∨ xi2 ∨ xi3) ∧ . . . ∧ (xj1 ∨ xj2 ∨ xj3) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3)

v11

v12

v13

. . .

vj3

vj2

vj1

vi3

vi2

vi1

. . .

vm1

vm2

vm3

. . .

Figure 3: A generic 3-CNF formula with m clauses (xi1 ∨ xi2, xi3)

An independent set of size m in this graph (the set of disjoint triangles) would correspond
to choosing exactly one literal from each clause (that could be set to 1 to get all clauses
satisfied). However, the independent set may contain vertices corresponding to two literals
that are negation of each other. To avoid that we add an edge between any two vertices
(in different triangles) that correspond to two literals that are negation of each other. That is
vertices where the corresponding literals represent the same variable in negation. The following
diagram depicts that.

(x11 ∨ x12 ∨ x13) ∧ . . . ∧ (xi1 ∨ xi2 ∨ xi3) ∧ . . . ∧ (xj1 ∨ xj2 ∨ xj3) ∧ . . . ∧ (xm1 ∨ xm2 ∨ xm3)

v11

v12

v13

. . .

vj3

vj2

vj1

vi3

vi2

vi1

. . .

vm1

vm2

vm3

. . .

xi3 = xj3

Figure 4: A generic 3-CNF formula with m clauses and the constructed graph on 3m vertices

Following is a concrete example of this gadget for a satisfiable formula
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(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

v31

v32

v33v23

v22

v21

v13

v11

v12

x1 = 1, x̄3 = 1, x̄4 = 1

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

v13

v11

v12

v31

v32

v33v23

v22

v21

x1 = 1, x3 = 1, x4 = 1

Figure 5: A 3-CNF formula and the constructed instance of Independent-Set(G, k) problem.
(b) An independent set of size 3 correspond to a satisfying assignment to the formula.

The diagram below gives a non-satisfiable formula and the corresponding graph with no inde-
penent set.

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

No satisfying assignmnet, No independent set of size 5

v22

v21

v32

v31

v42

v41

v13

v11

v12

v51

v52

v53

Lemma 22. Let G(f) be the graph constructed by the above procedure for a 3-CNF formula
f . G(f) has an independent set of size m if and only if f is satisfiable.

Proof. First, if the f is satisfiable, then clause of f has at least one literal that is true in the
satisfying assignment. Correspondingly, each triangle in G(f) contains at least one node whose
label evaluates to 1. Let S be a set consisting of one such node from each triangle. We claim
that S is independent; for if there were an edge between two nodes u, v ∈ S, then the labels of
u and v would have to conflict( i.e. u = v); but this is not possible, since they both evaluate
to 1.

Conversely, suppose G(f) has an independent set S of size at least m. Then the size of S is
exactly m, and it must consist of exactly one node from each triangle. Now, we claim that
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there is a truth assignment v for the variables in f with the property that the labels of all nodes
in S evaluate to 1. Here is how we could construct such an assignment v. For each variable
xi, if neither xi nor xi appears as a label of a node in S, then we arbitrarily set v(xi) = 1.
Otherwise, exactly one of xi or xi appears as a label of a node in S; for if one node in S were
labeled xi and another were labeled xi, then there would be an edge between these two nodes,
contradicting our assumption that S is an independent set. Thus, if xi appears as a label of
a node in S, we set v(xi) = 1 and otherwise set v(xi) = 0. By constructing v in this way, all
labels of nodes in S will evaluate to 1.

There is one side issue, the formula f also has clauses with one or two literals, convince yourself
that the same construction works, but instead of triangles some clauses will be represented by
edges and vertices.

The polynomial time reduction: Given a formula f , we construct the graph G(f) in polyno-
mial time and declare f as satisfiable if and only A(G(f)) outputs Yes.

Reduction from Hamiltonian Cycle to Hamiltonian Path

Next we give the final reduction for this section, we will discuss more reductions later. All
the reductions we discussed so far are sometimes referred to as the “Karp Reducibility”.
Named after the great theoretical computer scientist Richard Karp. We will also introduce the
notion of the so-called “Cook Reducibility” named after another great Stephen Cook. We
will here more about their relevant work in complexity theory and why they deserve to get
something important named after them.

The following theorem uses the standard reduction (Karp reduction).

Theorem 23. Hamiltonian-Path(G) ≤p Hamiltonian-Cycle(G)

Proof. Let A be an algorithm for the Hamiltonian-Cycle(G′) problem, that takes a graph
G′ and return Yes if and only if G′ has a Hamiltonian cycle. We will use A to solve the
Hamiltonian-Path(G) problem that asks for deciding whether G has a Hamiltonain path.

Given an instance G = (V,E) of Hamiltonian-Path(G), we construct an instance G′ =
(V ′, E′) of the Hamiltonian-Cycle(G′) problem as follows. V ′ = V ∪ {v′}, where v′ is
dummy new vertex. E′ is all edges in E and the new vertex v′ is adjacent to all other vertices
in G (that is the original V ). See the following figure (a). We first establish the following
lemma.

31



vi = v′
vi+1

vi−1

vi = v′
vi+1

vi−1G
v′

G′

(a) (b) (c)

Lemma 24. G′ has a Hamiltonian Cycle if and only if G has a Hamiltonian path.

Proof. Suppose G′ has a Hamiltonian cycle, then it contains the (dummy) vertex v′ at (say at
the ith index in some ordering). Removing v′ from the cycle, we get a path vi+1, vi+2, . . . , vi−1.
This path is a Hamiltonian path in G, as it uses all vertices of V and edges from E.

To see the other side, suppose there is a Hamiltonian path v1, . . . , vn in G. Then in G′ since
v′ is adjacent to both v1 and vn, inserting v′ gives a Hamiltonian cycle in G′. See the figure
(b) and (c).

The reduction is now straightforward and its correctness follows from the lemma. We call A
on G′ and if A outputs YES we output YES and vice-versa

Theorem 25. Hamiltonian-Cycle(G) ≤p Hamiltonian-Path(G)

Proof. For this we use the so-called Cook reduction. So far in all the reduction, we made
a single call to the supposed solution. Since we are allowed to do polynomial amount of
extra work, we can make polynomial number of calls to the supposed algorithm. The overall
reduction will still be a polynomial time reduction if the supposed algorithm takes polynomial
amount of time. Following is how the reduction work.

Let A be a polynomial time algorithm for the Hamiltonian-Path(G′) problem. Given an
instance G = (V,E) of the Hamiltonian-Cycle(G) problem. For each (u, v) ∈ E(G), we
make a new graph Guv = (Vuv, Euv). For Guv, Vuv = V ∪ {u′, v′} (two dummy vertices added)
and Euv = E ∪ {(u, u′), (v, v′)} (two extra edges added).

32



G

u′

Guv

v′

u

v

x

G

x′

Gvx

v′

u

v

x

G Gab
u

v

x

a

b

a′

b′

Lemma 26. G has a Hamiltonian cycle if and only if some Guv has a Hamiltonian path

Proof. Suppose G has a Hamiltonian cycle C. Pick any two consecutive vertices on C say a
and b ((a, b) is an edge in G). In Gab the edge (a′, a), the (longer) part of C from a to b and
the edge (b, b′) is a Hamiltonian path.

To see the other side suppose the Gab has a Hamiltonian path. This Hamiltonian path must
start at the vertex a′ and end at the vertex b′ (as this is the unique Hamiltonian path possible
if at all). Now by construction (a, b) is an edge in G. Hence using the edge (a, b) with the rest
of the path except for the (a′, a) and (b′, b) edge gives us a Hamiltonian cycle in G. See the
figure.

We call the algorithm A on each of Guv, if A outputs Yes on any Guv we will output Yes,
otherwise if on all Guv’s A returnsNo, we returnNo. Constructing each Guv takes O(|V |+|E|)
time (we might have to traverse the adjacency list of u and v etc. ) And we have to construct
|E| such graphs, hence total time in this preprocessing step is O(|E|2). Constructing the cycle
from the returned path takes O(|V |) time (the post processing time). Hence in polynomial time
extra work we can solve the Hamiltonian Cycle problem using a solution to the Hamiltonian
Path problem.

5 Transitivity of Reductions

In the previous section, we used the following techniques to reduce one problem to another.

� Simple or Complementary Equivalence or DualityWe used Complementary equiv-
alence to prove that Clique(G, k) ≤p Independent-Set(G, k) and used duality to
prove Independent-Set(G, k) ≤p Vertex-Cover(G, k′). For easier problems, recall
from the bipartite matching, we established a duality between the maximum bipartite
matching and minimum vertex cover (both optimization version), that readily gives us a
polynomial time reduction. Similarly, while studying network flow we established duality
between maximum s-t flow and minimum s-t cut.

� Special Case to General CaseWe used it to proveVertex-Cover(G, k) ≤p Set-Cover(U,S, k′),
Independent-Set(G, k) ≤p Set-Packing(U,S, k′), 3-SAT(f ′) ≤p SAT(f). Earlier we
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studied the Subset Sum(U, v, C) problem was a special case of theKnapsack(U, v, w,C)
problem. Thus quite easily we can reduce the Subset Sum(U, v, C) ≤p Knapsack(U, v, w,C)

� Encoding with Gadgets This was the most tricky one. It requires a lot of thoughts and
is usually challenging, but with practice one get reduction using this method. We shall see
some more examples of this. So far we used it to prove 3-SAT(f) ≤p Independent-Set(G, k),
SAT(f) ≤p 3-SAT(f ′) and Hamiltonian-Path(G) ≤p Hamiltonian-Cycle(G).

� Cook Reducibility Another method we used is the so-called Cook reducibility. This
is not really a stand-alone method as can be used in any of the above method, but
nonetheless to prove Hamiltonian-Cycle(G) ≤p Hamiltonian-Path(G) we used. We
will see a few more applications of this shortly.

Another very powerful technique to reduce a problem to another is to exploit the following
theorem about transitivity of reductions

Theorem 27 (Transitivity of Reductions). Given three problems X, Y , and Z, if X ≤p Y
and Y ≤p Z, then X ≤p Z

We first give a proof for this theorem and then discuss how to use it to derive more reductions.

Proof. Suppose X ≤p Y and Y ≤p Z. We will prove that this implies that X ≤p Z. In other
words, let AZ be an algorithm for Z. Given any instance IX of X, we will solve X on IX using
A+

Z (using one or more calls).

Since Y ≤p Z, there is an algorithm AY for Y using A+
Z . There may be many other algorithms

to solve Y , but we will use the one that is based on the polynomial time reduction implied by
Y ≤p Z.

Similarly, there is an algorithm AX for X using A+
Y . Again X ≤p Y means that any solution

for Y can be used to solve X with polynomial time extra work. But AX is the one that uses
A+

Y (which is built upon AZ).

We design a new algorithm BX for X. This algorithm is just the AX it uses the subroutine
AY that is built upon AZ . In essence we essentially compose the two reductions into one. It is
a polynomial time reduction, because of the fact that sum of two polynomials is a polynomial.
Hence BX uses polynomial amount of extra work (prepcocessing, postprocessing and calls to
AY ) and calls to AZ to solve X.

The following figure depicts the above reduction schematically.

Transitivity is an extremely useful property of reduction. Let’s see what we get from it.

� We proved SAT(f) ≤p 3-SAT(f ′) and 3-SAT(f) ≤p Independent-Set(G, k). We
conclude from these two using the theorem that SAT(f) ≤p Ind-Set(G, k)
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� Similarly we proved that

SAT(f) ≤p 3-SAT(f ′) ≤p Independent-Set(G, k) ≤p Vertex-Cover(G, t) ≤p Set-Cover(U,S, l)

� We can safely conclude that SAT(f) ≤p Set-Cover(U,S, l)
� It is easy to see that even amongst the above mentioned reductions we get many because
of transitivity

6 Self Reducibility

We introduced the decision, search and optimization versions of problems and focused on
decision versions only. In this section we discuss the questions like did we lose any generality
by focusing on decision versions, are all versions of a problem “equivalent”? are versions of a
problem reducible to each other?.

An interesting fact that we elaborate on further later in this section is that for many problem
their search and optimization versions are only polynomially more difficult than the corre-
sponding decision versions. This is in the sense that any efficient algorithm for the decision
problem can be used to solve the search problem efficiently. In other words the optimization
and search versions are polynomial time reducible to their decision versions. This is called
self-reducibility.

Next we discuss some examples of self-reducibility and problems that exhibit it. We add the the
prefix Dec-, Srch, or Max/Min/Opt to the problem name to identify the decision, search
and optimization versions of a problem, respectively. Note that the original name was already
decision version but for the sake of clarity we still add the prefix Dec for now. The argument
to the problem will change accordingly.

Theorem 28. Dec-Independent-Set(G, k) ≤p Max-Independent-Set(G)

Proof. Suppose A is an algorithm for Max-Independent-Set(G). That is A takes as input a
graphG and returns a largest independent set in it. We will useA to solveDEC-Independent-Set(G, k).

Given an instance [G, k] of the DEC-Ind-Set(G, k) problem, call A on G. Check if inde-
pendent set returned by A is of size ≥ k return Yes else return No. Computing the size of
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the returned set and comparing it with k can clearly be done in polynomial time. Hence the
reduction is a polynomial time reduction.

Theorem 29. Dec-Independent-Set(G, k) ≤p Srch-Independent-Set(G)

Proof. Suppose A is an algorithm for Srch-Independent-Set(G, k). That is A takes as
input a graph G and returns an independent set of size k in G. We will use A to solve the
DEC-Independent-Set(G, k).

Given an instance [G, k] of the DEC-Ind-Set(G, k) problem, call A on [G, k]. Check if A
returns an independent, then return YES. In the other case if A returns NF, then return No.
This clearly is a polynomial time reduction.

Theorem 30. Srch-Independent-Set(G, k) ≤p Max-Independent-Set(G)

Proof. Suppose A is an algorithm for Max-Independent-Set(G). That is A takes as input a
graphG and returns a largest independent set in it. We will useA to solve Srch-Independent-Set(G, k).

Given an instance [G, k] of the Srch-Ind-Set(G, k) problem, call A on G. Check if indepen-
dent set returned by A is of size ≥ k, then return the same independent set. On the other
hand if the size of the retuned indpendent set is less than k, then return NF. Computing the
size of the returned set and comparing it with k can clearly be done in polynomial time. Hence
the reduction is a polynomial time reduction.

Theorem 31. Srch-Independent-Set(G, k) ≤p Dec-Independent-Set(G, k)

Proof. This one is generally trickier, since the decision versions of problems gives Yes/No an-
swers, while the search and optimization versions are required to output some kind of structure.
Generally, we repeatedly call the supposed algorithm for the decision version (Cook reduction)
to construct the structure using the successive Yes/No answers.

Here is an algorithm for Srch-Independent-Set(G, k) that uses an algoA forDec-Independent-Set(G, k).

Algorithm Algorithm for the Srch-Independent-Set(G, k) problem

1: I ← ∅ ▷ Initialize an empty independent set
2: t← k
3: for v ∈ V (G) = {v1, . . . , vn} do
4: ans← A(G \ {v}, t)
5: if ans = yes then ▷ Check if this vertex is needed for an independent set
6: V (G)← V (G) \ {v}
7: else
8: V (G)← V (G) \ {v}
9: I ← I ∪ {v}

10: t← t− 1

36



Theorem 32. Max-Independent-Set(G) ≤p Srch-Independent-Set(G, k)

Proof. This type of reductions also require a little care. The main difference between the
optimization version and the search version of a problem is the size of the solution. The search
version in this case for instance requires the parameter k, while for optimization version we do
not know the size of largest independent set. We have to find the size of largest independent
set too. Suppose A is an algorithm for Srch-Ind-Set(G, k). If we knew that t is the size of
largest independent set, then we could just call on [G, t] and return the independent set.

Therefore, we search for t also. The reduction works as follows. For 1 ≤ k ≤ t(?), call A on
[G, k]. When we get to the first k on which A such that [G, k] returns NF we know t = k− 1.
Now we make one call again to A on [G, t] and return the independent set. We know it is a
maximum independent set, because A(G, t+ 1)→ NF.

Note that this reduction critically uses the monotonicity of independent sets, i.e. if there is no
independent set of size i, then there cannot be an independent set of sizer bigger than i.

One final point, this linear search might be a problem. This is the problem because k is an
input to the Srch-Independent-Set(G, k) problem and the number of calls we made to A is
t, which is value of the input the size of this input is logarithmic in the value. Think about it
this way, we know k ≤ n, for n = |V (G)|, and making k calls would be O(2logn) (exponential
in the size of input).

Luckily there is an easy fix. We should run a binary search algorithm to find the first k on
which the algorithm returns NF. i.e. start with k = 1 and iteratively double the value of k
until we find one for which the answer is NF. Now we find the value of t between k/2 and
k.

Theorem 33. Max-Independent-Set(G) ≤p Dec-Independent-Set(G, k)

Proof. Finally, this last of the six possible reduction. In this case we first find the size of
maximum independent set (t) by doing a binary search as above. Once we know the size of a
maximum independent set, say t.

Then we find an independent set of size t in G (which is just the search version). This can be ac-
complished as in the reduction of Srch-Independent-Set(G, t) toDec-Independent-Set(G, t).

Next we give a few more examples of reduction from search version to decision version, mainly
to emphasize the point we made that such reductions are trickier.

Theorem 34. Srch-Hamiltonian-Path(G) ≤p Dec-Hamiltonian-Path(G)
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Proof. Let A be an algorithm for Dec-Hamiltonian-Path(G) Call A on G, if it returns No,
then return NF. In case it returns Yes, then we need to find a Hamiltonian path in G. Suppose
we do the following. For each vertex v, Call A on G \ {v}, what to do if it A returns Yes/No
on G \ {v}. We cannot use this call to select or de-select v, like we did for independent set, as
all vertices of G have to be in a Hamiltonian path. The correct way is as follows.

For each edge e = (u, v), we call A on G\{e}, if A returns Yes, then this means e is not needed
for the Hamiltonian path since there is a Hamiltonian path even without e present. We delete
the edge e from the remaining part of G and move to the next edge. On the other hand, if A
returns No, this means that e is required for the Hamiltonian path. We keep the edge e in
(remaining) G and move to next edge. In the end, since the original graph has a Hamiltonian
Path (we tested initially), we will be left with n− 1 edges that make a Hamiltonian path.

Theorem 35. Srch-Vertex-Cover(G, k) ≤p Dec-Vertex-Cover(G, k)

Proof. Suppose A is an algorithm for Dec-Vertex-Cover(G, k). Given an instance [G, k] of
the search problem, we call A on [G, k], if it returns No, we return NF. But if it returns Yes,
we have to find a vertex cover of size k.

For each vertex v, we want to determine whether or not v is part of a vertex cover of size k.
So we call A on [G \ {v}, k], if it returns Yes we do not include v in the output, if it returns
No, we include v in the output.

Careful: Since G has a vertex cover of size k (suppose there is a unique minimum cover called
C.), G \ {v} has a vertex cover of size k whether or not v is in the cover. Because if v is not
in C, then the same C covers all edges of G, so it definitely cover all edges of G \ {v}. But if
v is in C, then v only covers edges incident to v. When v is gone, the remaining vertices in C
still cover all the remaining edges. So we can add some vertex u ̸= v to C and it still covers
all edges in G \ {v}. Recall vertex cover is a minimization problem. Therefore, e will get Yes
answer for every v.

The correct idea is to call A on [G \ {v}, k− 1], if it returns Yes, then v is in the k-sized cover.
If it returns No, then v is not part of any k-sized cover.

6.1 Caution for Self Reducibility

CAUTION! Self reducibility DOES NOT mean that “any algorithm solving the decision
version must use a solution of the search version”. A solution to the search version is sufficient
to solve the decision version, but it is not necessary. There are problems where we can solve
the decision version without yet having a solution to the search version.

Our purpose of introducing the numeric problems above was to give you an example of this.
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Recall the Composite(n) problem that decides whether or not the given integer n is a com-
posite number. Note the problem Prime(n) is the “complement” problem. Also the search
version of the Factor(n) that asks for a factor of n, if n is composite, and NF if n is prime.

The famous Agarwal, Kayal, Saxena (AKS) (2004) theorem for “Primality Testing” uses in-
volved number theory to solve the Prime(n) or Composite(n) problems. But it does not
solve the corresponding search version i.e. Factor(n) problem.

7 Polynomial-time verification

This point onward our main focus will be decision problems (or decision version of problems)
and we will denote them by the names given initially (i.e. without the prefix Dec-).

So far we have been discussing how to solve problems using many different general techniques
including greedy algorithms, dynamic programming and now polynomial time reduction. Now
we will introduce another aspects of problems that is to certify and verify a given solution. We
will discuss how to check (verify) a proposed solution (a certificate) to a problem.

It should be clear that the problem of computing an independent set in a graph or finding a
satisfying assignment for a formula is very different than verifying a claim that a given subset is
an independent set in this graph or checking the claim that this specific assignment to variables
satisfies the given formula.

We will precisely formulate the verification problem but you should have some idea of this.
Please keep the following points in mind this will hopefully your understanding of polynomial
time verification more clear.

� In some cases both computing a solution and checking a proposed solution are both easy
( efficiently solvable in polynomial time). For example computing the minimum span-
ning tree of a graph can be accomplished in polynomial time using Prim’s or Kruskal’s
algorithm. On the other hand suppose we are given a “subgraph” (accompanied with
the claim that this thing is a MST of the graph), how can we verify the claim. We would
first check if what is given is indeed a subgraph, a tree, a spanning tree. Then we can
compute a MST using Kruskal’s algorithm and check it’s total weight is equal to the
total weight of the claimed spanning tree. All of these tasks can be done in polynomial
time. You can similarly argue about Maximum s-t flow in networks, and many other
problems.

� In some cases computing a solution is hard, while verifying a claimed solution is easy.
For instance as we discussed earlier that we do not know of any efficient algorithm for
the 3-SAT problem. But if one claims to have a solution, they can express the solution
by just giving the values of each variable. And we can just verify that solution by
evaluating each clause and checking if all of them are true. It requires only one scan over
the formula (linear in number of variables and number of clauses.) Similarly computing
an independent set is hard, but a claimed solution (a subset of vertices) can easily be
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verified by checking if all vertices in the subset are in the graph and that all pairs are
non-edges.

� In some cases both computing the solution and verifying a claimed solution are hard.
Think of the problem 3-SAT(f), which is supposed to output Yes if f is not satisfiable
and No if there is a satisfying assignment. Suppose you want to claim that a given
formula is a Yes instance of the 3-SAT(·) problem. How would you express a solution
to this problem (how would you certify the claim), and then how would you verify the
claim in polynomial time. It seems like the only way to express the solution is essentially
encode the following. 000 . . . 00︸ ︷︷ ︸

n bits

does not satisfy f , 000 . . . 01︸ ︷︷ ︸
n bits

does not satisfy f , 000 . . . 10︸ ︷︷ ︸
n bits

does not satisfy f , all the way up to 111 . . . 11︸ ︷︷ ︸
n bits

does not satisfy f . This certificate is

exponentially long and a verification algorithm will take exponential time in just reading
the certificate (claimed solution). Similarly, think about what “evidence” could we show
that would convince you, in polynomial time, that a given graph has no independent set
of size k.

7.1 Verification algorithms

Definition 36 (Polynomial Time Verifiable Problems). A decision problem X is efficiently
verifiable if

� The claim: “I is a Yes instance of X” can be made in polynomial bits, i.e. there exists
a polynomial sized certificate C for Yes instances of X

� A given certificate can be verified in polynomial time. In other words, there exists a
polynomial time algorithm V that takes the instance I and the certificate C such that
V(I, C) = Yes if and only X(I) = Yes

It takes some time to comprehend this, examples should make it clear

Theorem 37. MST(G, k) is polynomial time verifiable

Proof. A certificate could be the spanning tree for G that is claimed to be a spanning tree
of G with weight at most k. This “claimed MST” can be written in at most O(n log n) bits
(vertices ids and order) and its adjacency matrix O(n2). Hence there is exists a polynomial
sized certificate. A verifier can just check if the given vertices are in G, if all edges are actually
from G, and the given subgraph is acyclic and connected. Finally, it can just compute the sum
of weights of edges and check if it is at most k.

Alternatively, a certificate could be an empty string (0 bits). A verifier can run the Prim’s
algorithm to find a MST T of G. If w(T ) ≤ k, it verifies the claim otherwise rejects the
claim

Theorem 38. Max-Flow(G, s, t, k) is polynomial time verifiable
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Proof. A certificate could be the “flow” on each edge f : E → R expressed as |V |× |V | matrix.
A verifier can just check capacity constraints and flow conservation constraints. If it is a valid
flow, then it’s size can be computed and verified if it is at least k.

Theorem 39. 3-SAT(f) is polynomial time verifiable

Proof. As we discussed earlier, a certificate could be the assignment of each variable to 0 or
1. A verifier can evaluate f with the assignment and if the value of f is 1 it outputs Yes
otherwise No. Please think about what is this Yes as in make the complete statement this
Yes means.

You can similarly prove that Clique(G, k), Vertex-Cover(G, k), Hamiltonian-Cycle(G)
and all the problems we discussed in the first section are polynomial time verifiable.

Important Remark: The following are few points that you should keep in mind. All these
points are there in the definition above.

� We do not have to design a verifier and or technique for certifying. We only need to
prove the existence of a certificate and a verifier.

� The certificate should be of polynomial size, as otherwise the verifier would take super-
polynomial time just in reading the certificate. The certificate is also referred to as
evidence, solution or hint.

� Verifier does not have to be unique

� Similarly, there can be many ways to certify. e.g. An independent set can be certified as
the set of vertices, set of edges, complements thereof

� The verifier does not have to read the certificate. The requirement is that verifier has to
say Yes if and only if the instance is a Yes instance.

It will help clarify the definition to think about the following questions.

Is 3-SAT(f) polynomial time verifiable?

This problem is sometime referred to as UNSAT(f) which decides whether or not a given
formula f is not satisfiable.

IsHamiltonian(G) polynomial time verifiable? Similarly, the problemNo-Indepenedent-Set(G, k):
that requires Yes output, if the G does not have an independent set of size k.

Mostly-Long-Paths(G, s, t, k): Are majority of paths from s to to in G have length at least
k.
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8 Classes of Decision Problems: P, NP, co-NP, EXP

8.1 The Class P of problems:

P is the set of decision problems that can be solved (decided) in polynomial time, i.e. the set
of decision problems for which there exists an algorithm that correctly outputs Yes/No on
any input instance.

Examples of problems in P include the problems listed in the first column of the table below

P NP

2-SAT(f) 3-SAT(f)

Euler-Tour(G) Hamiltonian-Cycle(G)

MST(G, k) TSP(G, k)

Shortest-Path(G, s, t, k) Longest-Path(G, s, t, k)

Independent-Set-Tree(G, k) Independent-Set(G, k)

Bipartite-Matching(G, k) 3d-Matching(P, k)

Bipartite-Vertex-Cover(G, k) Vertex-Cover(G, k)

Linear Program Integer Linear Program

Prime(n) Factor(n)

8.2 The Class NP of problems:

NP is the set of decision problems that can be verified in polynomial time, i.e. the set of
decision problems for which there exists a polynomial sized certificate for it’s Yes instances
and a polynomial time algorithm that takes an instance of it and a certificate and verify if the
instance indeed is a Yes instance.

NP stands for “Non-deterministic Polynomial Time”. Examples of problems in NP include
the problems listed in the second column of the table above

The next very important result establishes a relationship between the two classes of problems
discussed above.

Theorem 40. P ⊆ NP

Proof. Consider a decision problem X ∈ P; by definition this means that there is a polynomial-
time algorithm A that solves X. To show that X ∈ NP, we must show that for any instance
I of X, there is a polynomial time certificate C and a polynomial time verification algorithm
V for X, that takes the instance I and C and return Yes if and only X(I) = Yes.
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Given an instance I of X and the certificate C could be an empty bit string or an arbitrary bit
string. There exists a verifier V which works as follows: V(I, C) = A(I). Essentially ignore
the certificate C, solve the problem X on I using the algorithm A and declare the instance
verified if A returns Yes, otherwise it does not verify it (i.e. return No). The verifier V takes
polynomial time as it only makes a call to which is a polynomial time algorithm.

8.3 The P vs NP Question

Many problems in computer science, mathematics, engineering, optimization and operations
research and many other fields are polynomial time verifiable but have no known polynomial
time algorithm. It is unknown whether P = NP. It is the biggest open problem in computer
science. The question comes down to “Is verifying a candidate solution easier than finding a
solution?” Although polynomial time verification seems like a weaker task than polynomial
time solution, no one has been able to prove that it is actually weaker (describes a larger class
of problems). Intuitively, one can check if any of possible candidate solutions verifies, finding
a solution is difficult because candidate space can be exponential. For example, there are n!
possible Hamiltonian cycles are candidates for TSP(G, k) and

(
n
k

)
= O(nk) possible subsets

for Clique(G, k). Essentially, to prove there is no known better way for many problems in
NP but there is no proof that there is no better way.

Let’s see what will it take to prove that P ̸= NP. We have proved that P ⊂ NP, to prove
that P ̸= NP, we need to show that NP ̸⊂ P. This can be achieved by picking any problem
X ∈ NP and proving that there is no polynomial time algorithm, i.e. proving that X /∈ P.
You have proved P ̸= NP, You will get a million dollars from the Clay Institute (and an A in
this course).

On the other hand to prove that P = NP, you will need to come up with a polynomial time
algorithm for every single problem in NP. Well, using reduction you can save yourself quite
some time. More on this later. But you will get a million dollars from the Clay Institute (and
an A in this course).

Computational Problems

Computable Problems

NP

P

Computational Problems

Computable Problems

NP

P
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Most researchers believe that P and NP are not the same class, actually there is almost
consensus opinion that P ̸= NP. But nonetheless they are only opinion and no proof. [Prof.
Scott Aaronson blog:] To say that “P vs NP is the central unsolved problem in computer
science” is a comical understatement. P vs NP is one of the deepest questions that human
beings have ever asked. There is a reason it one of 7 million-dollar prize problem of the Clay
Mathematical Institute (now one of the 6). If P = NP, then mathematical creativity can be
automated (the ability to verify a proof would be the same as the ability to find a proof). Since
verification seems to be way easier, every verifier would have the reasoning power of Gauss and
the like. By just programming your computer in polynomial time you can solve (perhaps) the
other 5 Clay Institute problems.

Someone else made a statement to the effect, “just because I can appreciate good music, doesn’t
mean that I would be able to create good music”. In the above statement, understanding
(verifying) proofs (solutions) by Gauss is one thing and coming up with proofs is a totally
different ballgame.

Then why isn’t it obvious that P ̸= NP. It is generally believed that there is no general and
significantly better method than the brute-force search to solve NP problems. It is said the
great physicist Prof. Richard Feynman had trouble even being convinced that P vs NP was
an open problem. Why can’t we prove it? Well there are many (way too many) problems
where we could avoid brute-force search. See the the list of “hard” problems and their easier
“counterparts”. Though not a decision problem, recall that we discussed that (to impress your
boss) you can say that your Sorting algorithm finds that one unique permutation out of the
n! possible ones.

What we do in this course and all complexity theorists do is try to characterize these hard
problems and say that almost all of them all essentially the same.

8.4 The Class coNP of problems:

coNP is the set of decision problems whose No instances can be verified in polynomial time.
The No instances of a problem in coNP are the Yes instances of its complement problem. In
other words, they are the complement of problems in NP. We focused on decision problem to
be able to talk about the complement of problems.

For example 3-SAT(f), Hamiltonian(G), Independent-Set(G, k) are in the class coNP.
Please note that coNP is not the complement of NP. Given this definition of coNP we
ask the question, is NP = coNP? Irrespective of the answer to P vs NP question can we
certify in polynomial space that G has no Hamiltonian cycle and can we verify it in polynomial
time. The following theorem states equality but only conditionally.

Theorem 41. If P = NP, then NP = coNP.

Proof. This can be proved quite easily, let X be a problem in coNP. We will prove that
X ∈ NP. Consider X, by definition we know that X ∈ NP and we are given that P = NP.
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Hence given any instance I of X in polynomial time we can find whether X(I) = Yes or
X(I) = No. Thus in polynomial time we can decide the problem X, thus X ∈ P = NP.

The converse of the statement is an open problem (not known to be true).

Note that it is clear (we used it in the above proof)

Theorem 42. P ⊂ coNP. Thus P ⊂ NP ∩ coNP

It is widely believed that P ⊊ NP ∩ coNP, meaning there are problems in NP ∩ coNP that
are not in P. For example the factor(n). It is easy to easy to see that Factor(n, k) ∈ NP.
As a certificate could be the factor, and verifier can just check if the given factor is at most k
and with one division verify if it indeed is a factor of n. To see that Factor(n, k) ∈ coNP, a
No instance of this problem, i.e. [n, k] (such that n has no factor less than k) can be certified
by providing the prime factorization of n. The verfier can check if every factor in the claimed
factorization is prime (can be done in polynomial time as Prime· ∈ P) and check if everyone
of them is greater than k. It is widely believed that Factor(n, k) /∈ P and this is the basis of
belief in security of the RSA cryptosystem.

The following figure illustrate the possibilities of containment of P,NP, and coNP.

P = NP = co-NP NP = co-NP

co-NP co-NP

P

NP NP

P

NP ∩ co-NP

P = NP ∩ co-NP

widely believed to be unlikely

Regarded as most likely

8.5 The Class EXP of problems:

EXP is the set of decision problems that can be solved in exponential time, i.e. the set of
decision problems for which there exists an exponential time algorithm that that correctly
output Yes/No on any instance. Clearly, P ⊆ EXP as any problem which can be solved in
polynomial time can also be solved in exponential time. Indeed, the following is true.

Theorem 43. NP ⊆ EXP
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Proof. The theorem states that any problem for which there exists a polynomial sized certificate
and a polynomial time verification algorithm can be solved in exponential time. Consider any
X ∈ NP, let V be the poly-time verifier. We can solve X any instance I of X by considering
all possible certificates C and running V(I, C). We return yes if V(I, C) return Yes on any of
the certificates C. The runtime of this algorithm exponential as there are only exponentially
many certificates of polynomial size 2n

k
and V on each of them takes polynomial time.

It is not very hard to prove the following theorem

Theorem 44. coNP ⊆ EXP

With this we get the following containment hierarchy which many people believe to be more
likely. There is a very large hierarchy (called polynomial hierarchy) that complexity theorist
have been studying and establish various containment.

EXP

co-NPNP

P

NP ∩ co-NP

Figure 6: Relationships among complexity classes we discussed and their more likely hierarchy

9 NP-Complete Problem and NP-Hard Problems

Definition 45 (NP-Hard). A problem X is NP-Hard, if every problem in NP is polynomial
time reducible to X, i.e.

� ∀ Y ∈ NP Y ≤p X

� In other words, the problem X is at least as hard as any problem in NP

Definition 46 (NP-Complete). A problem X ∈ NP is NP-Complete, if every problem in
NP is polynomial time reducible to X, i.e.

� X ∈ NP

� ∀ Y ∈ NP Y ≤p X

� In other words, the problem X is at least as hard as any problem in NP

9.1 The (sub)class NPC of problems

is the set of all problems in NPC that are NP-Complete.
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To appreciate the above definition and the problems in NPC. Here is what it means.

� The class NPC is the set of hardest problems in the class NP.

� In the sense that, if any NP-Complete problem can be solved in polynomial time, then
all problems in NP can be solved in polynomial time

NP

P

EXP

Computable
Problems

Computational
Problems

NPC

Recall this hierarchy, the subclass NPC is also shown. The definition of NP-Complete
implies the following.

� We already proved that P ⊆ NP. By definition we have that NPC ⊆ NP

� P ⊆ NP means that if you take any X ∈ NPC or NP and prove that it cannot be solved
in polynomial time, then you have proved that P ̸= NP. You will win a million dollars
and recall my promise you will get an A in this course.

� The definition of NP-Complete also means that if you take any X ∈ NPC and prove
that it is in P (by giving a polynomial time algorithm), then you have proved that
P = NP and many more things, such as NP = coNP. The polynomial hierarchy
collapses (almost). Again you will get a million dollars and get an A+ in this course
(actually in both cases).

� Thus far no polynomial time algorithm is known for any NP-Complete problem. A lot
of great researchers did and do try, as there are many interesting and practical problems
in NPC

� Also thus far, there is no proof of impossibility of existence of a polynomial time algorithm
for any NP-Complete problem
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� Similarly, people did and do try on this direction more, as this is widely held belief and
will prove that P ̸= NP

So what is the impact of defining yet a new class of problems. Recall that to prove P ̸= NP
all you had to do is to pick any problem X ∈ NP and show that there is no polynomial time
algorithm for X, i.e. show that X /∈ P. Note you had to do it for just one problem in NP.

Now the other possibility is also made “easier”. To prove that P = NP all you have to do is
pick any problem X ∈ NPC and design a polynomial time algorithm for X, i.e. prove that
X ∈ P. Note that any problem in NPC a problem that is not NP-Complete will not work.
Before 2002-3, people didn’t know if Prime(n) ∈ P. It was shown to be in P but didn’t affect
the P vs. NP question. the following theorem summarizes the above points. It’s proof follows
from definition of polynomial time reduction and that of NP-Complete.

Theorem 47. Let X be any NP-Complete problem. X is polynomial time solvable if and
only if P = NP.

In addition to the above theorem, why should in practice one prove a problem to be NP-
Complete. Suppose you fail to find an efficient solution to a problem, after many trials and
with some experience you can sense similarity to some known hard problem, one should really
give a try to prove to prove the problem to be NP-Hard. The following pictures summarize
it very beautifully.

Figure 7: Honesty is the best
policy! Now you are fired

Figure 8: Careful! you might be
claiming P ̸= NP

Figure 9: You still need to
prove that the problem is NP-
Complete

When you prove that a problem is NP-Complete, there is a good evidence that it is very
hard, at least by the almost consensus opinion. Unless your interest is proving P = NP, you
should stop trying finding efficient algorithm, instead you can focus on efficient algorithm for
the special cases that you are more likely going to encounter, employ some heuristic search
techniques, design algorithm that almost all cases give the best algorithm, try using ran-
domized algorithm that yield good result in expectation (or with high probability), or design
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approximation algorithm that gives a solution with guaranteed quality.

Note that a NP-Complete problem single-handedly capture the essential difficulty of all
problems in NP. Two fundamental questions, could there be any NP-Complete problem at
all? How would one prove a problem to be NP-Complete. Can we do so many reductions.
The next section is dedicated to the latter question. While we will give a somewhat formal
proof for the affirmative answer to the first question, it is not very hard to imagine. Here is a
rough idea of the argument for a problem to be NP-Complete.

Let A be any polynomial time algorithm working on bit-strings that outputs Yes/No based on
some unknown but consistent logic. Meaning we don’t know the functionality of the algorithm
(the problem specs), but it’s input can ultimately be transformed into bit strings and its output
is either Yes or No. Consistent means that the same input will always give the same answer.

We define a (dummy) problem H(A) as follows: “Is there any polynomial sized bit-string
S (input to A) on which A outputs Yes?”. Clearly H(A) ∈ NP, because there exists a
polynomial time certificate (the string S), which can be verified by running A on S and
verifying if A(S) = Yes. This verification takes polynomial time, because A is a polynomial
time algorithm.

Now we claim that H is NP-Complete. We need to prove that H is NP-Hard, as H ∈ NP.
In other words, we need to prove that any problem Y ∈ NP is reducible to H.

Y ∈ NP means that for any instance I of Y , there exists polynomial sized certificate S and a
polynomial time algorithm Vy such that if Y (I) = Yes if and only if Vy(I, S) = Yes. Now we
will show that any instance I of Y can be transformed to an instance of H(·) with the same
answer. Namely, suppose there is an algorithm B to decide H(·). We will use B to solve Y .
Given an instance I of Y , we call B with input Vy and if it return Yes, we make Y (I) = Yes,
otherwise Y (I) = No.

To understand this proof, just expand the statement B(Vy) = Yes. The problem H((Vy)) by
definition asks “Is there a polynomial sized certificate C on which the algorithm Vy outputs
Yes?”. Thus B(Vy) = Yes means ”yes there is a polynomial sized certificate C on which (Vy)
outputs Yes”, in other words, it says ”yes there is a solution to the problem Y on instance I.
Hence we used the claimed solution B for H to solve the problem Y.

If you understand this, you understood the seminal Cook-Levin theorem and got your first
NP-Complete problem, namely H.

10 The first NP-Complete Problem. Circuit-SAT

In this section we give a more formal proof of the above intuition how is it not so hard to prove
a problem to be NP-Hard. We will prove many other problems NP-Hard after we establish
a first one by the method outlined above.

Theorem 48. Circuit-SAT is NP-Complete
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Proof. We first need to prove that Circuit-SAT ∈ NP, in other words CIRCUIT-SAT is
poly-time verifiable.

Given (an encoding of) a Circuit-SAT problem C (a DAG). A certificate for the claim is
can be an assignment of Boolean values all input wires in C. The verifier works as follows: It
evaluate the gates of C in topological order, just checks each gate and the output wire of C.
If for every gate, the computed output value matches the value of the output wire given in the
certificate and the output of the whole circuit is 1, then the verifier outputs Yes, otherwise
No. The algorithm is executed in poly time (even linear time) (requires a topological sort, n
is the number of gates, what is the maximum number of edges in this DAG?)

Next we need to prove that Circuit-SAT is NP-Hard, that is every problem in NP reduces
to it. For this we critically have to use the definition of NP as we do not know anything else
about the specific problem.

Let A ∈ NP. We know that there exists a verification algorithm V that takes an instance I
of A and a certificate S certifying that I is a Yes instance of A. The algorithm V works as
follows V (I, S) = Yes iff A(I) = Yes. The runtime of V is polynomial in |I| and also |S| is
polynomial in |I|.
The algorithm V can be implemented in a digital computer, that takes as input I and S and
produce a Yes/No output (= 1/0) in a polynomial number of clock cycles. A digital computer
has a state or configuration, represented by all of its internal registers, control registers, pro-
gram counter etc. At each clock cycle with execution of an instruction, a huge (but fixed-size)
set of combinational circuits map the current configuration to the next configuration. The com-
puter hardware that accomplishes this mapping can be implemented by a combinatorial circuit.
We eliminate the clock and replicate the combinatorial circuit that maps a configuration to
the next. See the following two figures, that illustrates construction of such a combinatorial
circuit.

The verification algorithm V for the problem A can be implemented on a digital computer, and
from there, we can generate a combinational circuit C that “executes” V . If the output of the
circuit C is 1 for a given input, then that input verifies the problem. Thus, if we could solve
the Circuit-Sat(C) problem in polynomial time, then we would be able to find a solution to
any problem for which a solution can be verified in polynomial time.

Recall that a solution to circuit-sat tells you whether there exists a combination of ones and
zeros that produces a 1 as the output. But that output is the solution to the other NP problem.

An important point is that the number of stages in that the circuit C is equal to the the
number of clock cycles that the algorithm takes — since A ∈ NP, then that number of clock
cycles is polynomial in |I|, and thus the number of logic gates in C will be polynomial in |I|
This construction shows that A reduces to the Circuit-Sat(C) problem. That means that
Circuit-Sat(C) is at least as hard as the problem A. Since A is a generic problem in NP -
Circuit-Sat(C) is at least as hard as any problem in NP. In other words ∀ A ∈ NP A ≤p
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Figure 10: Figure Credit: https://courses.cs.washington.edu/courses/cse421/12wi/

Circuit-Sat(C). This is the definition of an NP-Hard problem:

Therefore, we conclude that Circuit-Sat(C) is NP-Hard, together with the first part above
we get that Circuit-Sat(C) is NP-Complete. Keep in mind, that an NP-Hard problem
does not have to be in NP (technically, it doesn’t even need to be a decision problem!)

11 Proving other NP-Complete problems

Now that we have gotten our first NP-Complete problem, we address the other questions.
How would one prove a problem to be NP-Complete. Can we do so many reductions? It
turns out we can do only one reduction but with a different perspective to prove a problem to
be NP-Complete.

Recall that we used polynomial time reduction as an algorithm design paradigm. It was
the view guided by this familiar diagram. The following result immediately follows from the
definition of polynomial time reduction, we discussed it earlier and used it to design algorithms.

Lemma 49. Suppose A ≤p B. If B is polynomial time solvable, then A can be solved in
polynomial time.

In this section, we use another consequence of the definition of polynomial time reduction,
(actually this is in essence some kind of contrapositive of the above lemma).

Theorem 50. Suppose A ≤p B. If A is NP-Complete, then B is NP-Complete.
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Figure 11: Figure Credit: Figure 34.9, Introduction to Algorithms, Cormen, Leiserson, Rivest,
Stein

This follows just by the transitivity of polynomial time reduction. This is one of those concepts,
that I always advise you to understand it by any means. It must be clear, if it is not clear,
then think about it and keep thinking until it is clear. If it is still not clear do the water trick
with it, if that doesn’t work, please use combinations of languages with the water trick. If even
that doesn’t work, then use the drilling technique or anything that could work, but it must be
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Subroutine for B
x A(x)y B(y)

Algorithm for A transform an instance x of A to an instance y of B. Then transform B(y) to A(y)

Preprocess Postprocess

Subroutine for B takes an instance y of B and return the solution B(y)

clear.

Actually it is not very difficult to understand. For example Suppose we have the theo-
rem that Clique(G, k) is NPComplete. It should not be very difficult to conclude that
Independent-Set(G, k) isNP-Complete. Recall the reductionClique(G, k) ≤p Independent-Set(G, k)

In general, to prove X to be NP-Complete, we reduce some known NP-Complete
problem Z to X. Many many people do the reduction in the opposite direction, which is
wrong, so make sure you have understood it so clearly, that you never make that mistake.

Theorem 51. If Z is NP-Complete, and

1. X ∈ NP

2. Z ≤p X

then X is NP-Complete

1. X ∈ NP is explicitly proved.

2. ∀ Y ∈ NP Y ≤p X follows by the transitivity of polynomial time reduction ∀ Y ∈
NP Y ≤p Z is true as Z is NP-Complete. i.e. [Y ≤p Z ∧ Z ≤p X] =⇒ Y ≤p X

11.1 The Cook-Levin theorem: SAT is NP-Complete

The original first NP-Complete problems was the SAT(f) problem proved by Stephen Cook
in 1971, though a few years earlier Leonid Levin had proved it to be NP-Complete Indeed
he gave six NP-Complete problems (in addition) to some other results, but those results
became known a little later than the Cook’s results. Thus the following theorem is called the
Cook-Levin theorem. We prove it by reducing the Circuit-Sat(C) problem to it (the original
proofs were different and did not start from a known NP-Complete problem.)

Theorem 52 (Cook-Levin Theorem). SAT(f) is NP-Complete.

Proof. First we prove that SAT ∈ NP . A certificate could be just an assignment to each of
the formula’s input n bits. Verification can be done simply by traversing the formula from left
to right and evaluating the ANDs and ORs along the way. Total runtime is O(n+m), where
n is the number of variables and m is the number of clauses. To prove NP-Hardness, we
reduce the Circuit-Sat(C) problem to SAT(f).
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Theorem 53. Circuit-Sat(C) ≤p SAT(f)

Proof. The Intuitive idea for reduction is quite simple, as a combinatorial circuit is just a
generalization of cnf formula. Suppose A is an algorithm to decide SAT(f). Given an instance
C of the Circuit-SAT(C) problem, we will design an algorithm that perform polynomial time
work to transform C into a cnf formula f and make a call A(f) to decide whether or not
Circuit-SAT(C) = Yes.

Introduce a Boolean variable for each input and output of each gate of C, see Figure below.

∨

∧¬

x1 x2 x3

x4 x5

x6

For each gate we will write a few clauses that encode the relationship between the gate output
and its inputs (the direct predecessors of nodes in the DAG). In other words, these clauses will
evaluate to true if and only if the gate output is true. The clauses introduced for each type of
gates is show in the following figure.
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(xi ∨ xj) ∧ (xi ∨ xj)

(xi ∨ xk) ∧ (xj ∨ xk) ∧ (xi ∨ xj ∨ xk)

(xi ∨ xk) ∧ (xj ∨ xk) ∧ (xi ∨ xj ∨ xk)

¬

xi

xj

∧

xi xj

xk

xi xj

xk

∨

It is easy to verify that the gates and corresponding formula are equal. The output gate
value is encoded by a clause containing just the corresponding variable. The final formula f
is a conjunction of clauses made for all gates. f is “equal” to the circuit C, i.e. the value
of f for any assignment to the variables is equal to the value of the output gate for the
same assignment to the inputs of C. Thus f is equisatisfiable with C. Therefore, we call the
algorithm Circuit-SAT(C) = Yes if and only if A(f) = Yes. The reduction takes polynomial
time, as we only have to traverse the circuit (DAG) only once and write the formula.

We will show a few problems to be NP-Complete, but given that SAT is NP-Complete, we
already know many problems to be NP-Complete from the reductions that we have proved
and by transitivity.

With the already known reductions, we know the following problems to be NP-Complete

� Recall our discussion of them being in NP

� Write all the reductions statements from and show which implies what to be NP-
Complete

� May be show the gadgets or condensed slides of the reductions
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Vertex-Cover

Circuit-Sat

3-SAT

Independent-Set

SAT

Set-Cover

Set-Packing Clique

≤p

≤p

≤p

≤p

≤p≤p

≤p

NP

≤p

� SAT ≤p 3-SAT

� 3-SAT ≤p Independent-Set

� Independent-Set ≤p Clique

� Independent-Set ≤p Vertex-Cover

� Vertex-Cover ≤p Set-Cover

� Independent-Set ≤p Set-Packing

11.2 Directed Hamiltonian Cycle is NP-Complete

Theorem 54. Dir-Ham-Cycle(G) is NP-Complete.
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Proof. First we show that Dir-Ham-Cycle(G) ∈ NP. A certificate could be the claimed cycle
in G, which is of size n (a sequence of vertices). This certificate can be verified by checking if
every vertex is listed exactly once and each successive pair is an edge in G (including the last
vertex and the first one.)

To show thatDir-Ham-Cycle(G) is NP-Hard, we reduce the already knownNP-Complete
problem 3-SAT(f) to it. Given an instance f of the 3-SAT(f) problem. Suppose f has n
variables x1, . . . , xn and m clauses C1, . . . , Cm.

In this graph there will be 2n Hamiltonian cycles corresponding to the 2n possible assignments
to variables x1, . . . , xn. We will create a graph in which there will be a gadget to represent
each variable. We will introduce some structure for each clause such that the graph has a
Hamiltonian cycle if and only if the formula is satisfiable.

For each variable xi we make the following structure. A sequence of 3(m+ 1) vertices succes-
sively adjacent to each other in both direction.

. . .. . .Li Rixi

In the final graph we would traverse these vertices corresponding to xi in either direction
depending on the value of xi. If xi is true or we want it to be true, we will traverse these
vertices from left to right (from Li to Ri) and vice-versa. Consider the following graph
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x1

s

t

...
...

...
...

x2 . . .. . .

x3 . . .. . .

xn . . .. . .

3m+ 3

. . .. . .L1 R1

L2

L3

Ln

R2

R3

Rn

This graph has 2n directed Hamiltonian cycles that traversing each of the gadgets corresponding
to variables in exactly one direction. These 2n directed Hamiltonian cycles correspond to the 2n

possible assignments to the n variables. We want to be able to restrict availability of a directed
Hamiltonian cycle only when there is a satisfying assignment. For notice that restrictions on
satisfying assignments comes from clauses only, which we have not used so far in the graph.
We incorporate them as follows.

For each clause we add another vertex, called clause nodes. Each clause node will be hooked
to three gadgets corresponding to the variables represented by the literals in C = (l1, l2, l3).
Let xi, xj , xk be the variables represented by literals l1, l2, l3, respectively. A clause node will
be adjacent to two distinct vertices each in the gadget of xi, xj , and xk. The following figure
shows how to hookup a clause to gadgets.

58



C2

C1 = (l1, xi, l2) C2 = (l3, xi, l4)

C1 Cm

xi . . .. . .Li Ri

Cm = (l·, xi, l·)

In other words, each clause node is adjacent to two distinct consecutive vertices in the gadgets
of xi, xj and xk. If the variable xi appears in a clause as xi, then clause node is hooked up
to the gadget so as it can be inserted between two consecutive vertices while traversing from
left to right. If xi appears as xi in a clause, then the clause node can be inserted between two
consecutive vertices in a right to left traversal.

Each clause node has in-degree and out-degree equal to 3. Since a variable could appear in all
the clauses, there are enough vertices in its gadgets so each clause can be hooked up.

Lemma 55. Let G be the graph constructed as above from a 3-CNF formula f . Then G has
a directed Hamiltonian cycle if and only if there is a satisfying assignment for f .

Proof. If f is satisfiable, then G has a directed Hamiltonian cycle: Let (x1, x2, . . . , xn) =
(b1, b2, . . . , bn) be a satisfying assignment for f . . We show a directed Hamiltonian cycle, start
traversal from s, if b1 = F [resp. b1 = T ], take the (s,R1) edge [resp. (s, L1) edge], and traverse
all the vertices in gadget of x1. If there is a clause containing x1 [resp. x1] and the clause node
is not already visited we take the detour to the clause node and continue traversing, until we
reach L1 [resp. R1]. If b2 = F we go from the current vertex L1 or R1 to R2, else we go to R2

and continue traversal, until we reach t and then back to s.

. . .. . .L1 R1x1

. . .. . .L2 R2x2

This traversal visits every node exactly once, because all vertices within a gadget and s and t
are clearly visited. All the clause nodes are also visited because all clauses are satisfied by this
assignment, there is at least one literal satisfying it, and while traversing the first such literal,
we will take that detour and visit the clause node.

The other direction is almost symmetric. Consider the Hamiltonian cycle, it must visit each of
the variable gadget either from left to right or vice versa (also clause nodes must be visited).
Depending on which case it is, we will set the values of the variables accordingly.
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For more details please read notes at https://courses.engr.illinois.edu/cs573/fa2013/
lec/slides/04_notes.pdf

11.3 Dir-Ham-Path is NP-Complete

Theorem 56. Dir-Ham-Path is NP-Complete

Proof. The Dir-Ham-Path(G) is clearly in NP. To prove that it is NP-Hard we reduce the
Dir-Ham-Cycle(G) problem to it.

Given an instance G = (V,E) of the Dir-Ham-Cycle(G) problem, consider any vertex v ∈
V (G), we make a new directed graph G′ as follows: V (G′) = V (G) \ {v} ∪ {vin, vout}.
The new vertex vin has an incoming edge from all the in-neighbors of v in G and the the vertex
vout has an outgoing to edge to all the out-neighbors of v in G. In other words

E(G′) = E \ {(u, v) : (u, v) ∈ E} \ {(v, w) : (v, w) ∈ E} ∪ {(u, vin) : (u, v) ∈ E} ∪ {(vout, w) :
(v, w) ∈ E}

a

b

c

d

v

f

g

h

a

b

c

d

f

g

hvin eot

It is easy to see that G has a directed Hamiltonian cycle if and only G′ has a directed Hamil-
tonian path. Because a Hamiltonian cycle in G must contain v by splitting the vertex v open,
we get a Hamiltonian path from in G′ from vout to vin. Similarly, any Hamiltonian path in
G′ must begin at vout and end at vin, by joining the two end points of this path, we get a
Hamiltonian cycle in G.

Please make one full example of a small graph using the above reduction.

11.4 Ham-Cycle is NP-Complete

Theorem 57. Ham-Cycle is NP-Complete
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We will reduce Dir-Ham-Cycle(G) to the Ham-Cycle(G) problem, as we already proved
that to be NP-Complete.

Given an instance G = (V,E) of Dir-Ham-Cycle(G) problem with |V | = n and |E| = m .
We want to get rid of edge directions. We construct an undirected graph Gu = (Vu, Eu) on 3n
vertices and m + 2n edges as follows. We split every vertex v inV into three vin, vmd, vot (in,
mid and out version of the vertex v) and add these three vertices to Vu. We create an edge
between the in and mid version and an edge between the mid and in version of each vertex, i.e
for each v ∈ V , the edges (vin, vmd) and (vmd, vot) are in Eu. For each directed edge (x, y) ∈ E,
we make the edge (xot, yin) in Eu. Thus each directed edge in E introduce exactly one edge in
Eu.

a

b

c

d

e

f

g

h

aot

bot

cot

dot

fin

gin

hineotemdein

Lemma 58. G has a directed Hamiltonian cycle if and only if Gu has an (undirected) Hamil-
tonian cycle.

Proof. Suppose G has a directed Hamiltonian Cycle, C. Let C = v1, v2, . . . , vn, v1. We argue
that the Cu = v1in, v

1
md, v

1
ot, v

2
in, v

2
md, v

2
ot, . . . , v

n
in, v

n
md, v

n
otv

1
in is a Hamiltonian cycle in Gu. In

other words if we replace every vertex vi in C with it’s in, mid, and out versions in this order,
then we get a cycle. This is very clear by construction.

If Gu has an undirected Hamiltonian cycle Cu, then G has a directed Hamiltonian cycle. Any
Hamiltonian cycle in Gu must all vertices in Vu in either of the following two orders.

. . . , . . . , viin, v
i
md, v

i
ot, v

j
in, v

j
md, v

j
ot, v

k
in, v

k
md, v

k
ot . . . , . . . or

. . . , . . . , viot, v
i
md, v

i
in, v

j
ot, v

j
md, v

j
in, v

k
ot, v

k
md, v

k
in . . . , . . .

This is so because any other order will make two vertices consecutive which do not have an
edge between them. Now If we merge these three versions of each vertex into one vertex, we
get a directed Hamiltonian cycle in G.
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11.5 TSP is NP-Complete

Theorem 59. TSP is NP-Complete

Proof. We will reduce the Hamiltonian-Cycle(G) problem to the TSP(G, k), since we have
proved that Hamiltonian-Cycle(G) is NP-Complete.

The reduction is quite straightforward, since the only difference in TSP(G, k) problem is that
the input graph is weighted and we need the number k. Let G = (V,E) be an instance of the
Hamiltonian-Cycle(G) problem, with |V | = n. We construct a complete graph G′ on the
vertex V and with weights on edges as follows: For a pair of vertices vi and vj in V (G′)

w(vi, vj) =

{
1 if (vi, vj) ∈ E(G)

2 else
.

Note that G′ is a complete graph, as every pair of distinct vertices have an edge with weight
1 or 2.

Lemma 60. G has a Hamiltonian cycle if and only G′ has a TSP tour of length n.

Proof. If G has a Hamiltonian cycle, then the same cycle exists in G′ and each edge in the
cycle has weight 1 in G′. Thus this tour is of length n.

Similarly, if G′ has a TSP tour of length n, then in that tour since it contains exactly n edges,
there cannot be any edge with weight 2. The edges corresponding to those in the tour gives a
Hamiltonian cycle in G.
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TSP tour in G′ of length 5
shown in blue

1

1

1

1

1
1

1

2

2

No TSP tour of length 5 in G′

1

1

1
1

1

2

2

2

2

Hamiltonian cycle in G
shown in blue

No Hamiltonian cycle in G

The reduction is clear now and is clearly a polynomial time reduction.

11.6 Subset-Sum is NP-Complete

Theorem 61. Subset-Sum is NP-Complete

Proof. Recall the subset problem, given a set U = {a1, a2, . . . , an} of integers, a weight function
w : U → Z+, and a positive integer C. The Subset-Sum(U,w,C) asks “is there a subset S ⊂ U
such that

∑
ai∈S

wi = C?”

Note that the inputs w and C are input with their binary (base 2) encodings. If they were
encoded in unary, then the dynamic programming based solution we discussed is a polynomial
time algorithm (in the size of the input) and that will make Subset-Sum to be in P.

Again it is easy to see that Subset-Sum ∈ NP. To show that it is NP-Hard we will reduce
the 3-SAT(f) problem to it. i.e. we will prove that 3-SAT(f) ≤p Subset-Sum(·, ·, ·)
Given an instance of the 3-SAT(f) problem - a 3-cnf formula f - we will construct an instance
[U,w,C] of the Subset-Sum problem, such that f is satisfiable if and only Subset-Sum(U,w,C) =
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Yes.

Suppose f has n variables and m clauses. We will make a Subset-Sum instance with |U | =
2n+ 2m weight of each objects will be a n+m-digits long integer (decimal).

For each of the 2n literals the n + m-digits number will have a coordinate corresponding to
each of the n variables and one coordinate corresponding to each of the m clauses. The literal
xi and xi will have 1 at the digit corresponding to the variable xi. The digit corresponding to
clause Cj will be 1 if and only the literal appears in clause Cj . See the following diagram.

x1 x2 x3 xn−1 xn C1 C2 C3 Cm−1 Cm

x1

x1

x2

x3

C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3), C3 = (x1 ∨ x2 ∨ x3)

x2

x3

...
...

...
...

. . . . . .

1 . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

1

1

1

1

1

1 1

1

1 1 1

1

1

1

Cm−1 = (x2 ∨ x8 ∨ x9), Cm = (x2 ∨ x3 ∨ x5)

1

1

1

These are 2n objects or weights. The remaining 2m weights are given as follows. In all of
them the first n digits are 0, for each column corresponding to clause Ci we choose two distinct
weights and make the corresponding digits equal to 1. See the diagram
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x1 x2 x3 xn−1 xn C1 C2 C3 Cm−1 Cm

x1

x1

x2

x3

x2

x3

...
...

...
...

. . . . . .

1 . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

1

1

1

1

1

1 1

1

1 1 1

1

1

1

1

1

1

xn . . . . . .

xn . . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

...
...

...

1

1

1

1

1

1

Notice that if we consider these weights stacked on top of each other as a table, the first n
columns of this table add up to 2 while the last n columns add up to 5 (assuming the formula
is a strict 3-cnf formula, i.e. all clauses have exactly 3 literals.)

Let C be the number

n︷ ︸︸ ︷
111 . . . , 11

m︷ ︸︸ ︷
333 . . . 33

Lemma 62. The instance of the Subset-Sum problem with 2n + 2m objects and weights in

decimal as shown above has a subset that sums to C =

n︷ ︸︸ ︷
111 . . . , 11

m︷ ︸︸ ︷
333 . . . 33 if and only if the

given formula f is satisfiable.
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Proof. If f is satisfiable, select the objects corresponding to the literals that are true in the
satisfying assignment. We know that the satisfying assignment must have at least one literal
true in each clause. If the satisfying assignment has 1 ≤ k ≤ 3 literals set to true for a clause,
then we select the 3 − k ≤ 2 other objects corresponding to this clause so as for each. The

total weight of select objects is

n︷ ︸︸ ︷
111 . . . , 11

m︷ ︸︸ ︷
333 . . . 33

The other direction: If there is a selection of objects whose total weight is equal to C =
n︷ ︸︸ ︷

111 . . . , 11

m︷ ︸︸ ︷
333 . . . 33, then it must select exactly one object out of the two corresponding to

each variable xi, hence we get an assignment by setting the selected literals equal to true.
This assignment is satisfying, as this object selection must select 3 rows so that the digits sum
corresponding to each clause is 3. This can happen only, if at least one literal in each clause is
selected, as the slack objects can only make the column sum equal to 2

11.7 PARTITION is NP-Complete

Theorem 63. Partition(U, k) is NP-Complete

Again first convince yourself, that the Partition(U, k) problem is in NP.

The following lemma prove it NP-Hard.

Lemma 64. Subset-Sum(U,w,C) ≤p Partition(U, k)

Proof. Let U = {a1, . . . , an} with w : U → Z+ and C ∈ Z+ be an instance of the Subset-Sum
problem. We will make an instance of the partition problem as follows:

Let U ′ = {w(a1), w(a2), . . . , w(an), wn+1, wn+2}, where wn+1 = 2

[
n∑

i=1
w(ai)

]
− C and wn+2 =[

n∑
i=1

w(ai)

]
+ C.

We claim that Subset-Sum(U,w,C) = Yes if and only if Partition(U ′,0) = Yes (i.e. there
is a balanced bipartition of U ′)

Note that the sum of numbers in U ′ is∑
x∈U ′

x =
∑
ai∈U

w(ai) + 2

[
n∑

i=1

w(ai)

]
− C︸ ︷︷ ︸

wn+1

+

[
n∑

i=1

w(ai)

]
+ C︸ ︷︷ ︸

wn+2

= 4
∑
ai∈U

w(ai)

If there is a balanced bipartition of U ′ into P1 and P2, then
∑

x∈P1

x =
∑

x∈P2

x = 2
∑

ai∈U
wi. This

implies that both wn+1 and wn+2 cannot be in the same part, because wn+1 + wn+2 = 3
∑

ai∈U
.
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WLOG assume that wn+1 ∈ P1 and wn+2 ∈ P2. It is also clear that both P1 and P2 cannot
contain only one element. By definition, we get that∑

x∈P1\{wn+1}

= C

Therefore, there exists a subset of elements of U with their sum equal to C.

P1 P2

wn+1 = 2
∑

iwi − C C
∑

iwi − Cwn+2 =
∑

iwi + C

Similarly, if there is an subset of objects in U such that their total weight is equal to C, then
adding wn+1 to that subset and keeping all the remaining weights in another set plus wn+2 we
get a balanced bipartition of U ′.

12 Genres of Problems and other applied Hard Problems

Six basic genres of NP-complete problems and paradigmatic examples.

� Packing problems: Set-Packing, Independent-Set

� Covering problems: Set-Cover, Vertex-Cover

� Constraint satisfaction problems: SAT, 3-SAT

� Sequencing problems: Hamiltonian-Cycle, TSP

� Numerical problems: Subset-Sum, Knapsack, Partition

� Partitioning problems: 3d-Matching 3-Coloring (We didn’t do this in lecture slides,
but all books have it, please read it there)

� Number Theory problems: Factor

There are many other hard problems that are very practical and important in different fields.
We list some of them taken from slides for the Kleinberg and Tardos textbook.

� Aerospace engineering: optimal mesh partitioning for finite elements.

� Biology: protein folding.

� Chemical engineering: heat exchanger network synthesis.

� Civil engineering: equilibrium of urban traffic flow.

� Economics: computation of arbitrage in financial markets with friction.
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� Electrical engineering: VLSI layout.

� Environmental engineering: optimal placement of contaminant sensors.

� Financial engineering: find minimum risk portfolio of given return.

� Game theory: find Nash equilibrium that maximizes social welfare.

� Genomics: phylogeny reconstruction.

� Mechanical engineering: structure of turbulence in sheared flows.

� Medicine: reconstructing 3-D shape from biplane angiocardiogram.

� Operations research: optimal resource allocation.

� Physics: partition function of 3-D Ising model in statistical mechanics.

� Politics: Shapley-Shubik voting power.

� Popular culture: Minesweeper consistency.

� Statistics: optimal experimental design.
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