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Influence in Social Networks

Imdad ullah Khan (LUMS) Social Influence 2 / 118



Social Network Influence

Social network influence is the process by which individuals or entities affect the
behaviors, opinions, or actions of others within a network.

Influence can be direct or indirect, where the influence spreads through
connections or ”ties” between people or nodes

Two important phenomena in Sociology

Social Selection: Individual’s attributes drive the interaction with others

Social Influence: Interactions among people shape people’s attributes

Nodes characteristics and network structure are highly interlinked

Time 1 Time 2

Social Selection

Time 1 Time 2

Social Influence
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Importance of Social Network Influence

Social network influence plays a crucial role in various domains. Understanding
the mechanics of influence can help in optimizing strategies for widespread
adoption of ideas, products, or behaviors.

Influence is both a social and algorithmic phenomenon, involving key concepts
like centrality and content virality

Marketing Campaigns: Influential users can amplify companies’ products

Political Movements: Influential political leaders use social networks to sway
opinions mobilize support, and encourage people to participate in events,
protests, or movements

Health Information Spread: Public health officials leverage influencers to
spread health tips or warning messages (e.g., vaccination campaigns)

Content dissemination: Influencers (celebrities or thought leaders) help the
spread of information/misinformation

Behavioral Change: Users tend to mimic influencers’ behaviors. Product
promoted by an influencer may prompt their followers adoption
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Influence Diffusion Process

The study of influence in social networks focuses on how individuals, groups, or
organizations affect each other’s behavior, opinions, or decisions

Influence can spread across various connections in a network, often driven by
social interactions, peer pressure, or other factors

Understanding influence diffusion process in social networks helps us answer
important questions about the spread of information, behaviors, and beliefs

Predict the spread of behaviors: Understand how behaviors like voting, disease, or
adoption of new technologies spread.

Optimize marketing strategies: By understanding how influence spreads,
companies can target the right individuals to promote products

Maximize influence: Determine which individuals (seed nodes) to target to
maximize the spread of influence in a network

Prevent the spread of misinformation: Influence models help identify key nodes
that could prevent the rapid spread of rumors or false information.

Understand social dynamics: These models help explain how behaviors or opinions
change and spread within communities.
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Key Questions We Want to Answer with Influence Diffusion Models

Influence diffusion models help answer key questions:

How can we maximize influence in a network?

Which individuals in a network are most influential?

How does influence dissipate over time and distance in a network?

How can we prevent the spread of negative or harmful information?

What are the effects of network structure on the diffusion of influence?

These questions are crucial for both business applications and social science
research

Imdad ullah Khan (LUMS) Social Influence 6 / 118



Where Do These Models Fit in Social Network Analysis?

Network Dynamics: These models show how networks evolve over time as
influence spreads among nodes

Community Behavior: Influence models help explain how communities form,
interact, and influence each other

Resource Allocation: These models are applied in scenarios where resources
need to be spread across a network (e.g., information, vaccines, marketing
content)

Opinion Formation: Understanding how individuals’ opinions evolve based
on their interactions with neighbors in the network

By studying these models, researchers can predict outcomes and design better
interventions for social and organizational networks
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Traditional Media Influence vs. Social Media Influence

Traditional Media Influence:

Centralized Control on content
distribution in traditional media
(TV, radio, newspapers)

Top-Down Communication from
media outlets to audience

Gatekeeping: Editors and producers
control, filter and censor content
via editorial policies– credible

Mass Reach but Limited Interaction
between content producer and
(generally) large audience

Slow Speed of Information
Dissemination

Social Media Influence:

Decentralized Communication:
Users generate and share content
freely, reducing the control of
gatekeepers, variable credibility

Two-Way Communication between
content creators and consumers,
facilitating discussions and
reactions in real-time

Viral Potential of information on
social media through shares,
reposts, likes, and retweets

Rapid Spread of User-Generated
Content via engagement
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Influence Analysis Problems

In social network analysis, there are two main types of influence problems: the
analysis problem and the synthesis problem. These two areas help us understand
both the measurement and application of influence in networks.

Analysis Problem: How do we measure or quantify the influence within a
network?

Synthesis Problem: How can we use the knowledge of influence to actively
influence or control the network?

Key questions in Social Network Influence:

How do we quantify influence in social networks?

What are the mathematical models used to understand influence?

How does network structure affect the spread of influence?
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Analysis Problem: Measuring Influence

The analysis problem focuses on measuring influence in a network. Some
common ways to approach this problem include:

Node Centrality: Identifying which nodes are the most influential in the
network

Link Strength: Measuring the importance of the connections between nodes

Diffusion Patterns: Analyzing how information or behaviors spread through
the network

Key tools for measuring influence:

Graph Theory: Used to model networks and quantify influence using various
centrality measures

Statistical Models: Used for understanding patterns of influence over time
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Synthesis Problem: Leveraging Influence

The synthesis problem involves using the understanding of influence to actively
control or influence a network

Key aspects of this problem include:

Targeted Influence: Choosing which nodes to influence in order to maximize
the spread of information or behavior

Influence Maximization: Identifying the optimal set of nodes to influence in
a given budget or time constraint

Viral Marketing: Using influential nodes to initiate a viral spread of content

Approaches to solving the synthesis problem:

Optimization Algorithms: Used to maximize influence over a network with
limited resources

Heuristic Methods: Approaches based on empirical observations and trial
strategies
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Theory vs. Practice in Influence Models

There is a significant gap between the theoretical models of influence and their
practical implementation in real-world networks

Mathematical models provide a framework for understanding the spread of
influence, their direct application often requires simplifications, approximations,
and empirical adjustments

Key challenges in bridging theory and practice:

Complex Network Structures: Real-world networks often have complex and
dynamic structures that theoretical models may not fully capture

Data Limitations: Access to complete data on network topologies and user
behaviors is often limited, making real-world modeling difficult

Dynamic Behavior: Users in social networks often change behaviors over
time, which is difficult to model with static theories

Despite these challenges, the principles behind influence models are widely used
in practice, particularly in marketing and social media campaigns
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Topology-Based Static Influence Modeling
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Topology-Dependent Static Influence Models

Topology-dependent influence models analyze how the structure (or topology) of
a network affects the spread of influence across it

The nodes and edges of the network, and their arrangement, play a key role in
determining how information, behaviors, or trends propagate

Key Idea: Influence in a network is determined not only by individual nodes but
also by the overall network structure, such as the presence of hubs, bridges, and
community clusters

Social media platforms, biological networks, and communication networks use
these models to understand how the shape of the network influences behaviors
like information diffusion, adoption of technologies, or the spread of epidemics

Static graph metrics (centrality measures) evaluate the influence of nodes based
on the network’s fixed structure

They are useful for evaluating influence in stable, unchanging networks
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Direct Measures: Followers, Retweets, Reposts

Direct metrics are often used in marketing and social media analytics to quantify
influence, although they may not always capture the full scope of a user’s impact

Followers: The number of people following a user on Twitter or Facebook

Influence Through Reach: More followers =⇒ more visibility of content
Authority: Large followings often indicate that a user is seen as an authority
or a trusted source in a specific domain
Engagement vs. Reach: Reach doesn’t necessarily translate to actual
engagement or trust or real influence
Fake Followers: Inflated follower count by buying fake followers
Contextual Influence: Doesn’t account for influence in niche communities

Retweets and Reposts: Frequency of a user’s content being shared by others

Amplification Effect: Higher number of retweets or reposts suggests content
is being amplified by other users, extending the original user’s influence
Network Cascade: A single repost can trigger a cascade where followers of
the reposting user share the content, leading to exponential visibility growth
Virality Potential: Posts that are shared frequently can go viral, allowing the
content to reach audiences far beyond the original user’s direct followers

Mentions: How often a user’s content is referenced or discussed by others
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Node Centrality in Networks as Influence Measures

Node centrality (aka prestige in digraphs (Twitter/Web)) - structural importance
of a user in a network as a proxy for potential influence

Importance (functional) role of network players is often related to their
(structural) position in the network

It can significantly differ from presumption about importance e.g. fathers,
mothers, executives, teachers, ...

Centrality analytics undertakes quantitative social network analysis to
determine types of actors and find key players

Structural and functional (dynamic) importance in essence are f : V 7→ R

Can be used to identify influential actors

Robustness and vulnerability of network

Determine exposure of nodes to disease or their role in immunization

Study of spread and countering epidemic
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Node Centrality in Networks as Influence Measures

Degree centrality: How many nodes can this node reach directly?

Cd(v) := deg(v)

In a digraph we often use in-degree

In Twitter or Web graph amounts to nodes popularity or influence

Useful to determine important nodes for spreading information and
influencing others in their immediate neighborhood
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Node Centrality in Networks as Influence Measures

Closeness centrality: How fast can this node reach other nodes?

Cclose(v) :=
1∑

u d(v , u)
or Cclose(v) :=

|V |∑
u d(v , u)

Assuming communication happens via shortest paths only, high closeness
centrality nodes can reach other nodes the easiest- A measure of reach

To compare graph of varying orders one usually normalize
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Node Centrality in Networks as Influence Measures

Betweenness centrality: likelihood of node to be on communication path

Cbw (v) :=
∑
s,t ̸=v

λst(v)

λst

λst(v): Number of shortest path between s and t via v

λst : Number of shortest path between s and t

Assuming communication happens via shortest paths only, high betweenness
centrality nodes are critical for information flow
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Node Centrality in Networks as Influence Measures

Eigenvector centrality: the node’s connectivity to “well-connected” nodes?

Proportional to sum of eigencentralities of neighbors

c(v) :=
1

λ

∑
u∈N(v)

c(u)

λ is a constant ▷ leading eigen value

Computed as Ac = λc ▷ A is the adjacency matrix
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Node Centrality in Networks as Influence Measures

Pagerank centrality: the node’s connectivity to “well-connected” nodes?

Proportional to weighted sum of pagerank of out-neighbors

c(v) := α
∑

u∈N−(v)

c(u)

deg+(u)
+

1− α

|V |

α is the damping factor

Probability of a random walker to visit the node
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Node Centrality in Networks as Influence Measures

Clustering Coefficient: which nodes in the graph tend to cluster together

C (v) =
|E (G [N(v)])|(

d(v)
2

)
E (G [N(v)]) is edges in graph induced by N(v)

number of triangles around a node v (friendships b/w v ’s friends)

Closely related to transitivity of a graph - ratio of observed number of closed
triangles/triplets and max possible number of closed triplets
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Node Centrality in Networks as Influence Measures

source: D. Petrov, Y. Dodonova, A. Shestakov (2015)

degree centrality closeness centrality

betweenness centrality eigenvector centrality
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Caveats about Centrailities

No single “right” centrality measure, each gives a different perspective

Each centrality measure is a proxy of an underlying network process

Unrealistic or irrelevant process lead to unrealistic centrality

Centrality is used as graph EDA to gain insights about structure

“Enhanced metrics” exist for graphs with more “features” (e.g. directed,
weighted edges)

Notion of centralities can be extended to edges

Identifying sets of key players

Importance of individual nodes may not reveal much

node 10 is most central, but node 3 and
5 together are more critical for network
connectivity (the edge (3, 5) is a bridge)
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Medici Family’s Influence in Renaissance Florence

It illustrates the
relationships between
different families in
Renaissance Florence, with
nodes representing
individual families and edges
representing marriages
between them

The families represented here were part of the political and economic elite of
Florence, and their intermarriages helped consolidate power and influence. The
Medici family, for example, used strategic marriages to build and maintain their
power, which can be seen through their central position in the network.
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Medici Family’s Influence in Renaissance Florence

The Medici family had the highest degree centrality, meaning they had the
most direct connections

Their strategic position as intermediaries between influential families gave
them high betweenness centrality

The Medici’s proximity to other powerful families gave them significant
closeness centrality
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Limitations of Static Influence Models

While static models are useful for understanding influence at a single point in
time, they have several limitations:

Time Invariance: Static models do not capture changes over time. Influence
can fluctuate as network structures evolve, making static metrics less useful
for dynamic networks

Over-simplification: Real-world networks often experience frequent changes,
such as the creation and dissolution of connections. Static models ignore
these temporal aspects

Missed Cascades: Influence that spreads slowly over time, such as long-term
adoption of ideas or technologies, might not be fully captured in a static
analysis

For instance, in social media, influencers’ roles evolve as user activity changes.
Static metrics, while useful for a snapshot, may not capture long-term trends in
influence propagation
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Strong and Weak Ties in Networks
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Critical Links in Information Flow

Identifying critical links in network helps in improving network and analyze the
information flow in a network

Bridging Communities: Links with high importance often connect different
communities or clusters in a network. Removing such links can lead to the
fragmentation of the network

Information Flow: In communication networks, high betweenness links
control the flow of information between different regions of the network.
They are often bottlenecks or points of vulnerability

In transportation networks, bridges or roads with high link betweenness are
critical for connecting different regions. Disrupting these links can
significantly affect the overall connectivity of the system
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Link Betweenness

Link Betweenness: A measure of the importance of an edge based on how often it
lies on the shortest paths between pairs of nodes

The betweenness centrality of a link e is the sum of the fraction of all-pairs
shortest paths that pass through e

CB(e) =
∑
s ̸=t

σst(e)

σst

Where σst is the total number of shortest paths from node s to node t, and
σst(e) is the number of those paths that pass through link e

Critical Links: High betweenness edges are critical for maintaining the flow of
information in the network and bridging different communities

Bridges: An edge (i , j) is a local bridge if i and j have no common neighbors
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Weak vs. Strong Ties in Networks

In many networks all edges are not the same

Strong Ties: Close-knit relationships with frequent communication,
emotional intensity, and dense connections (e.g., family, close friends)

Weak Ties: More distant relationships with infrequent communication, lower
emotional intensity, and greater potential to connect different social groups

Both types of ties are essential for the overall functioning of social networks:
strong ties ensure local cohesion, and weak ties extend the reach of
information. In biological networks, tie strength can be based on biochemical
interaction, in computer networks, it can be based on link bandwidth

Structure of human egocentric social networks

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0446source: towardsdatascience.com

Number of people in each circle
increases, but contact frequency
contact and closeness declines

The outermost layer (5000) was
identified by face recognition
experiment (Num of faces that can be
recognized as known by sight)
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Strength of Weak Ties

Granovetter’s Experiment: “Most job seekers (study subjects) found jobs through
an acquaintance (weak tie) rather than a close friend (strong tie)”

Strong Ties for Cohesion: Information at end-points of a strong tie is nearly
identical ▷ frequent synchronization

Weak Ties for Information Diffusion: weak tie could help communication of
novel information ▷ rare synchronization

Role in Career Networking: Acquaintance can more likely inform of “new”
job opportunities

Some edges that act as bridges between network segments, they are important for
communication and explain the small-world phenomena in many networks

An edge (i , j) is a local bridge if
i and j have no friends in
common

source: Frank Dignum @ Umea University
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Bridges and Weak Ties: Small-World and Information Spread

Bridges: Edges that connect different network segments and play a
significant role in maintaining network connectivity

Small-World Networks: Bridges help explain the small-world phenomenon,
where individuals can be connected in a small number of steps despite the
network being sparse

Granovetter’s Theory: Weak ties as bridges are central to understanding the
small-world property of social networks, where individuals can quickly access
information from different communities

Weak Ties in Information Spread: Granovetter’s theory highlights how weak
ties help spread information across a network by connecting individuals from
different communities

Access to Novel Information: Weak ties provide access to diverse sources of
information, making individuals with many weak ties more influential in
spreading new ideas

Rapid Spread of Trends: Weak ties play a central role in enabling the rapid
spread of trends, innovations, and viral content across a large network
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Dynamics of Influence and Real-World Applications
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Dynamic Influence Models

In most Real-World scenarios graphs are not static, the nodes (including any
attributes associated with them), links and overall topology is constantly
changing and evolving with time - Models need to cater to the evolving networks,
particularly changes in node attributes

Influence diffusion models: These models describe how ideas, behaviors, or
products spread through a network. There has been extensive research in this
area and researchers have come up with several different models

Broad groups of these models based assumptions about how influence operates:

Epidemic-Based Models

SIS Model (Susceptible-Infected-Susceptible)

SIR Model (Susceptible-Infected-Recovered)

Activation-Based Models (Discrete Time)

Independent Cascade (IC) Model

Linear Threshold (LT) Model

Threshold-Cascade (Granovetter’s) Model

Opinion Dynamics Models

DeGroot Model

Voter Model

Game-Theoretic Models

Continuous-Time Diffusion Models

Hawkes Processes
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Viral Marketing vs. Traditional Marketing and Recommendation

Hotmail gained 18M users in 12 months, spending $50K on traditional ads

Gmail rapidly gained users although referrals were the only way to sign up

Google AdSense helps sellers reach buyers with targeted advertising

Customers are becoming less susceptible to mass marketing

Mass marketing is impractical for the huge variety of products online

Over 50% of people do research online before purchasing electronics

Personalized recommendations are based on prior purchase patterns and
ratings

In social networks, users are more influenced by “friends” than by strangers

[Burke 2003]: 68% of consumers consult friends and family before purchasing
home electronics

Viral Marketing (not Viralization/Viral Spreading) successfully utilizes social
networks influence for adoption of some products/services
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Applications of Dynamic Models in Social Media Analysis

Dynamic models are widely used to analyze and predict trends in social media,
where network structures and interactions change rapidly:

Influence Prediction: Dynamic models help predict which users are likely to
become influencers as their connections grow over time

Viral Content: They can effectively capture how content goes viral by
tracking how influence cascades through the network in real-time

Social Movements: Movements like the #MeToo or Black Lives Matter gain
momentum dynamically as more users join the conversation and share
content over time

Brand Promotion: Companies can use appropriate models to track how
advertising campaigns spread through social media, helping to optimize
marketing strategies

Dynamic models provide more accurate and flexible tools for understanding and
harnessing influence in fast-changing environments like social media.
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Social Media Campaigns and Viral Marketing

Social media campaigns leverage the Diffusion of Innovations theory to rapidly
spread content, products, or ideas across a wide audience. In viral marketing, the
goal is to initiate a cascade of influence that reaches the early majority and
beyond

Key factors in viral marketing:

Influential Nodes: Identifying key individuals (early adopters, influencers)
who can trigger widespread adoption

Content Creation: Developing content that is engaging, shareable, and
relevant to the target audience

Timing: Launching campaigns at the right moment, when the audience is
most likely to engage

Viral marketing campaigns exploit social networks to create exponential growth in
awareness and adoption of products or ideas.
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Epidemic-Based Models
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Spread of Influence as an Epidemic

Two paradigms of Epidemiology:

Microscopic: Researchers try to disassemble and neutralize new viruses ⇒
quest for vaccines, treatment, and cure

Macroscopic: Statistical analysis and modeling of epidemiological data in
order to find information and policies aimed at lowering epidemic outbreaks
⇒ macroscopic prophylaxis, containment and vaccination campaigns

Standard Epidemic Modeling: Groups of Subjects

source: Alain Barrat @ Turin, Itlay

Neglecting differences in: age, gender, health, social class/status, susceptibility to
disease, latency, severity of disease, . . .
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Standard Epidemic Modeling

Epidemic models for the spread of “virus”, rumors, innovations, or technologies

Susceptible Infected
Infection rate

In SI, once a node is infected, it stays infected permanently, and the spread
continues until all nodes in the network are infected

Infection rate

Immunity period

Susceptible Infected

SIS is suitable for modeling recurrent influence (no permanent adoption)

Recovery rate

Immunization

Infection rate
RecoveredInfectedSusceptible

In SIR Infected individuals “can recover/are removed” and no longer participate
in the spread, useful for modeling behaviors or trends with a limited lifespan
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Hong Kong Flu Case Study: Modeling with SIR

In 1968-1969, the Hong Kong flu caused a significant epidemic

Approximately 100,000 excess pneumonia and influenza deaths in NY City

Data on weekly excess deaths provides insight into the epidemic dynamics

Assume number of excess deaths in a week was proportional to the number
of new cases of flu in say three weeks earlier

Recovered group include dead, ∵ they can’t contract the disease

Modeling outbreaks helps predict disease spread and control strategies

Week 1 2 3 4 5 6 7 8 9 10 11 12 13
Flu-Related
Deaths

14 28 50 66 156 190 156 108 68 77 33 65 24

source: The PostCALC Project

Material on SIR Modelling is adapted from The
PostCALC Project @ Duke University
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Basic SIR Model Setup

The SIR model divides the population into three compartments:

Susceptible (S): not yet infected,

Infected (I): currently infected,

Recovered (R): recovered or died (immune).

S
βI−→ I

µ−→ R

β = transmission rate

µ = recovery rate

S(t), I (t),R(t) ⇒ number of individuals in each compartment at time t

Population assumed constant: N = S(t) + I (t) + R(t).

s(t) = S(t)
N , i(t) = I (t)

N , r(t) = R(t)
N

Assumption: Homogeneous mixing; every infected individual has b effective
contacts per day, not all with S , a fraction s(t) with people in S

New infections ∝ b × s(t)× I (t) ▷ each infected individual generates bs(t) new
infected individuals per day

Recovery rate: k = fraction of infected recovering per day

No one added to group S , since population is constant (no births/migration)
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Differential Equations Formulation

Susceptible population changes: ds
dt = −bs(t)i(t)

Recovered population changes: dr
dt = ki(t)

Infected population changes:

ds
dt +

di
dt +

dr
dt = 0 =⇒ di

dt = bs(t)i(t)− ki(t)

Initial conditions for the ODE system:

S(0) = 7.9M, I (0) = 10, R(0) = 0 s(0) ≈ 1, i(0) = 1.27× 10−6, r(0) = 0

We need to estimate the value of k and b

Complete ODEs model:

ds/dt = −b s(t) i(t), s(0) = 1,

di/dt = b s(t) i(t)− k i(t), i(0) = 1.27× 10−6,

dr/dt = k i(t), r(0) = 0

b = 1/2

k = 1/3

source: The PostCALC Project

Imdad ullah Khan (LUMS) Social Influence 44 / 118



Numerical Solutions: Euler’s Method

Euler’s method approximates the system discretely:

sn = sn−1 − b sn−1in−1∆t,

in = in−1 + (b sn−1in−1 − k in−1)∆t,

rn = rn−1 + k in−1∆t

To use these formulae, we need explicity values for b, k , s(0), i(0), r(0), and t

∆t is the step size, Smaller ∆t increases accuracy

Simple and effective for simulating epidemic curves

Euler’s method enables numerical simulation when analytic solutions are
unavailable

Numerical results can be compared to real data

Find a step size for which the Euler solutions appear to closely track true
solutions of the system
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Parameter Sensitivity and Data Fitting

Infectious period estimated as 3 days ⇒ k = 1/3

b is estimated by fitting the model to death data

Varying b affects the infection curve i(t):

Larger b increases peak infected fraction and speed of spread
Smaller b slows epidemic and lowers peak

Varying k alters duration of infection and peak height

Model with b = 0.6, k = 1/3 fits NYC flu death data reasonably well

source: The PostCALC Project
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The Contact Number

c = average number of close contacts per infected individual during infectious
period, meansures disease contagiousness relative to population mixing

c =
b

k

By chain rule we have di
ds =

di/dt
ds/dt

Recall di/dt = b s(t) i(t)− k i(t) and ds/dt = −b s(t) i(t) we get

di

ds
= −1 +

1

cs

This determines (except for dependence on an initial condition) the infected
fraction i as a function of the susceptible fraction s

The solution yields: i(s) = 1− s + 1
c ln

(
s
s0

)
, where s0 is initial susceptible

fraction

Using s(∞) (final susceptible fraction), c can be estimated from epidemic data
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Herd Immunity and Vaccination

Herd immunity occurs when enough individuals are immune (through previous
infections or vaccination) to prevent epidemic spread

Vaccination reduces the susceptible population, contributing to herd immunity

▷ Vaccination introduces direct transition: S → R bypassing infection

Recall the Contact Number c = b/k

If s0 < 1/c, then di/dt remains negative, preventing the disease from spreading,
and an epidemic cannot occur ▷ Threshold condition for herd immunity

di
dt = bs(t)i(t)− ki(t) = i(t)

(
bs(t)− k

)
The factor i(t) is always non-negative, for di/dt < 0, we require s(t) < k/b = 1/c

Thus, reducing s(t) through vaccination prevents the epidemic.

To achieve herd immunity through vaccination, we need v > 1− 1/c, where v is
the fraction of the population that must be vaccinated, for example

If c = 12.8, the fraction needed is v > 1− 1/12.8 ≈ 0.92 or 92%

If the vaccine is only 95% effective, a higher fraction is required
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SIR Model

The SIR model is particularly effective in measuring the life cycle of viral content
on social media:

Viral Spread: Content spreads rapidly when it is first shared, infecting a large
number of users (adopters)

Peak Influence: After reaching a peak, the spread begins to slow down as more
individuals become “recovered” and no longer share or engage with the content

Content Saturation: Eventually, the spread stops as the entire population is either
recovered or unaffected

Figure: SIR model example, starting from a single infected node at t = 0
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Basic SI Model Setup

The SIR model divides the population into two compartments:

Susceptible (S): not yet infected,

Infected (I): currently infected,

S
βI−→ I

β = transmission rate

Example: The SI model can be used to predict the spread of a viral video; I : those who

have seen and shared the video, and S : those who have not seen it yet

S(t), I (t) ⇒ number of individuals in each compartment at time t

Constant population: N = S(t) + I (t) s(t) = S(t)
N , i(t) = I (t)

N

Assumption: Homogeneous mixing; every infected individual has b effective
contacts per day, not all with S , a fraction s(t) with people in S

Pr(S → I ) = 1− Pr(not infected by any infectious)

= 1− (1− βdt)ki(t) ≈ βki(t)dt (βdt ≪ 1)

di

dt
= s(t)× Pr(S → I ) = βki(t)s(t) = βki(t)(1− i(t))
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Recurrent Influence and the SIS Model

The SIR model divides the population into two compartments:

Susceptible (S): not yet infected,

Infected (I): currently infected,

After some time, infected individuals can
become susceptible again

S
β−→ I

µ−→ S

β = transmission rate

µ = recovery rate

Used to predict virus with no permanent immunization, it can also model rumor, habits,

modeling recurrent influence (no permanent adoption), product adoption (subscribe,

unsubscribe, and potentially re-subscribe later)

S(t), I (t) ⇒ number of individuals in each compartment at time t

Constant population: N = S(t) + I (t) s(t) = S(t)
N , i(t) = I (t)

N

di(t)
dt = βs(t)i(t)− µi(t) = βi(t)(1− i(t))− µi(t)

ds(t)
dt = −βs(t)i(t) + µi(t) = −βi(t)(1− i(t)) + µi(t)
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Other compartmental models

SIRD

SIRV

SIRVD

SIRVB

SIRS

MSIR

Carrier

SEIR

SEIS

source: Wikipedia
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Incorporating Population Structure and Non-Homogeneous Mixing

Different classes of individuals (age, gender,
etc.) lead to potentially different:

Transmissibility

Contact rates
HIV transmission differs de-
pending on gender

Flu contact rates are different
for adults and children

Adapted from Alain Barrat @ Turin, Itlay

source: Alain Barrat @ Turin, Itlay
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Activation-Based Models
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Independent Cascade (IC) Model

The IC model is a stochastic process where nodes in a network can activate their
neighbors with a given probability. This model is important because:

It simulates viral marketing campaigns and information diffusion

It is used to predict the spread of diseases or rumors

The IC model can predict how a new product may spread on Twitter or
Facebook

It helps design strategies to maximize influence in social networks
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Independent Cascade (IC) Model

IC: A discrete-time probabilistic model of diffusion in an edge weighted network G

p(u, v) = puv is probability that node u will influence v

Initially some nodes are active and activations spread in G

Each edge (u, v) has probability (weight) puv

Each active node u has a single chance to activate each
inactive neighbor v with probability puv

(Independent) activation attempts happen in next time step

Let G = ((V ,E ), p) be a digraph. p : E 7→ [0, 1]

A0 ⊆ V : initial active set ▷ (seed nodes)

At time t, each u ∈ At \At−1 tries to activate each v ∈ N(u) with prob. puv

If successful, v is added to At+1

P[v activated at t + 1] = 1−
∏

u∈N(v)∩At

(1− puv )
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Independent Cascade (IC) Model

IC: A discrete-time probabilistic model of diffusion in an edge weighted network G

Let G = ((V ,E ), p) be a digraph. p : E 7→ [0, 1]

A0 ⊆ V : initial active set ▷ (seed nodes)

At time t, each u ∈ At \At−1 tries to activate each v ∈ N(u) with prob. puv

If successful, v is added to At+1

P[v activated at t + 1] = 1−
∏

u∈N(v)∩At

(1− puv )
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Linear Threshold Model

Given an edge-weighted (undirected or directed) network

Edges weight, w(u, v) = wuv ∈ [0, 1] is the relative influence of node u on
node v (e.g., quantitative version of weak and strong ties)

Each node v independently selects a threshold θv ∼ Uniform[0, 1] to model
uncertainty about how easy it is to influence that individual

▷ Prior knowledge of the types of nodes may better inform the distribution
from which θv is sampled

A node v becomes active at time t if:
∑

u∈At−1
wuv ≥ θv

Once activated, nodes remain active permanently

t = 1t = 0 t = 1t = 0
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Independent Cascade vs. Linear Threshold Model

The LT model has similarities with the IC model with the following exceptions:

Nodes also have an intrinsic attribute for their threshold θ, for example θC = 0.7
and θI = 0.2

Unlike the IC model, activated nodes can continue to try to influence their
neighboring nodes at each time step

If at any time step the sum of the influence of all activated neighbours for a node v
exceeds its threshold then the node will get activated:

∑
u∈At−1∩Nv

wuv ≥ θv
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Granovetter’s Threshold Model

Activation condition for Granovetters model

A node v becomes active at time t if the fraction of its neighbors that are active
at time t − 1 exceeds its threshold θv :

||Nv ∩ At−1|
|Nv |

≥ θv

Nv : Set of neighbors of node v

At−1: Set of active nodes at time t − 1

θv ∈ [0, 1]: Fractional threshold for activation

Unlike the Linear Threshold Model, where weighted influence matters,
Granovetter’s model uses purely the fraction of active neighbors. In that sense it is
a bit like a simplified version of the Linear Threshold model

It’s useful for modeling social contagion based on peer proportions (e.g., protests,
adoption of norms)
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Thresholds and Social Adoption Types

In practice, based on sociological theory most individuals can be categorised into
different groups depending on their affinity to get influenced or adopt innovations

Especially in threshold-based diffusion models (e.g., LT, Granovetter), a node’s
threshold θv ∈ [0, 1] determines its resistance to adopting a new behavior

Innovators: θv ≈ 0 — adopt early, even with little or no peer support

Early Adopters: θv ∈ (0, 0.25] — adopt quickly with minimal social proof

Early Majority: θv ∈ (0.25, 0.5] — need moderate peer adoption

Late Majority: θv ∈ (0.5, 0.75] — adopt only after most others have

Laggards: θv ∈ (0.75, 1] — very resistant to change; require overwhelming influence

Such categorization can also apply to how much influence a node exerts. In LT model

Outgoing edge weights wuv represent the influence of node u on neighbor v

High-profile individuals (celebrities, experts) have higher wuv to many nodes —
they are strong spreaders

Ordinary individuals contribute less influence per edge
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Opinion Dynamics in Social Networks
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DeGroot Model of Opinion Dynamics

Model Overview

The DeGroot model is discrete-time, synchronous model of opinion diffusion, where
agents update their beliefs as weighted averages of their neighbors’ opinions

Each node v has a scalar opinion xv (t) ∈ [0, 1] at time t

The opinion at the next time step is:

xv (t + 1) =
∑
u∈Nv

wuv · xu(t)

The weights wuv form a row-stochastic matrix (i.e.,
∑

u wuv = 1)

Goal: Model how consensus or polarization emerges over time

The weights wuv capture how much trust or importance node v places on node u’s
opinion

High-influence individuals (leaders, experts) will have large outgoing weights
across the network

Nodes with stubborn or fixed opinions can be modeled by assigning them a
self-loop with high weight

Imdad ullah Khan (LUMS) Social Influence 63 / 118



Sociological Insights from the DeGroot Model

Consensus: If all nodes iteratively average, the network may converge to a shared
opinion

Polarization: With certain network structures or stubborn nodes, multiple
persistent opinions can coexist

Echo Chambers: Can arise when subgroups mostly weight each other

Figure: How opinions are updated at each time step in the DeGroot model
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Voter Model of Opinion Dynamics

Model Overview

The Voter model is a discrete-time, randomized model of opinion dynamics, where
agents adopt the opinion of a randomly selected neighbor at each time step

Each node v has a binary opinion xv (t) ∈ {0, 1} at time t (Could be a larger set)

At each time step, a node v randomly selects a neighbor u ∈ Nv and adopts their
opinion:

xv (t + 1) = xu(t)

This process is repeated asynchronously or synchronously across the network

Goal: Model how consensus or majority opinion forms in a population over time

In the simplest case, nodes are equally likely to interact with any of their neighbors

The network’s structure influences the spread of opinions (e.g., small-world,
random graphs)

Fixed opinions or external influences can be introduced to simulate stubborn agents
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Sociological Insights from the Voter Model

Consensus: In many scenarios, the network will eventually reach a single,
unanimous opinion. If the network has a large number of distinct, fixed opinions or
stubborn agents, polarization may persist

Majority Influence: A majority opinion can dominate the network, depending on
the initial distribution of opinions

Coexistence of Opinions: Small initial minority groups may persist, especially in
sparsely connected networks or when external biases exist

The voter model is significantly dependent on the topology and structure of the graph

Cliques in the graph may result in a very strong localized opinion since each of the
nodes in the clique are reinforcing each other opinions

Cycles, especially those with an even number of nodes, can lead to a situation
where nodes alternate in opinion, preventing the system from reaching consensus
quickly. This results in a kind of “opinion oscillation”

A bridge is an edge in the graph whose removal would disconnect the network into
two or more components. If a bridge exists between two large components, it can
prevent the spread of opinions between them. The two components may converge
to different opinions

Other components may have similar disproportionate effects on the spread of opinions
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Game-Theoretic Models of Opinion Dynamics

Opinion dynamics can be framed as strategic interactions, where agents maximize
payoffs influenced by their own preferences and the opinions of their neighbors.

These models capture rational or boundedly rational behavior

Each agent i selects an action or opinion si ∈ S to maximize a utility function
ui (si , s−i )

Equilibria (e.g., Nash or logit equilibrium) model steady-state opinions.

Game-theoretic models can handle both discrete (binary/categorical) and
continuous opinion spaces

These models go beyond pure diffusion by including strategic reasoning, inertia,
and heterogeneity
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Setup for Game-Theoretic Models

General Formulation of Game-Theoretic Opinion Dynamics

Let G = (V ,E ) be a graph where each node i ∈ V holds an opinion or strategy
si ∈ S, and has a utility function ui : Sn → R that depends on both its own
strategy and those of its neighbors

Agents update their strategy via a noisy best-response:

P(si (t + 1) = a) ∝ exp

(
ui (a, s−i (t))

τ

)
Alternatively, agents minimize local cost:

si (t + 1) = argmin
a∈S

[ci (a, s−i (t)) + ηi (a)]

The functions ui or ci can encode coordination, conformity, stubbornness, or
polarization depending on network structure and agent biases. The parameter τ
or penalty ηi controls rationality or noise
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Potential and Graphical Games in Opinion Dynamics

Local Interactions and Stability

In potential and graphical games, each agent’s payoff depends only on a subset of
neighbors, and dynamics can often be tracked via a global potential function.

In a potential game, there exists Φ such that:

ui (s
′
i , s−i )− ui (si , s−i ) = Φ(s ′i , s−i )− Φ(si , s−i )

Best-response dynamics increase Φ and often converge

In graphical games, utility of i depends only on N(i), its neighborhood

Models like the Friedkin–Johnsen or threshold models can be interpreted as such
games
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Log-Linear Learning and Bounded Rationality

Behavioral Realism via Noisy Best-Response

Log-linear learning captures noisy decision-making where agents select actions with
probability proportional to their payoffs

Action probabilities follow a Gibbs distribution:

P(si = a) ∝ exp

(
ui (a, s−i )

τ

)
As temperature τ → 0, dynamics converge to pure best response

System tends to stochastically stable equilibria of the potential game

Captures bounded rationality, exploration, and noise in human behavior
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Continuous Opinion Games & Cost Minimization

Opinion as Continuous Strategy

Continuous opinion models define agents’ costs as functions of disagreement with
neighbors and deviation from intrinsic bias

Example: Friedkin–Johnsen model minimizes:

Ci (x) =
∑
j∈N(i)

wij(xi − xj)
2 + λi (xi − si )

2

Unique equilibrium exists under convexity

Can be framed as potential games with convergence under best-response

Also interpretable as constrained optimization under bounded confidence (e.g.,
Hegselmann–Krause)
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Dynamics and Emergent Behavior

Game-theoretic models reveal how equilibrium behavior reflects social
structure, individual incentives, and learning processes.

Consensus: arises under aligned incentives or strong coordination

Polarization: emerges when agents have diverging biases or localized trust

Stubbornness: modeled via self-preference terms or fixed players

Stability: convergence guaranteed in potential games, often under asynchronous or
noisy updates

Often more fine-grained analysis and detail then models like DeGroot

Game theoretic models more effectively capture the intricacies involved in
strategic interaction, but at the cost of significantly more complex models

When modelling simpler scenarios these may overcomplicate analysis
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Continuous-Time Diffusion Models
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Continuous-Time Diffusion Models

Motivation

Unlike discrete-time models (e.g., DeGroot or Voter), continuous-time models capture
when events happen, allowing for fine-grained modeling of diffusion in real-world
settings (e.g., retweets, citations)

Nodes in a network influence each other via random events over time

The intensity of events depends on past history — more recent events often lead
to higher likelihood of further diffusion

These models are especially suited for settings where timing matters: social media,
news spread, epidemics

Example Models: Poisson processes, Self-exciting point processes (Hawkes), Survival
analysis models.
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Hawkes Process for Diffusion

Mathematical Formulation

Let λi (t) be the intensity (rate) at which node i generates events (e.g., adopts an
opinion, shares information). Then:

λi (t) = µi +
∑
j∈Ni

∑
t
j
k
<t

αij · g(t − t jk)

µi is the base rate of spontaneous activation

αij ≥ 0 is the influence of node j on node i

g(·) is a kernel function (e.g., exponential decay: g(t) = βe−βt)

Hawkes processes are self-exciting : one event increases the likelihood of future
ones

Can model cascades, virality, and temporal clustering of opinions or behaviors

Extensions: multivariate, marked, nonlinear Hawkes for richer dynamics
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Influence Maximization
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Influence Maximization Algorithms

Influence Maximization refers to strategies used to identify the most influential
nodes in a network, in order to maximize the spread of influence within a given
budget or time constraint.

Problem Definition

Given a diffusion model (e.g., LT, IC), a graph G = (V ,E ), and a budget k, find
a seed set S ⊆ V , |S | = k , that maximizes the expected spread of influence σ(S).

S∗ = arg max
S⊆V , |S|=k

σ(S)

Submodularity: For many models (e.g., IC, LT), σ(·) is monotonic and
submodular
∴ A greedy approximation gives a (1− 1/e)-approximation.

Greedy Approach: Iteratively select the node v with the largest marginal
gain:

v = arg max
u∈V\S

σ(S ∪ {u})− σ(S)
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Strategies to Identify the Most Influential Nodes

Improvements: There are several algorithms for selecting the initial seed
set more effectively. These may leverage information about the social
network or graph structure such as:

Community Structure: Selecting seeds from different communities to
maximize inter-group spread.

Node Centrality: Prioritizing nodes with high degree, betweenness, or
eigenvector centrality.

Bridge Nodes: Targeting nodes that act as bridges between densely
connected clusters.

Influence Estimation Models: Using diffusion simulations (e.g., Monte
Carlo) or RR set sampling (e.g., IMM) to estimate marginal influence.

Historical Data: Learning influence probabilities from past diffusion
traces to inform seed selection.
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Influence Maximization in Activation-Based (Discrete Time) Models

Problem:

Given a diffusion model (IC or LT), find a seed set S ⊆ V of size k that maximizes
expected influence spread σ(S).

Approaches:

Greedy Algorithm: Classic method using Monte Carlo simulations. Guarantees
(1− 1/e − ε)-approximation.

CELF/ CELF++: Speed up greedy by exploiting submodularity via lazy
evaluations.

IMM / TIM / OPIM: Use Reverse Reachable (RR) sets to reduce to a maximum
coverage problem.

Assumptions: Static graph structure; influence probabilities or weights are known.

These algorithms provide theoretical guarantees but vary in scalability and
model-specific adaptations.
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Influence Maximization in Epidemic Models

Model:

Epidemic dynamics such as SIR/SIS define probabilistic transitions between states
(Susceptible, Infected, Recovered).

Algorithmic Strategies:

Degree Heuristics: High-degree nodes are more likely to spread infection.

Simulated Annealing / Genetic Algorithms: Optimize seed set under stochastic
simulations of SIR

NetShield (Kempe et al.): Minimize vulnerability or maximize control in epidemic
outbreaks

Challenges: No submodularity in SIR, leading to weaker approximation guarantees

Epidemic-aware influence maximization emphasizes risk reduction and outbreak
prediction
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Game-Theoretic Influence Maximization

Setting:

Nodes are strategic agents choosing opinions or actions to maximize individual utility.
Diffusion emerges from equilibrium behavior

Algorithmic Methods:

Best-Response Dynamics: Simulate influence under equilibrium convergence

Log-Linear Learning: Add noise to choices, derive probabilistic adoption influenced
by potential functions

Max-Potential Heuristics: Seed nodes to guide the system to a desirable
equilibrium state

Remarks: Influence maximization is no longer purely additive — strategic externalities
and rationality constraints dominate

Suitable for modeling rational agents in economic or political systems
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Influence Maximization in Continuous-Time Models

Model:

Diffusion unfolds asynchronously over continuous time, e.g., via Hawkes Processes or
Continuous-Time IC (CTIC)

Methods:

NetRate: Learn edge transmission functions from data, then simulate diffusion for
seed selection

ConTinEst: Estimate influence spread under CTIC efficiently using stochastic
shortest paths

CMAB-based Methods: Use bandit algorithms to balance exploration and
exploitation in unknown environments

Advantages: Models fine-grained temporal dynamics and heterogeneous edge delays

More realistic for viral marketing, information cascades, or rumor spreading in
fast-moving environments
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Influence in Opinion Dynamics Models

Setting:

Nodes update scalar-valued opinions over time via averaging (e.g., DeGroot) or best
response to neighbors

Control Algorithms:

Leader Selection: Choose stubborn agents (zealots) that anchor opinions to
desired targets

Anchoring Control: Optimize weights or placements of anchors to maximize final
consensus

Influence Shaping (Friedkin-Johnsen): Inject minimal control to steer the
population opinion

Goal: Influence steady-state or convergence trajectory of opinion vectors x(t) ∈ [0, 1]n

These models excel at capturing gradual influence, resistance, and convergence behaviors
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Beyond Classical Seed Selection

Traditional influence maximization focuses on choosing a fixed set of k seed nodes.
However, real-world settings often demand more flexible approaches:

Adaptive Seeding: Seeds are selected sequentially across multiple rounds,
observing partial spread before selecting the next

Budgeted Influence: Nodes have varying costs. The goal is to maximize spread
under a total cost constraint, not a fixed seed count

Time-Sensitive Maximization: Maximize influence by a deadline, not eventual
spread

Mathematically:
max

S⊆V , cost(S)≤B
E[f (S ,T )]

where f (S ,T ) is the spread function by time T , and B is the budget
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Alternative Influence Objectives

Influence is not always about maximizing raw spread:

Targeted Influence: Maximize influence within a specific subpopulation (e.g.,
swing voters, vulnerable communities)

Spike Adoption:

Maximize the initial burst or “spike” of adoptions at a particular moment in
time
Example: Launching a product with a viral marketing campaign that
generates an immediate wave of interest
Strategy: Target a seed set that will quickly trigger a rapid cascade,
maximizing early-stage engagement or adoption

Long-Term Influence:

Aim to sustain influence or maintain adoption over an extended period,
rather than just maximizing short-term spread
Example: In political campaigns, influencing long-term voter loyalty, or in
public health, ensuring consistent healthy behaviors over time
Strategy: Choose influencers or adopters who can maintain and reinforce
their influence over time, rather than triggering immediate short-term effects
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Adversarial Influence and Strategic Interference

Influence maximization often assumes a benign planner, but real-world settings involve
strategic adversaries aiming to counter or manipulate spread:

Disruption of Consensus: Adversaries may aim to delay or prevent convergence in
opinion dynamics (e.g., Voter, DeGroot models)

Spread of Misinformation: Deploying seed nodes to maximize the reach of fake
news or divisive content

Blocking Influence Paths: Removing or corrupting nodes/edges to reduce the
effectiveness of a seed set

Targeted Deception: Influencing specific subgroups with tailored messages to skew
public sentiment

Example Formulation:
min

A⊆V ,|A|≤k
E[f (S \ A)]

where A is the set of disrupted nodes and S is the seed set
Game-theoretic models naturally capture such adversarial settings (Stackelberg games,
zero-sum diffusion games)
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Game-Theoretic Models of Adversarial Influence

Strategic interactions between a planner (defender) and an adversary can be modeled
using:

Stackelberg Games: The defender (leader) commits to a seed set; the attacker
(follower) reacts by targeting nodes to disrupt

Zero-Sum Games: Defender and attacker have opposing utility functions over
influence spread

Diffusion Games: Multiple agents (e.g., brands, parties) simultaneously seed
opinions and compete for network influence

Stackelberg Formulation:
max

S :|S|≤k
min

A:|A|≤b
σ(S \ A)

where S is the seed set, A is the set of blocked or attacked nodes, and σ(·) denotes the
expected spread.

Extensions:

Robust seed selection under uncertainty or noise

Time-aware defenses: spreading before or after attacks

Detection games: identifying adversarial nodes via observation
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Influence in Social Media Platforms

Social media platforms such as Twitter, Facebook, and YouTube deal with influence
dynamics every day. The main goals are:

Maximizing User Engagement: Ensuring content spreads effectively to engage
users and keep them active

Recommendation Systems: Algorithms aim to influence users’ content
consumption to increase platform time

Controlling Misinformation: Balancing influence maximization with controlling the
spread of harmful content

Filter Bubbles: Avoiding the over-targeting of content based on users’ past
behavior, which leads to echo chambers

Some of the main concerns that arise are:

Ethical concerns over manipulation

Identifying harmful or malicious influence
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Spread of Misinformation and Fake News

One of the most critical issues for social media platforms is the spread of misinformation:

Fake News: The rapid spread of false or misleading information, often designed to
manipulate public opinion

Adversarial Influence: Malicious actors spreading divisive content to influence
elections or public sentiment

Viral Content: High engagement rates for controversial or emotional content, even
when harmful

Challenges:

Identifying credible vs. unreliable sources

Managing viral misinformation in real-time

Developing scalable fact-checking mechanisms

Impact:

Threatens public trust and social cohesion

Can lead to polarization and unrest
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Adversarial Influence and Manipulation

Social networks face strategic interference from malicious users who manipulate
influence for personal or political gains:

Astroturfing: Creating fake grassroots movements to simulate genuine public
support for a cause

Bot Networks: Using automated accounts to spread messages or influence
discussions on a mass scale

Deepfakes and Fake Content: Manipulating videos or images to deceive users and
sway opinions

Challenges:

High sophistication of adversaries

Difficulty in distinguishing between genuine user behavior and manipulation

Solutions:

Bot detection algorithms

Deep learning models for identifying synthetic content

Behavioral analysis to identify coordinated influence campaigns
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Controlling Echo Chambers and Filter Bubbles

Echo chambers and filter bubbles result from algorithmic recommendations that
reinforce existing beliefs:

Echo Chambers: Groups of users who are exposed only to information that aligns
with their views

Filter Bubbles: Algorithms tailor content to users’ preferences, leading them to
miss out on diverse perspectives

Polarization: Repeated exposure to like-minded content can intensify political or
ideological divisions

Challenges:

Balancing personalized recommendations with diversity of viewpoints

Reducing algorithmic bias in content curation

Encouraging healthy discussions and reducing divisive content

Solutions:

Introducing content diversity mechanisms

Designing recommendation systems that expose users to opposing viewpoints
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Regulating Social Media Influence

Governments and social networks themselves are exploring regulations to manage
influence:

Transparency Laws: Requiring platforms to disclose how content is promoted and
how influence spreads

Accountability for Ads: Ensuring that political ads are clearly labeled and that
their sources are identified

Anti-Manipulation Efforts: Legal and technical mechanisms to detect and prevent
harmful manipulation

Challenges:

Balancing regulation with freedom of expression

Addressing cross-border issues with global platforms

Solutions:

Collaborations between tech companies, governments, and fact-checking
organizations

Enhanced algorithms for automatic detection of harmful influence tactics
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Leveraging Influence Maximization for Product Adoption

Social media platforms and companies increasingly leverage influence maximization
techniques to drive product adoption:

Influencer Selection: Identifying influential figures who have the highest impact on

their followers. This can involve:

Using network centrality measures to find key nodes (influencers) within the
social graph
Evaluating audience demographics and alignment with the product

Targeted Campaigns: Utilizing data from influence models to optimize advertising

spend:

Selecting influencers whose audiences are most likely to adopt the product
Running personalized ads based on past user behavior and social connections

Viral Marketing: Focusing on the early adopters who can trigger widespread
influence and further adoption

Example: A company launching a new fitness product may partner with fitness
influencers who have strong connections within the health and wellness community
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Selecting Social Media Influencers for Maximum Reach

Companies often leverage social network models to maximize product reach through
influencers:

Centrality-Based Selection:

Finding influencers with the highest degree centrality (i.e., those with the
most connections)
Analyzing betweenness centrality to identify individuals who bridge different
subgroups

Cascade Simulations:

Running simulations to model how information (e.g., a product launch)
spreads across the network
Selecting influencers whose impact spreads the fastest across a network
(using diffusion models like IC or LT)

Targeting Early Adopters:

Identifying early adopters who are more likely to adopt a product quickly and
influence their social circle
Using k-core or community detection to find groups likely to engage with the
product

Example: A fashion brand may select influencers based on centrality in a fashion-related
social network, targeting individuals who will lead to the fastest product spread
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Political Campaigns: Maximizing Influence for Voter Outreach

Political campaigners apply influence maximization techniques to reach voters effectively
and efficiently:

Targeted Messaging:

Analyzing the social network of voters to identify key influencers and target
them with personalized messages
Running simulations to identify which individuals or groups are most likely to
influence others

Key Opinion Leaders:

Identifying local leaders, community activists, or online influencers who have
a significant impact on voter sentiment
Using social media monitoring to find high-influence individuals within
specific voter demographics

Message Amplification:

Using targeted ads and content to amplify messages among specific voter
groups (using influence maximization strategies like greedy algorithms)
Leveraging opinion dynamics models to understand how messages spread and
reinforce voter opinions

Example: During elections, campaigns target key swing voters and influencers within
communities to sway voter sentiment and increase turnout
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Competitive Influence Maximization: Political Campaigns

In a competitive influence maximization setting, agents (e.g., political campaigns) aim
to sway the opinions of voters while countering the influence of their opponents

Two Competing Agents: Each political party seeks to maximize their own voter
base while minimizing the opponent’s influence.

Objective:

Maximize the spread of influence (voter support) within a targeted
group of voters
Simultaneously minimize the opponent’s reach by preventing adoption
in certain groups

Game-Theoretic Approach: Use of strategic planning to anticipate the opponent’s
actions and counter them effectively

Strategy:

Identify influential nodes (voters or regions) and target them for early
adoption
Disrupt the opponent’s potential spread by targeting key adversary
nodes or preventing adoption in regions of strategic importance

This setup requires dynamic game-theoretic strategies, where each agent adjusts their
strategy in response to the opponent’s actions

Imdad ullah Khan (LUMS) Social Influence 96 / 118



Competitive Influence Maximization: Competing Products

Similar to political campaigns, competitive influence maximization is essential for
marketing competing products, where each brand aims to increase its market share while
reducing the influence of its competitors

Two Competing Products: Each company wants to maximize the adoption of its
product while preventing the other’s product from gaining traction

Objective:

Maximize the adoption of the product within a target demographic
Minimize the spread of the competing product by blocking its reach in
key market segments

Strategic Use of Resources:

Efficient allocation of limited marketing resources (ad spend, influencer
partnerships, etc.) to both spread influence and diminish the
opponent’s impact

Game-Theoretic Considerations: Each company must anticipate the actions of its
competitor, such as targeting the same demographic or engaging similar influencers

Companies must not only maximize their influence, but also react in real-time to their
competitors’ actions to maintain their edge
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Challenges in Leveraging Influence Maximization

While influence maximization techniques provide powerful tools for adoption, there are
significant challenges:

Ethical Concerns:

Ensuring that influence techniques do not manipulate users in unethical ways
Addressing concerns over privacy and transparency in influence algorithms

Detection of Manipulation:

Identifying and combating malicious campaigns that use influence
maximization for harmful purposes (e.g., fake news, astroturfing)

Modeling Uncertainty:

Incorporating bounded rationality and uncertainty in users’ decision-making
processes
Considering dynamic factors such as changes in public opinion or platform
regulations

Conclusion:

Influence maximization techniques are powerful but need to be used responsibly
and ethically

Balancing the benefits of rapid adoption with the potential for manipulation and
harm
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Theory vs. Practice in Social Influence Modeling
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Challenges in Real-World Applications

In real-world applications of network influence, several challenges arise that make
it difficult to implement theory-based models directly

Key challenges:

Limited Data: In many cases, there is insufficient or incomplete data on
network structures, individual behaviors, or interactions

Dynamic Network Changes: Social networks are constantly evolving, with
new nodes and connections forming, which complicates modeling and
prediction

Behavioral Variability: Individuals in networks often exhibit unpredictable or
varying behaviors that are hard to model precisely

These challenges highlight the gap between theoretical models and practical
applications of influence maximization in real-world scenarios
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Limited Data on Network Topology

One of the major challenges in real-world network influence applications is the
limited data on network topology. This can affect the accuracy of models and
predictions

Key points:

Incomplete Network Information: Social networks often lack full data on all
nodes and their connections, limiting the ability to compute accurate
centrality measures

Data Privacy and Access: Access to detailed network data (such as personal
interactions) may be restricted due to privacy concerns

Sparse or Incomplete Relationships: Some connections may not be
represented or may be weak, affecting the diffusion of influence

Despite these limitations, data from social media platforms or surveys can still
provide valuable insights into network structure and influence
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Dynamic Changes in Network Structure

Another challenge is the dynamic nature of social networks, where
connections and behaviors change over time.
Key points:

Evolving Connections: People’s relationships and interactions evolve,
making it difficult to predict how influence will spread in the future.

Emerging Influencers: New nodes or influencers may emerge
unexpectedly, changing the influence landscape.

Time-sensitive Behaviors: Influence can have short-lived effects,
meaning that strategies must adapt quickly to shifts in the network.

These dynamic factors complicate the prediction and control of influence
spread, requiring real-time adaptation of strategies.
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Behavioral Variability

Behavioral variability refers to the unpredictability of how individuals in a
network behave, which adds complexity to influence models.
Key points:

Unpredictable Adoptions: Individuals may adopt behaviors in
unexpected ways, making it difficult to predict who will influence
whom.

Changing Preferences: People’s preferences and behaviors change
over time, influencing how likely they are to adopt new ideas.

External Factors: Social, cultural, or environmental factors may
impact the decision-making processes of individuals in the network.

This variability makes it challenging to create accurate models for
predicting the spread of influence across a network.
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Deeper Dive into Network Dynamics

A deeper understanding of network dynamics involves studying the evolving
nature of networks and how this evolution influences the spread of influence.
Key concepts in network dynamics include:

Network Growth: How new nodes and edges are added to a network over
time.

Evolution of Relationships: How the strength and nature of relationships
change over time, impacting information diffusion.

Dynamic Centrality: How the centrality of nodes changes as the network
evolves, which affects influence spread.

By modeling these dynamics, we can better understand how influence propagates
over time and under different conditions.
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Influence Models in Targeting Marketing Efforts

Influence models are widely used in marketing to target specific individuals or
groups to maximize the impact of a campaign

These models predict how information spreads through a network and identify
individuals who are most likely to amplify the marketing message

Key Concepts:

Early Adopters: Influencers or individuals with high centrality who can
quickly spread information to a large number of people

Network Effect: The amplification of marketing efforts due to
word-of-mouth or social sharing by key influencers
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Seeding Strategies to Maximize Spread in Marketing Campaigns

Companies target individuals with high influence (seeds) in a social network to
ensure that their campaigns are quickly disseminated across the network

Key Considerations:

Number of Seeds: A balance between targeting enough influencers to
initiate the spread and keeping costs low.

Quality of Seeds: High centrality nodes are preferred for their ability to
spread the message quickly and to many others

Influence Maximization:

Given a budget k , the goal is to select k nodes to maximize the expected
spread of the campaign.
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Using Influence Models to Understand Social Movements

Influence models help understand how social movements spread and gain
momentum. These models can simulate how ideas, behaviors, or calls to action
propagate through social networks

Key Elements:

Core Activists: Individuals who initiate the movement (similar to seed nodes
in marketing)

Influential Spreaders: Highly connected individuals who can broadcast the
message widely

Thresholds: Individuals adopt the cause once enough of their peers
(threshold) have adopted it

Influence models can predict how information will spread over time

Spread: The total number of nodes influenced by the initial seed set.

Speed: How quickly information spreads across the network.

In social media, influence models can predict how fast a news article or tweet will
go viral based on network topology and the initial influencers
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Predicting Virality Using Influence Models

Virality refers to the rapid spread of content across a network, where it is shared
by a large number of individuals in a short time.

Influence models help predict which content is likely to go viral

Factors Influencing Virality:

Initial Seed Set: Content shared by influential individuals is more likely to go
viral

Network Structure: Dense, well-connected networks facilitate faster spread

Content Relevance: Content that resonates with a large portion of the
network is more likely to be shared widely

Marketers and social media platforms use influence models to predict which
posts, videos, or tweets are likely to go viral, allowing them to promote content
more effectively
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Empirical Studies on Weak and Strong Ties in Influence Models

Several studies have examined the role of weak and strong ties in influence
propagation

These studies emphasize the complementary roles of weak and strong ties in
spreading influence, with weak ties expanding the range of influence and strong
ties deepening adoption within groups

Granovetter (1973): Demonstrated that weak ties are crucial for spreading
information across different social groups. Strong ties, while important for
reinforcing influence, tend to form clusters that limit the spread of new ideas

Aral and Van Alstyne (2011): Showed that weak ties provide access to novel
information, making them essential for innovation and discovery in networks.
Strong ties are better for rapid diffusion of ideas within close-knit
communities but less effective for reaching new audiences

Centola (2010): Found that while weak ties are essential for broadening the
reach of influence, strong ties provide reinforcement that leads to higher
rates of behavior adoption in social networks
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Challenges in Translating Theoretical Models into Practical Systems

Although influence models provide valuable insights into network behavior, several
challenges arise when translating theoretical models into practical systems:

Complexity of Real-World Networks: Theoretical models often simplify
network structures, assuming static or homogenous networks. In reality,
networks are dynamic, heterogeneous, and influenced by external factors
such as social context and evolving relationships

Data Availability and Quality: Theoretical models require detailed and
accurate data about the network. In practice, obtaining high-quality data on
real-world social networks is difficult due to privacy concerns, incomplete
datasets, and the sheer scale of modern social platforms

Scalability: Many theoretical algorithms, especially those based on influence
maximization, are computationally expensive and do not scale well to the
size of networks such as Facebook or Twitter, which may consist of millions
of users and billions of connections

Human Behavior Complexity: Theoretical models often fail to capture the
nuances of human behavior, including irrational decision-making, peer
pressure, and emotional responses, all of which play a significant role in
influence propagation
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The Theory-Practice Gap

Several case studies demonstrate the challenges of applying theoretical influence
models to real-world scenarios:

Marketing Campaigns: Companies like Facebook and Twitter use influence
maximization models to identify key users for advertising campaigns.
However, the real-world performance of these models often falls short due to
unpredictable user behavior, low engagement, and the difficulty in accurately
predicting how content will be shared.

Political Movements: During events like the Arab Spring, social network
analysis helped identify key influencers. However, translating these
theoretical insights into actionable strategies proved difficult due to the
unpredictable nature of social movements, government interventions, and
the diversity of actors involved.

Health Campaigns: Influence models have been applied to encourage the
spread of healthy behaviors (e.g., vaccinations). However, real-world
campaigns face challenges like misinformation, cultural resistance, and
logistical barriers not accounted for in theory
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Recent Developments in Social Network Analysis
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New Developments in Social Network Analysis

Social Network Analysis (SNA) have introduced new methods for understanding
network structures and influence propagation:

Dynamic Network Analysis: Modern SNA is moving beyond static models to
account for dynamic networks where nodes and connections change over
time. This is particularly relevant for social media platforms where user
engagement and interactions fluctuate.

Multilayer Networks: Models now analyze multilayer or multiplex networks,
where individuals participate in different types of relationships (friendship,
professional connections) that interact and influence each other

Temporal Influence Models: With the rise of real-time social platforms,
researchers are focusing on models capturing temporal aspects of influence,
e.g., the speed of information diffusion and the impact of early adopters in
fast-changing environments

Behavioral Insights: Recent studies incorporate behavioral economics and
psychology to better understand how real-world decision-making deviates
from traditional rational agent models in network settings
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Trends in Machine Learning for Network Influence

Machine learning (ML) is increasingly integrated with Social Network Analysis to
enhance influence modeling and prediction:

Graph Neural Networks (GNNs): GNNs represent a cutting-edge
development in ML for networks, leveraging neural networks to learn
complex patterns in graph structures. They are used for tasks such as node
classification, link prediction, and influence estimation.

Reinforcement Learning: RL is being applied to influence maximization
problems, allowing systems to learn optimal seeding strategies through
interactions with network. RL models are effective for adapting strategies in
dynamic, evolving networks

Deep Learning for Cascades: DL models are used to predict information
cascades in social networks (e.g., viral content or rapid diffusion of ideas).
These models capture long-range dependencies in the network and make
predictions about influence propagation

Transfer Learning: In networks where data is sparse, transfer learning allows
influence models to be trained on similar networks and adapted to new
contexts, reducing the amount of required training data
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Ethics of Influence and Manipulation in Social Networks

The use of influence models in social networks raises important ethical
considerations, particularly regarding the potential for manipulation:

Manipulation and Control: Influence models can be used to manipulate
users by targeting them with content/ideas designed to shape their
behaviors and decisions, without their awareness/consent. This raises
questions about autonomy and free will in digital spaces

Behavioral Targeting: Social media platforms use influence models for
targeted advertising and personalized content delivery, exploiting user data
to predict and influence future behavior. This can border on manipulation
when users are steered towards decisions that benefit advertisers or platform
owners more than the users themselves

Amplification of Bias: Influence models may reinforce existing biases in
social networks, leading to echo chambers and filter bubbles, where users are
exposed only to information that aligns with their existing beliefs. This can
exacerbate societal polarization and misinformation

Ethical frameworks need to be developed to ensure that influence models are used
responsibly, respecting user autonomy and preventing exploitation.
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Case Studies on Ethical Issues in Social Media

Several high-profile case studies have highlighted ethical concerns in the
application of influence models and manipulation in social media:

Cambridge Analytica Scandal: used Facebook data to develop
psychographic profiles of users and targeted them with personalized political
ads during the 2016 U.S. presidential election and the Brexit campaign.
This raised ethical concerns over privacy, manipulation, and the use of
personal data without informed consent.

Misinformation and Echo Chambers: Social media algorithms, designed to
maximize engagement, have been criticized for promoting misinformation
and creating echo chambers (users are repeatedly exposed to content that
reinforces their existing views). This has been especially problematic in the
context of health information (e.g., COVID-19 vaccine misinformation) and
political polarization

Dark Patterns in Social Networks: Platforms like Instagram and TikTok
have been accused of using dark patterns, subtle design techniques that
encourage users to spend more time on the platform or engage with content
in ways that are not in their best interest, raising ethical concerns about
user manipulation and addiction.
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Innovations in Algorithms for Social Network Analysis

Recent innovations in algorithms for Social Network Analysis (SNA) have
significantly improved our ability to understand and model influence in large-scale
networks:

Graph Neural Networks (GNNs):

Random Walk-Based Algorithms:

Hypergraph Analysis: Traditional social networks are modeled as simple
graphs, but recent innovations involve using hypergraphs, where an edge can
connect more than two nodes. This allows for more accurate representation
of real-world relationships, such as group dynamics in social networks.

Probabilistic Graph Models: Bayesian networks and Markov Random Fields
are being integrated into SNA to deal with uncertainty and partial
information, improving the robustness of models used in areas such as
recommendation systems and disease propagation.
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Technological Challenges in Scaling Influence Models

Scaling influence models to large networks presents several challenges:

Computational Complexity: Influence maximization problems (e.g., selecting
seed nodes) are NP-hard, meaning that the time to compute solutions
increases exponentially with network size. Algorithms that scale to networks
with millions of nodes remains challenging

Memory Constraints: Processing massive social networks requires significant
memory resources.

Dynamic Networks: Many social networks are dynamic and evolving.
Traditional influence models assume static networks, but scaling to handle
time-varying networks introduces further computational overhead.
Techniques such as incremental computation and streaming algorithms are
being developed to address this.

Data Privacy and Security: As influence models rely heavily on user data,
scaling these models raises privacy /security concerns. Development of
privacy-preserving algorithms is an ongoing challenge
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