
Algorithms

Lecture : Asymptotic Analysis

Imdad ullah Khan

Contents

1 Algorithms Runtime Analysis 2
1.1 Runtime as a function of input size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Best/worst/average Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Growth of runtime as size of input . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Asymptotic Analysis of functions 3
2.1 Asymptotic Upper Bounds - Big O Notation . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Rules for functions simplification . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Justification of these rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 More Examples and finding the right constants . . . . . . . . . . . . . . . . . 6

3 Asymptotic-Complexity Classes 7
3.1 Growth Rates of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Big Oh: Why does it make sense? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 The curse of Exponential time 10
4.1 Fibonacci Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Find nth Fibonacci Number Fn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Find Fn: The curse of Exponential time . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.4 Find Fn : A polynomial Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.5 Sloppy Runtime Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Asymptotic Lower Bounds - Big Ω Notation 12
5.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Asymptotic Tight Bounds - Big Θ Notation 12
6.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

7 Little Oh - o Notation 13
7.0.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

8 Little omega - ω Notation 13
8.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1



9 Properties of Asymptotic Growth Rates 14
9.1 Transitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.2 Additivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.3 Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.4 Transport Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
9.5 Reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1 Algorithms Runtime Analysis

Recall the following from last session.

1.1 Runtime as a function of input size

We want to measure runtime (number of elementary operations) as a function of size of input. Note
that this does not depend on machine , operating system or language. Size of input is usually
number of bits needed to encode the input instance, can be length of an array, number of nodes
in a graph etc. It is important to decide which operations are counted as elementary, so keep this
in mind while computing complexity of any algorithm. There is an underlying assumption that all
elementary operation takes a constant amount of time.

1.2 Best/worst/average Case

For a fixed input size there could be different runtime depending on the actual instance. As we
saw in the parity test of an integer. We are generally interested in the worst case behavior of an
algorithm

Let T (I) be time, algorithm takes on an instance I. The best case running time is defined to
be the minimum value of T (I) over all instances of the same size n.

Best case runtime:
tbest(n) = minI:|I|=n{T (I)}

Worst case runtime:
tworst(n) = maxI:|I|=n{T (I)}

Average case:
tav(n) = AverageI:|I|=n{T (I)}

1.3 Growth of runtime as size of input

Apart from (generally) considering only the worst case runtime function of an algorithm. We more
importantly, are interesting in

1. Runtime of an algorithm on large input sizes

2. Knowing how the growth of runtime with increasing input sizes. For example we want to
know how the runtime changes when input size is doubled?

2



2 Asymptotic Analysis of functions

Asymptotic analysis consider growth of functions on large inputs. The asymptotic behavior of
a function f(n) refers to the growth of f(n) as n gets large. We use to measure or compare
performances of algorithms when applied on inputs of “very” large size. As noted above we need
to compare two functions (e.g. compare the efficiency of two algorithms), asymptotic analysis of
functions enables us to compare functions. For the following definitions we assume that all functions
are real valued functions on the domain R.

2.1 Asymptotic Upper Bounds - Big O Notation

Definition 1 (O (Big Oh)). A function g(n) ∈ O(f(n)) if there exists constants c > 0 and n0 ≥ 0
such that

g(n) ≤ cf(n) ∀ n ≥ n0

� This is at attempt to extend the definition of a ≤ b for real numbers to functions.

� Since the behavior of functions change in different ranges of the domain, this says that g(n)
is ‘kind of less than’ f(n) for all values of the domain bigger than the threshold n0.

� ‘kind of less than’ means that it is less than some constant times the f(n) (the constant c).

� Various ways to refer to this are g(n) is asymptotically dominated by f(n), (where the word
asymptotic encapsulates the constants c and n0.

� f(n) is an asymptotic upper bound on g(n).

� We abuse the notation and write g(n) = O(f(n)).

2.1.1 Examples

Let g(n) = 2n2 + 3n + 7 and f(n) = n2. Then g(n) = O(f(n)), i.e. 2n2 + 3n + 7 = O(n2). This
follows by the above definite considering c = 3 and n0 = 5. See also the diagram to see what the
definition means geometrically.

3



3n2

n2

2n2 + 3n + 7

Let g(n) = 3n3 + 5n log n and f(n) = n3, then g(n) = O(f(n)). As c = 4 and n0 = 3 we get
that 3n3 + 5n ≤ cn3 for all n ≥ n0. This is depicted in the following diagram

n3

4n3

3n3 + 5nlog2(n)

2.1.2 Rules for functions simplification

Here are some commonsense rules that help simplify functions by omitting dominated terms and
ignoring coefficients.

1. na dominates nb if a > b : for instance, n2 dominates n. This rule implies for example that
7n4 + 3n3 + 10 = O(n4) and 3n3 + 5n log n = O(n3)

2. Multiplicative constants can be omitted: Again from in the two examples above we ignored
lower order terms because of previous rule this rules says why can we ignore the constants
such as 7 and 3.

4



3. Any exponential dominates any polynomial: 3n dominates n5 (it even dominates 2n).

4. Any polynomial dominates any logarithm: n dominates (log n)3. This also means, for exam-
ple, that n2 dominates n log n. This is actually the previous rule.

2.1.3 Justification of these rules

The following example will make it clear why can we ignore lower order terms. Let g(n) = pn2 +
qn+ r and f(n) = n2. By the above rule we can say that g(n) = O(n2). Indeed, we will show that
this just follows from definition of Big-Oh.

f(n) = pn2 + qn+ r

≤ |p|n2 + |q|n2 + |r|n2

= (|p|+ |q|+ |r|)n2

This is true for all n ≥ 1, hence with c = (|p|+ |q|+ |r|) we get that f(n) = O(n2).
Another way to look at this (particularly in terms of running time of algorithms), is to consider

our goals in analysis of algorithms. Recall that we said we are only interested in runtime of
algorithms on inputs of very large sizes.

Let T (n) = n2 + 10n be the runtime of an algorithm A. By the above rule we declare that
T (n) = O(n2).

Consider an input size of 109 (which is not very big now a days) Then on one hand T (n) =
n2 + 100n = 1018 + 1011. While n2 = 1018. The fractional error we get by ignoring 100n term is given by
1011

1018 = 10−7. So for n = 109, T (n) = n2 + 10n is only 0.00001% more than n2 (which is essentially our
estimate).

There are a couple of reasons for ignoring the coefficients of even the dominating term

� First of all usually the coefficients in the running time aren’t that big. (When the coefficients are
really big, they are taken into account)

� Secondly getting an exact number for the coefficient is not that simple. Since the elementary operations
(the units) for different algorithms can be different. And we don’t know the relative times taken for
these different operations.

� The coefficients really don’t matter when we’re considering how scalable an algorithm is. That is, an
algorithm that takes ck time on an input of size k will take twice as much time on an input size of 2k
regardless of the value of c. We elaborate on this point more, since we stated that this as our goal, we
want to know how the function behaves with increasing input size.

Let runtime function be Linear e.g. f(n) = 5n. Then running time with increasing input sizes are
given as:

input size runtime f(n) = 5n
n 5n
2n 2(5n)
3n 3(5n)
4n 4(5n)

We can see that running time grow quadratically with no effect from the coefficient 7. To see another
example, let runtime function be Quadratic e.g. f(n) = 7n2. Then running time with increasing input
sizes are given as:

5



input size runtime f(n) = 7n2

n 7n2

2n 4(7n2)
3n 9(7n2)
4n 16(7n2)

We can see that running time grow quadratically with no effect from the coefficient 7.
To see another example, let runtime function be Cubic e.g. f(n) = 2n3. Then running time with

increasing input sizes are given as:

input size runtime f(n) = 2n3

n 2n3

2n 8(2n3)
3n 27(2n3)
4n 64(2n3)

We can again see that there is no effect from the coefficient of n3.

2.1.4 More Examples and finding the right constants

1. Let say g(n) = 7n+ 4 and f(n) = n, we show that g(n) ∈ O(f(n)), i.e. 7n+ 4 ∈ O(n).

Well take c = 8 and n0 = 4, we see that 7n + 4 ≤ 8(n) whenever n0 ≥ 4, hence we proved that
7n+ 4 ∈ O(n).

With practice we would be able to guess the values of c and n0 (we will also learn some rules of thumb),
but one way to derive such these constants is as follows.

We want that 7n+4 ≤ cn, we solve this thing for c, we get that c ≥ 7n
n + 4

n . When n is large 8 ≥ 7+ 4
n ,

actually for any n ≥ 4 this works. One can also see from the fact that limn→∞
7n+4

n → 7, but this
(c = 7) would require n0 to be approaching ∞, so we take c = 8. Now how to get n0? Well we want
7n+ 4 ≥ 8n, this is true whenever n ≥ 4.

2. Let f(n) = 6n+ 24 and h(n) = n2, we will show that f(n) ∈ O(h(n))

Again since limn→∞
6n+24

n2 → 0, so basically any c ≥ 0 will work, lets choose c = 1. We want to
6n+ 24 ≤ 1 · n2, which is true whenever n ≥ 10. So we choose c = 1 and n0 = 10, and we are done.

3. Let f(n) = 32 log n and g(n) =
√
n

10 , we will show that f(n) ∈ O(g(n)).

Lets choose c = 10, we want 32 log n ≤ 10 ·
√
n

10 =⇒ 32 log n ≤
√
n. Now generally, I would have

guessed from the plots of log n and
√
n, but to get some idea to get n0, we can proceed as follows.

We want 8 log n ≤
√
n =⇒

√
n

logn ≥ 8

Taking logarithms on both sides we get log
( √

n
logn

)
≥ log(8) =⇒ 1

2 log n − log log n ≥ 3. Now since

‘we know that log log n is much smaller than log n’ (you don’t have to think recursively, just take a
few examples). Instead of proving 1

2 log n − log log n ≥ 3 we prove something stronger, 1
4 log n ≥ 3,

which is true whenever n ≥ 212 = 4096.

4. This one is a generic example. Let g(n) be any polynomial of degree k and let f(n) = nk, we will
show that g(n) ∈ O(f(n)).

Let g(n) = akn
k + ak−1n

k + . . .+ a1n+ a0. Since

6



n = 4

8n

7n + 4

Figure 1: Example 1

akn
k + ak−1n

k−1 + . . .+ a1n+ a0 ≤ |ak|nk + |ak−1|nk + . . .+ |a1|n+ |a0|
≤ |ak|nk + |ak−1|nk + . . .+ |a1|nk + |a0|nk

≤ (|ak|+ |ak−1 + . . .+ |a1|+ |a0|)nk

Take c = (|ak|+ |ak−1 + . . .+ |a1|+ |a0|) and n0 = 1. Actually c = max{|ak|, |ak−1, . . . , |a1|, |a0|}
would work too but we are not required to find the best (optimal) constants, just any constants.

5. Let f(n) = 3n2 + 4n+ 5 and g(n) = n, we will show that f(n) /∈ O(g(n)).

Assume for contradiction that 3n2 + 4n+ 5 ∈ O(n), then there must be constants c and n0 such that
3n2 + 4n + 5 ≤ cn ∀n ≥ n0. Since n is positive this implies that 3n2 ≤ cn which gives us that
c ≥ 3n, but the claim was that c is a constant (independent of n). Here c depends on n, hence we get
a contradiction.

3 Asymptotic-Complexity Classes

There are complexity classes of functions that usually occur in algorithm analysis. We have seen polynomials
in the previous examples e.g., 3n2 + 4n+ 5.

7



6n + 24 n2 n = 10

Figure 2: Example 2

Table 1: The most common classes of asymptotic complexity

Class Name Class Symbol Example

Constant O(1) Comparison of two integers

Logarithmic O(log(n)) Binary Search, Exponentiation

Linear O(n) Linear Search

Log-Linear On(log(n)) Merge Sort

Quadratic O(n2) Integer multiplications

Cubic O(n3) Matrix multiplication

Polynomial O(na), a ∈ R

Exponential O(an), a ∈ R Print all subsets

Factorial O(n!) Print all permutations

The functions grow faster from right to left i.e.

n!≫ 2n ≫ n3 ≫ n2 ≫ nlogn≫ n≫ logn≫ 1

Here a≫ b means that a is much larger than b.

8



10n n3

n2

2nlog2n

n

2log2n

3.1 Growth Rates of Functions

3.2 Big Oh: Why does it make sense?

Table 2: The running time of algorithms of different complexity levels for varying input size, on a
computer executing one instruction per nanosecond (i.e. a computer with speed 1GHz). Assume
that each runtime step takes 1ns.

n O(log n) O(n) O(n log n) O(n2) O(2n) O(n!)

10 0.003µs 0.01µs 0.033µs 0.1µs 1µs 3.63ms

20 0.004µs 0.02µs 0.086µs 0.4µs 1ms 77.1 years

30 0.005µs 0.03µs 0.147µs 0.9µs 1sec 8.4× 1015 years

40 0.005µs 0.04µs 0.213µs 1.6µs 18.3min very long

50 0.006µs 0.05µs 0.282µs 2.5µs 13 days very long

100 0.007µs 0.10µs 0.644µs 10µs 413 years very long

1000 0.010µs 1.00µs 9.966µs 1ms very long very long

10, 000 0.013µs 10µs 130µs 100ms very long very long

100, 000 0.017µs 0.10ms 1.67ms 10sec very long very long

1, 000, 000 0.020µs 1ms 19.93ms 16.7min very long very long

10, 000, 000 0.023µs 0.01sec 0.23sec 1.16 days very long very long

100, 000, 000 0.027µs 0.10sec 2.66sec 115.7 days very long very long

1, 000, 000, 000 0.030µs 1sec 29.90sec 31.7 years very long very long

9



4 The curse of Exponential time

4.1 Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 if n > 2

4.2 Find nth Fibonacci Number Fn

Implementation the recursive definition of Fn

Algorithm 1 :Recursive Fibonacci Number Computation

function fib1(n)
if n = 0 then

return 0
else if n = 1 then

return 1
else

return fib1(n− 1) + fib1(n− 2)

� Is it correct?

� How much time it takes to compute Fn?

� Can we do better?

Let T (n) be the number of operations on input n

T (n) =


1 if n = 0

2 if n = 1

T (n− 1) + T (n− 2) + 3 if n > 2

By definition, we have T (n) > Fn

Bad news: The running time of the algorithm grows as fast as Fn.Fn ≥ 2
n
2 exponential in n (prove

by Induction)

4.3 Find Fn: The curse of Exponential time
T (n) > Fn ≥ 2

n
2

� n = 300. Computing F300 takes (much) more than 2150 ops

� 64THz computer (64 trillions operations per second)

� needs 2104s > 1027h > 1023 years

� Computer speeds have been doubling roughly every 18 months.

� the running time of fib1(n) is proportional to 20.694n ≈ (1.6)n, so it takes 1.6 times longer to compute
Fn+1 than Fn.

10



� Under Moore’s law, computers get roughly 1.6 times faster each year. So if we can compute F100 with
this year’s technology, then next year we will manage F101. And the year after, F102. And so on: just
one more Fibonacci number every year! Such is the curse of exponential time.

How can we improve it?

4.4 Find Fn : A polynomial Algorithm

We saw that the recursive method for calculating a Fibonacci number has exponential runtime. Recursively
calculating Fibonacci number takes exponential time. Recursion tree for n = 6 is shown below.

F (5)

F (1)

F (2)

F (3)

F (0)

F (1)

F (1)

F (2)

F (3)

F (4)

F (0)

F (1) F (1)

F (2)

F (0) F (1)

F (2)

F (3)

F (4)

F (0)

F (1) F (1)

F (2)

F (0)

F (6)

Algorithm 2 Iterative Fibonacci Number Computation with Bottom-up Approach

function fib2(n)
for i = 1 to n do ▷ Initially F [i]’s are unknown

F [i]←∞
F [0]← 0, F [1]← 1
for i = 2 to n do

F [i]← F [i− 1] + F [i− 2]

return F [n]

� Correct by definition of Fn

� Runtime is n-1 additions

� Reasonable to compute F200 or even F200,000

4.5 Sloppy Runtime Analysis

� Useful Simplification: Count the number of basic operations assuming them taking a constant
amount of time

� Is it Practical? looking back at Fibonacci algorithms

� It is reasonable to treat one word additions as a single computer step (32 bits or 64 bits)

11



� The nth Fibonacci number is about 0.694n bits long, F1000 is 694 bits long

� Such a more honest and careful analysis yields that computing Fn takes about cn2 bits additions

� Moral of the story is : We have to be careful in declaring and selecting elementary operations

5 Asymptotic Lower Bounds - Big Ω Notation

Definition 2 (Ω (Big Omega)). A function g(n) ∈ Ω(f(n)) if there exists constants c > 0 and n0 ≥ 0 such
that

g(n) ≥ cf(n) ∀ n ≥ n0

� Written as: g(n) ∈ Ω(f(n))

� g in this case as being asymptotically lower bounded by f.

� g(n) ∈ O(f(n))⇔ f(n) ∈ Ω(g(n))

� The definition of Ω works just like O(.), except that the function g(n) is bounded from below, rather
than from above.

5.1 Examples

1. 3n2 + 4n+ 5 ∈ Ω(n2)

2. 3n2 + 4n+ 5 ∈ Ω(n)

3. 3n2 + 4n+ 5 ̸= Ω(n3)

4. In general f(n) = pn2 + qn+ r =⇒ f(n) ∈ Ω(n2), where p, q, and r are positive constants.
Establishing the upper bound involved ”inflating” the terms in f(n) until it looked like a constant
times n2.
For lower bound we need to reduce the size of f(n) until it looks like a constant times n2. f(n) =
pn2 + qn + r > pn2 where n ≥ 0 which meets what is required by the definition of f ∈ Ω(n2) with
c = p > 0.

6 Asymptotic Tight Bounds - Big Θ Notation

Definition 3 (Θ (Big Theta)). A function g(n) is Θ(n) iff there exists two positive real constants c1 and c2
and a positive integer n0 such that c1f(n) ≤ g(n) ≤ c2f(n) ∀n > n0.
n0 = max[n1, n2]

� Written as: g(n) ∈ Θ(f(n))

� f in this case as being is an asymptotically tight bound for g.

� g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n))⇔ g(n) ∈ Θ(f(n))

� Θ(g(n)) ∈ O(g(n))
⋂
Ω(g(n))

� Asymptotically tight bounds on worst-case running times are nice things to find, since they characterize
the worst-case performance of an algorithm precisely up to constant factors.

12



6.1 Examples

1. 3n2 + 4n+ 5 ∈ Θ(n2)

2. 3n2 + 4n+ 5 /∈ Θ(n3)

3. 3n2 + 4n+ 5 /∈ Θ(n)

4. f(n) = pn2 + qn + r, f(n) ∈ Ω(n2), and f(n) ∈ O(n2) =⇒ f(n) ∈ Θ(n2), where p, q, and r are
positive constants.

7 Little Oh - o Notation

Definition 4. A function g(n) ∈ o(f(n)) if for every constant c > 0, there exists a constant n0 ≥ 0 such
that

g(n) ≤ cf(n) ∀ n ≥ n0

� Written as: g(n) ∈ o(f(n))

� This is used to show that g grows much much slower than f .

� f(n) ∈ o(g(n))⇔ (f(n) ∈ O(g(n)) ∧ f(n) /∈ Θ(g(n)))

� An equivalent formulation (when f(n) is non-zero) is given as

lim
n→∞

g(n)

f(n)
= 0

7.0.1 Examples

1. 3n2 + 4n+ 5 /∈ o(n2)

2. 3n2 + 4n+ 5 ∈ o(n3)

3. 3n2 + 4n+ 5 /∈ o(n)

8 Little omega - ω Notation

Definition 5. A function g(n) ∈ ω((f(n)) if for every constant c > 0, there exists constant n0 ≥ 0 such that

g(n) ≥ cf(n) ∀ n ≥ n0

� Written as: g(n) ∈ ω(f(n))

� In this case f grows much faster than g.

� f(n) ∈ ω(g(n))⇔ (f(n) ∈ Ω(g(n)) ∧ f(n) /∈ Θ(g(n)))

8.1 Examples

1. 3n2 + 4n+ 5 /∈ ω(n2)

2. 3n2 + 4n+ 5 ∈ ω(n)

3. 3n2 + 4n+ 5 /∈ ω(n3)

13



9 Properties of Asymptotic Growth Rates

9.1 Transitivity

1. If f ∈ O(g) and g ∈ O(h), then f ∈ O(h)

2. If f ∈ Ω(g) and g ∈ Ω(h), then f ∈ Ω(h)

3. if f ∈ Θ(g) and g ∈ Θ(h), then f ∈ Θ(h)

9.2 Additivity

1. If f ∈ O(h) and g ∈ O(h), then f + g ∈ O(h)

� More generally, if k is a fixed constant and f1, f2...fk and h are functions such that fi ∈ O(h)
for all i. Then f1 + f2...+ fk ∈ O(h)

9.3 Symmetry

1. If f ∈ Θ(g) then g ∈ Θ(h)

9.4 Transport Symmetry

1. If g ∈ Ω(f) then f ∈ O(g)

9.5 Reflexivity

1. f ∈ O(f)

2. f ∈ Ω(f)

3. f ∈ Θ(f)

14


	Algorithms Runtime Analysis
	Runtime as a function of input size
	Best/worst/average Case
	Growth of runtime as size of input

	Asymptotic Analysis of functions
	Asymptotic Upper Bounds - Big O Notation
	Examples
	Rules for functions simplification
	Justification of these rules
	More Examples and finding the right constants


	Asymptotic-Complexity Classes
	Growth Rates of Functions
	Big Oh: Why does it make sense?

	The curse of Exponential time
	Fibonacci Sequence
	Find nth Fibonacci Number Fn
	Find Fn: The curse of Exponential time
	Find Fn : A polynomial Algorithm
	Sloppy Runtime Analysis

	Asymptotic Lower Bounds - Big  Notation
	Examples

	Asymptotic Tight Bounds - Big  Notation
	Examples

	Little Oh - o Notation
	Examples

	Little omega -  Notation
	Examples

	Properties of Asymptotic Growth Rates
	Transitivity
	Additivity
	Symmetry
	Transport Symmetry
	Reflexivity


