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Social Network

A social network is a theoretical structure used to study relationships between
individuals, groups, organizations, or entire societies

Social Networks: people, friendship/acquaintance/coworker

Online Social Networks (OSN): people, friendship or co-worker relation

Coauthorship Networks: coauthorship betweeen authors

Social Network Online Social NeworkCoauthorship Network
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Online Social Networks

Social networks allow users to connect, communicate, share information

Personal communication: Connecting with family and friends

Professional networking: e.g., LinkedIn helps people connect with colleagues
and explore career opportunities

Information dissemination: Twitter and Facebook are key sources for
real-time news and updates

Multimedia Sharing: YouTube, Instagram, and TikTok focus on content
creation and consumption

Global Reach: Breaks down geographical barriers

Crowdsourced Content: Users contribute to the creation and dissemination
of content, from news to entertainment

Political and Social Movements: Twitter and Facebook have been
instrumental in organizing movements and influencing public opinion

Virality: Social networks enable content to reach large audiences quickly,
creating viral trends

The complex dynamics and massive scale of these networks make them a
significant area of study in sociology, computer science, and data science
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Early Development and Evolution of Facebook

Started as “Thefacebook” exclusively for Harvard students

Quickly expanded to other Ivy League institutions

2006: Opened to anyone aged 13+ with a valid email address, introduced
the News Feed, revolutionized content distribution

Unique selling point: A profile-based platform where users connect through
friend requests, share status updates, and post on walls

Shifted from a college-exclusive network to global social platform

2007: introduced Pages for businesses and public figures

2009: “Like” button- fundamentally changing user interaction

2012: Facebook went public, raising $16 billion in its IPO

2012: Acquisition of Instagram & WhatsApp

2016: Facebook Live allowing real-time video streaming

2021: Integrating social networks with the virtual world (Metaverse)

2024: Facebook has over 2.8 billion active users
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History and Growth of Twitter

Twitter is popular for its microblogging concept (users post updates (tweets)
restricted to 140 characters (later 280 characters)

2006: Launch as a microblogging service for short, real-time updates

2007: Hashtag (#) feature, for users to tag and follow topics

2008: Gained traction during the U.S. Presidential elections, becoming a
critical platform for political discussions

2008-2012: Became a go-to platform for real-time news

The Arab Spring (2010–2011) played role in real-time information
dissemination and activism

2013: Goes public with a valuation of $14.2 billion

Post-2016: Features like live streaming (Periscope) and integrated
multimedia content

2020s: A significant platform for news, political discourse, and real-time
event sharing
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Social Networks as Platforms for Global Interaction

Social networks enable global interaction by providing platforms for:

Cultural Exchange: Users share content across cultural boundaries

Collaborative Projects: Facilitate collaborations across boundaries

Education: Distance learning and global knowledge sharing through forums,
webinars, and online courses

Social Organization and Movements

Digital Activism: Social platforms are central for organizing protests
and spreading awareness about social issues
Global movements like #FridaysForFuture, #MeToo, and
#BlackLivesMatter gained momentum through social networks
Organizational and Coordination: Social networks help organizers
coordinate events and actions in real-time
Amplification: Social media gives visibility to causes, allowing local
events to gain global attention
Mobilization: Platforms enable rapid mobilization of resources and
participants for movements
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Social Networks Analysis and its Applications
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Computational Questions in Social Network Analysis

Key computational challenges include:

Influence Maximization: Identifying a subset of nodes to maximize the
spread of influence.

Community Detection: Algorithms to identify communities within networks.

Rumor Spread and Blocking: Formulating strategies to control the flow of
information in networks.

These problems are essential for understanding and optimizing the dynamics of
social networks.
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Applications of Social Networks

Social networks have applications across various fields including information
science, biology, economics, sociology, and communication studies. It involves
the study of social actors, or nodes, connected by social relations such as
friendship, kinship, or professional collaboration

Social Influence: Online social networks influence individuals’ behaviors,
opinions, and emotions

Sentiment Analysis: Used to predict political outcomes by analyzing social
media posts

Community Detection: Helps in identifying groups of users with common
interests or behaviors

Rumor Blocking: Strategies to stop the spread of misinformation in networks

In practical scenarios, computational social network analysis aids in:

Predicting election outcomes by analyzing social media data

Designing efficient algorithms for rumor blocking and influence maximization

Enhancing marketing strategies by targeting influential individuals in a
network
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Social Network Analysis

Network Perspective of Society

How the Individuals’, communities’ and society’s behavior is influenced by
their social connectivity

An early use of network analysis in sociology. This diagram of the ‘ego-
network’ shows varying tie strengths in concentric circles-Wellman 1998
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Social Network Analysis

Network Perspective of Political discourse

A visualization of Malysia and US blogospheres (nodes are blogs and edges are
links to blogs). Left reveals importance/credibility/popularity of blogs, while the
right visual (two dense clusters with little interaction with the other cluster) shows
that bloggers are more likely to link to bloggers with the same party affiliations

source: Ulicny, Kokar, Matheus, (2010)
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Social Network Analysis

Communication within an organization

Intra-organization communication before and after imple-

menting a content management system (Garon et al 1997)
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Early Network Analysis in Social Science

Linton Freeman (1996), Some Antecedents of Social Network Analysis

Network analysis is applied in Educational Psychology, Child Development,
Sociology, Anthropology, Political Science, Information Science

Society is not a mere sum of individuals. Rather, the system formed by their
association represents a specific reality which has its own characteristics. . .
The group thinks, feels, and acts quite differently from the way in which its
members would were they isolated. If, then, we begin with the individual, we
shall be able to understand nothing of what takes place in the group

Émile Durkheim, The Rules of Sociological Method (1895)

Durkheim defined “social facts”-

a phenomenon that is created by interactions of individuals but it
is independent of any individual
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Network Descriptive Analytics
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Network Descriptive Analytics

What is the structure of the Network? How does the network look like?

What is the magnitude of the graph?

How are the edges organized?

How do vertices differ?

Does Network location matter?

Are there underlying patterns?

What process shape these networks?

How does the network structure shape the network function?

What is the underlying reason for this structure?

How can we exploit the structural features of the network?
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Network Descriptive Analytics

Features of the network

Local-Level Features

Large scale-features

Global Features

Order, size, density

Average degree, degree sequence, degree distribution

Vertex positions and centrality

Shortest loop density (triangles)

Connectivity of the network

Shortest path, radius, diameter

Small world graphs
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Network Descriptive Analytics: Magnitude

Network magnitudes have direct impact on the storage, computation, and
communication, visualization complexity of the network

Order of Graph: Number of vertices

expandedramblings.com

Size of Graph: Number of edges

February 2014

source: V. Podobnik @ ResearchGate

Density of the Network Ratio of number of edges present in the network to
number of edges possible in (simple) network

Suppose G = (V ,E ), |V | = n, |E | = m d(G ) =
m(
n
2

)
d(G) = 4

6

A single parameter to compare connectivity of two graphs

Very useful in comparing subgraphs - Clusters are dense subgraphs

A clique has density 1, an independent set has density 0
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Degrees and Average Degree

Degree of a vertex v : is number of edges adjacent to v , d(v) = |N(v)|

in-degree and out-degree, in and out-neighborhood in digraphs

In a bipartite graph G = (A,B,E ) degree of v ∈ A is usually normalized by |B|
source: Aaron Clauset @ UC Boulder

Average degree is the average degree over all vertices

dav (G ) =

∑
v∈V d(v)

n
=

2m

n
= 2d(G )
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Clustering Coefficient and Transitivity

Clustering Coefficient of v ,C (v) =
|E (G [N(v)])|(

d(v)
2

)
E (G [N(v)]) is edges in graph induced by N(v)

G[N(v)]

N(v)

v

C(v) = 3
3+3 = 1

2

clustering coefficient of graph C (G ): average clustering coefficient over all nodes

In some text C (G ) is defined as C (G ) =
3× t(G )∑

v

(
d(v)
2

)
t(G ) is the number of triangles in G

Transitivity is the overall probability of nodes adjacent to a node being adjacent

Reveals existence of tightly connected communities (clusters/cliques)
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Heavy-Tailed Degree Distributions
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Exploring Degree Distribution

Degree Distribution

Pr(k): Probability that a randomly chosen vertex has degree k

5

2

3 1

3

1

4

3 k Pr(k)

1 2/8

2 1/8

3 3/8

4 1/8

5 1/8

6 0

7 0

source: Aaron Clauset @ UC Boulder

Degree distribution of a network describe its structure

It is also used to determine the appropriate synthetic graph generation, to
explain the observed structural patterns

Typically real-wold graphs have heavy-tailed (power law) degree distributions

Statistical signature of power and heavy tail: linear plot on a log-log scale
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Exploring Degree Distribution

Pr(k): Probability that a randomly chosen vertex has degree k

Simple pdf:
Pr(k) vs. k

dav dmax

Semilog x pdf:
logPr(k) vs. k

loglog x pdf:
logPr(k) vs log k

complementary cdf:∑n
i=k Pr(j) vs. k
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Exploring Degree Distribution

Pr(k): Probability that a randomly chosen vertex has degree k

complementary cdf: Pr(deg ≥ k) =
∑n

i=k Pr(deg = j) vs. k

Complementary cdf is monotonic, smoother than pdf and reveals more info

90% vertices have degree ≤ 67 (accounting for 53% all edges)

1% vertices have degree ≥ 169 (accounting for 90% all edges)

Imdad ullah Khan (LUMS) Social Networks Analysis 24 / 139



Heavy-Tailed Degree Distributions

Not Heavy-Tailed distribution
(e.g., normal, Poisson
distributions) are good for
modeling many real-world
quantities . . . but not degree
distributions

If mean/average is µ then
probability of value x ,
Pr(x) ∝ e−(x−µ)2

▷ exponentially fast decay as x
moves away from µ

log(Pr(x)) ∝ −(x − µ)2 =⇒
log(x) vs log(Pr(x)) plot has
strong curvature!

source: Michael Kearns @ UPenn
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Heavy-Tailed Degree Distributions

One mathematical model of a
typical “heavy-tailed”
distribution: is the Power Law
distribution with exponent β
Pr(x) ∝ 1

xβ

▷ exponentially fast decay as x
increases

log(Pr(x)) ∝ −β log(x) =⇒
log(x) vs log(Pr(x)) plot is a
straight line!

source: Michael Kearns @ UPenn
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Exploring Degree Distribution

Nearly all real-world networks have a heavy-tailed degree distribution

source: Michael Kearns @ UPenn
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Exploring Degree Distribution

Nearly all real-world networks have a heavy-tailed degree distribution

source: Border et al. (2009): Graph structure in the web
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Exploring Degree Distribution

Nearly all real-world networks have a heavy-tailed degree distribution

source: Jure Leskovec, Stanford CS224W

The dashed lines have slopes (A) βA = 2.3, (B) βB = 2.1 and (C) βC = 4
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Exploring Degree Distribution

Nearly all real-world networks have a heavy-tailed degree distribution

source: Michael Kearns @ UPenn
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Network Connectivity Analytics
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Connectivity Analytics

In social network analysis, understanding connectivity is crucial to identifying the
resilience and robustness of a network. Key concepts include:

Connectivity coefficient: Minimum number of nodes needed to remove to
disconnect a graph (useful in network fragility and robustness analysis)

Connectivity: Node X is reachable from node Y OR Y is reachable from X

Strong connectivity: Node X is reachable from node Y AND node Y is
reachable from node X

Fully connected graph: Each node has edges to all other nodes in the graph

Clique: A subset of vertices in which every two distinct vertices are adjacent

Terminal node: A node with no outgoing edges

Unreachable node: A node with no ingoing edges

Imdad ullah Khan (LUMS) Social Networks Analysis 32 / 139



Shortest Path, Geodesic Distance, Radius and Diameter of a Network

Geodesic distance d(u, v): distance between u and v is the length of the shortest
path b/w u and v

Underlying assumption that things being equal communication takes place using
shortest paths

Some measures of graph connectivity (reachability) compare it to network density

Average distance: The average shortest
path over all pairs of vertices

ℓG =

∑
u,v∈V d(u, v)(

n
2

)
A measure of network cohesion,
efficiency of communication

Indicates how far apart any two
nodes are on average

Network diameter: The longest geodesic distance between a
pair of vertices

dia(G ) = maxv maxu d(v , u)

Network radius: The minimum maximum distance of a vertex

rad(G ) = minv maxu d(v , u)

dia(G) = 6

rad(G) = 4

Denser networks are likely to have small diameter and vice versa
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Small World Phenomenon
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Small World Phenomenon

Real-world networks though are very sparse yet their diameters are typically small

A small world network is one in which most pairs of nodes are not adjacent
(sparse) but they have larger clustering coefficients and pairs are reachable in a
few hops (low diameter)

Small world graphs are in-between random graphs and regular graphs

Regular graphs: All nodes have equal degrees

Erdös-Renyi graph G (n, p): n nodes and a pair is adjacent with prob. p

G (n,m) graphs: Randomly from all graphs on n nodes and m edges
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Small World: Milgram’s Experiment

This phenomenon was first popularized by Stanley Milgram’s experiment in the
1960s, which suggested that people are connected by an average of six
acquaintances—coining the phrase “six degrees of separation.”

Random individuals in Omaha NB were asked to deliver a letter to a target
person in Boston MA – Participants could only send the letter to someone they
knew on a first-name basis

Average lengths of successful chain was about 6

Many did not reach and many reached via the same intermediaries
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Real-World Examples of the Small World Phenomenon

Many real-world networks exhibit small-world properties

Facebook Study (2016) found that the average degree of separation
between any two users was 3.57 – Most users are separated by a small
number of connections, despite the size of the network

Professional networks (e.g., LinkedIN) show a small-world effect, where
users are typically 2 to 3 hops away within industries

Neural networks in the brain are highly clustered with short path lengths,
enabling efficient signal transmission across regions

The World Wide Web demonstrates small-world characteristics

Email communication networks studies have found that users are often
separated by around 5 to 6 steps
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Watts-Strogatz Model of Small-Worlds

The Watts-Strogatz model generates small-world graphs with following features

A small average path length (similar to random graphs)

A high clustering coefficient (similar to regular lattices)

Allows for the emergence of “small-world” properties from a regular graph

Social Networks: Helps to model human social networks, where people are
often connected to close friends and a few distant connections

Neural Networks: Used in modeling brain networks, where neurons are highly
clustered but also able to communicate efficiently over longer distances

Infrastructure Networks: Applied in studying the robustness and
communication efficiency in transportation or utility networks

These networks exhibit both local clustering and global reachability, essential for
efficient network communication.
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Watts-Strogatz Model of Small-Worlds

Watts-Strogatz Model: Generation Process

Start with a regular ring lattice R(n, k) on n nodes, where each node is
connected to its k nearest neighbors (k/2 on either side)

For each edge, with probability p, rewire the edge to a random node (from
(u, v) to (u,w) for randomly chosen w) ▷ Randomly rewiring breaks
regularity, creates shortcuts that significantly reduce the average path length

The network still retains a high clustering coefficient but has much shorter
average path lengths, resembling small-world networks
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Clustering Coefficient and Average Path Length

E0 = |E (R(n, k))| = nk/2 Rewiring introduce ∼ pnk/2 non-lattice edges

L(p) : the average length of shortest paths between all pairs of nodes

C (p) : fraction of a node’s neighbors that are also neighbors of each other

For a regular lattice (p = 0), L(0) ≃ n/2k

For a random graph (p = 1), L(1) ≈ ln n/ln k

As p increases, the path length decreases, mimicking
random graphs’ behavior

For a regular lattice (p = 0),
C (0) = 3(k−2)/4(k−1)

For a random graph (p = 1), C (1) → k/n−1

As p increases, the random rewiring reduces the
local clustering

Watts & Strogatz (1998)
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Strength of Weak Ties

In many networks all edges are not the same

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0446source: towardsdatascience.com

Structure of human egocentric social networks

Number of people included in each circle increases, but the frequency of
contact and emotional closeness declines, with each layer

The outermost layer (5000) was identified by face recognition experiment
(Num of faces that can be recognized as known by sight)

Biological networks: tie strength based on biochemical interaction

Computer networks: based on link bandwidth
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Strength of Weak Ties

Granovetter,’s “The strength of weak ties”: “Most job seekers (study subjects)
found jobs through an acquaintance (weak tie), rather than a close friend (strong
tie)”

Information at end-points of a strong tie is nearly identical
▷ frequent synchronization

weak tie could help communication of novel information
▷ rare synchronization

Acquaintance can more likely inform of “new” job opportunities

There are some vertices (and edges) that act as bridges between network
segments, they are important for communication and explain the small-world
phenomena in many network
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Bridges

There are some edges that act as bridges between network segments, they are
important for communication and explain the small-world phenomena in many
networks

An edge (i , j) is a local bridge if i and j have no friends in common

source: Frank Dignum @ Umea University
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Preferential Attachment

A mechanism in which a quantity (e.g. wealth, credit, degree) is distributed
among objects according to how much they already have

aka rich gets richer, early bird advantage, cumulative advantage

source: Dr. Giorgos Cheliotis @ NUS
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Preferential Attachment

In networks generated via preferential attachment process a great majority of new
edges are incident to nodes with an already high degrees - degrees of these nodes
increase disproportionately

Results in network with few very high and majority low degrees nodes

These networks have long-tailed degree distribution

Tend to have small-world structure

Transitivity and strong/weak tie characteristics are not necessary to explain
small-world structure

source: Dr. Giorgos Cheliotis @ NUS
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Barabási–Albert model

Generate random networks using preferential attachment process

WWW, citation networks, the Internet, and some OSN have long-tail degree
distribution ▷ BA model tries to explain them

Initialize with a complete graph on m0 nodes

Each new node has m ≤ m0 edges (dangling)

A dangling edge is adjacent to an existing node vi with probability pi =
d(vi )∑
j d(vj)

High degree nodes quickly accumulate more edges ▷ rich get richer

Barabassi: (2009) Scale-Free Networks: A Decade and Beyond

degree distribution P(k) ∼ k−3 ▷ Power law with scale parameter 3
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Three Degrees of Influence
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Three Degrees of Influence in friendship network

Influence in social networks extends to three degrees
(Christakis and Fowler):

First degree: Direct influence on a person

Second degree: Influence on a friend of a friend

Third degree: Influence on a friend of a friend’s friend

Beyond the third degree, influence becomes negligible. This phenomenon explains
why certain behaviors, such as happiness or political opinions, can spread within a
network, but influence dissipates with distance.
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Six Degrees of Separation and Three Degrees of Influence

While Six Degrees of Separation suggests that everyone is connected through a
chain of acquaintances, the Three Degrees of Influence principle shows that
influence in social networks is much more limited

The small world effect suggests a network of tightly clustered communities, but
the influence effect shows that behaviors or information often fail to propagate
beyond three steps

The interplay between these two concepts highlights:

Global connectivity (Six Degrees) vs. local influence (Three Degrees)

Information or influence spreads quickly within small communities, but only
weakly between distant communities

Influential nodes (e.g., key people in the community) are often more critical
for spreading influence than the total number of connections

Thus, although people are globally connected, real influence is typically confined
to a much smaller, local network.
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Large-Scale Network Structure
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Large-Scale Network Structures

Vertex-level structural measures (degree, centrality) are local and don’t
reveal the global structure of the network

Network-level measures (average degree, clustering coefficient, radius,
diameter) reveal network shape but can be unstable (sensitive to
non-uniformity)

Vertex level measures (distributions thereof)
provide some insights into structural heterogeneity,
e.g. degree/centralities distribution

Don’t reveal organization patterns, do high degree
nodes form cliques?

Graph measures over aggregate, vertex measures
over disaggregate

Nearly all value of clustering coef-
ficient comes from the clique
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Heterogeneity in Networks

Nodes in a social networks can
have attributes like gender, age,
political affiliation, interests, ...
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Network heterogeneity: Understanding how nodes differ in terms of attributes

What is network’s organizational pattern of structural heterogeneity?

Quantify the tendency of vertices with similar characteristics to be found
close to each other in network (or the lack of this property)

Homogeneous and Heterogeneous
Mixing: Analyzes how vertices with
different attributes interact

homogeneous heterogeneous
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Social Influence and Social Selection – Homophily and Hetrophily

Two important phenomena in Sociology

Social Selection: Individual’s attributes
drive the interaction with others

Social Influence: Interactions among
people shape people’s attributes

Nodes characteristics and network structure are highly interlinked

Time 1 Time 2

Social Selection

Time 1 Time 2

Social Influence

Homophily: Connections among nodes having same attribute values
▷ assortative mixing

Heterophily: Connections among nodes having different attribute
▷ disassortative mixing

‘major’ attribute is
homophilic

‘gender’ attribute
heterophilic
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Community Structures in Networks
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Graph Structures in Social Media: Cliques and Circles

In social networks, friendship networks can exhibit specific graph structures

Cliques: Represent tightly-knit groups of friends, family, or colleague

▷ A small group of Facebook friends who frequently interact with each
other’s posts forms a clique

Circles: Looser connections where a user is connected to multiple groups
but not all connections are mutual. Represents broader social connections

▷ A person may belong to multiple circles such as work colleagues, school
friends, and interest-based groups, with varying degrees of overlap

Analyzing graph structures like cliques and circles helps understand community
dynamics and the diffusion of information in social networks

Communities are critical in understanding the flow of influence because
influence tends to spread faster within highly connected groups

Community structure can impact the rate of adoption of behaviors or ideas,
especially when a node in one community influences a node in another

Networks with strong clustering tend to have robust diffusion of information
within communities, which can then spread to other groups
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Clusters in Graphs and Community Structure

Modular or community structure in networks: homogeneous building blocks of
the larger heterogeneous structure

Communities form through a combination of factors such as homophily,
geographical proximity, or shared interests

Cluster: A dense subgraph within a graph

Cohesion: Nodes are more similar/adjacent to other nodes in the same cluster

Separation: Nodes in a cluster are dissimilar to nodes in other clusters
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Communities in Graphs

Modular or community structure in networks: homogeneous building blocks of
the larger heterogeneous structure

People in the same community share common interests in clothes, music,
beliefs, movies, food, etc.

They influence each other strongly

Community structure alone is a single level of organization and reveals little
information about structure within and between communities

Hierarchical community structure e.g. CS department inside SSE inside LUMS
inside Lahore ...
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Core-periphery Structure in Graphs

Central dense communities surrounded by weaker connections

The network could still be modular, where each module
has a local core-periphery structure

Recall the bow-tie structure of web graph is actually
this pattern

Cores can be identified visually ▷ Small networks

It can be examined by whether highly centrality nodes
are connected to other central nodes, i.e. centralities
used as proxy for core nodes

A modular division of the classic political blogs network on the left, and the same network on the right
but with core and peripheral nodes within each module highlighted
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Linear Hierarchy Patterns

When nodes are ordered into a linear hierarchy (each node has a level)

Nodes at level k tend to connect only to those at levels k ±∆

An ordered pattern can be see in such graphs

Social interactions among people are ordered with respect to people’s ages

source: Prem, Cook, & Jit (2017) Profecting social contact matrices in 152 countries using surveys and demographic data
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Community Structure in Networks

Generally, clusters are
non-overlapping

But social communities
may overlap

People can belong to
multiple communities

In the same community, two nodes can reach each other in three steps

For different communities, two nodes may have distance more than three

For two overlapping communities, two nodes can reach each other by at
most six steps
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Community Structure in Networks

Dependence on number of friends and connectivity of friends

x and y both have 3 friends in a group

x ’s friends are independent

y ’s friends form a clique

Question: Who is more likely to join the
group?

Information argument [Granovetter 1973]: Unconnected friends give
independent support.

Social capital argument [Coleman 1988]: Safety/trust advantage in having
friends who know each other.

In LiveJournal, community joining probability increases with more
connections among friends in the group.
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Applications of Community Detection

Community detection in online social networks has numerous applications

Targeted Advertising to specific interest groups or communities

Communities are used to recommend products or services that are popular
within a user’s network (e.g., Netflix’s recommendation engine uses
community structure to suggest shows).

Identify nfluential communities that drive political opinion or organize
collective actions

Communities can also help detect anomalous behavior in networks (e.g.,
fraud rings or spam networks), as fraudulent entities often cluster in distinct
communities
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Quantified Community Descriptions
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Connection Based Community Description

Cohesion: More connections inside each community

Separation: Less connections between different communities

This is a generic requirement, there are many specific interpretations of it
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Connection Based Community Description

Let A = (a)ij be the adjacency matrix of G = (V ,E )

Let C1,C2, . . . ,Ck be a partition of V . For U,W ⊂ V , Define

E (U,W ) =
∑

i∈U, j∈W

aij (number of edges with one endpoint each in U and W )

Condition 1 (Radicchi et al. 2004): Ci is a community in the weak sense if
the number of internal connections for Ci is greater than the number of
external connections to other communities E (Ci ,Ci ) > E (Ci ,Ci )

Condition 2 (Hu et al. 2008): Ci is a community in the most weak sense if
the number of internal edges within Ci is greater than the number of edges
connecting to any other community E (Ci ,Ci ) > maxj ̸=i E (Ci ,Cj)

Condition 3 : Ci is a community if each node in Ci has more connections
inside than connections to outside ∀v ∈ Ci , E (v ,Ci ) > E (v ,Ci )

Condition 4: Ci is a community if each node in Ci has more connections
inside than connections to any other community
∀v ∈ Ci , E (v ,Ci ) > maxj ̸=i E (v ,Cj)
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Relationships Among Connection-Based Conditions

The four conditions can be viewed as hierarchical:

Condition 1: Internal connections > External connections

Condition 2: Internal connections > External connections to any other
community

Condition 3: Each node’s internal connections > External connections

Condition 4: Each node’s internal connections > Connections to any other
community
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Metrics for Subset Connectedness

Vertex Subset or Group connectedness refers to the extent to which members of
a group are interconnected. Various metrics can quantify connectedness in
networks:

Density: The ratio of actual connections within the group to the maximum
possible number of connections

Density = 2Ei

|Vi |(|Vi |−1) Ei is the number of edges in the subset Vi

Average Degree: Average connections per node within group

Clustering Coefficient: Measures the degree to which nodes tend to cluster
together, forming triangles.
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Quantifying Cluster Quality

Broadly, we want dense (more intra-cluster edges) and well-separated (few
inter-cluster edges) clusters

Let G = (V ,E ), |V | = n, and C a subset of nodes, |C | = nc

G [C ]: the subgraph induced by C

G [C ,C ]: bipartite graph between C and C

mc = |E (G [C ])| number of edges inside C

fc = |{(u, v) ∈ E : u ∈ C , v /∈ C}| number of frontier edges

A visualization of Malysia and US blogospheres (nodes are blogs and edges are
links to blogs). Left reveals importance/credibility/popularity of blogs, while the
right visual (two dense clusters with little interaction with the other cluster) shows
that bloggers are more likely to link to bloggers with the same party affiliations

source: Ulicny, Kokar, Matheus, (2010)
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Quantifying Cluster Quality

Goodness of a cluster

Intra-cluster density of C aka internal density δint(C ) = mc/(nc2 )

Inter-cluster density of C aka cut ratio δext(C ) = fc/nc (n−nc )

Conductance of C , fraction of total edge volume pointing outside C
conductance(C ) = fc/2mc+fc

Quantifying Clustering Quality

All above were goodness of a community, for the whole network, compute their
weighted average

metric(G ) =
∑

C∈communities(G)
nC
n ×metric(C )
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Modularity of Communities

Modularity, a quality measure of a community structure is based on the strength
of a given vertex partition – It compares the density of edges within communities
to the expected density in a random graph

Let A be adjacency matrix of G = (V ,E ) and C1,C2, . . . ,Ck be a partition of V

Q =
1

2|E |
∑
i,j∈V

(
Aij −

kikj
2|E |

)
δ(ci , cj)

ki and kj are the degrees of nodes i and j

δ(ci , cj) is 1 if nodes i and j are in the same community

If an edge were distributed at random, it has endpoint i with probability ki
2|E | and

endpoint j with probability
kj

2|E |

Hence, it lies between (i , j) with probability ki
2|E | ·

kj
2|E |
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Modularity Function

Let A be adjacency matrix of G = (V ,E ) and C1,C2, . . . ,Ck be a partition of V

Q =
1

2|E |
∑
i,j∈V

[
Aij −

kikj
2|E |

]
δCi ,Cj =

1

2|E |
∑
ci=cj

[
Aij −

kikj
2|E |

]

=
1

2|E |
∑
ci

[
2|E ci

in | −
(2|E ci

in |+ |E ci
out |)

2

2|E |

]

=
∑
ci

[
|E ci

in |
|E |

−
(
2|E ci

in |+ |E ci
out |

2|E |

)2
]

Equivalently, Q =
k∑

s=1

[
E (Vs ,Vs)

E (V ,V )
−
(
E (Vs ,Vs) + E (Vs , V̄s)

E (V ,V )

)2
]

where E (U,W ) =
∑

i∈U,j∈W Aij
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Conductance of Graphs

Conductance of Graphs is a measure used to evaluate the quality of graph
partitions. It helps in understanding how easily information can flow between
different parts of the network.
Key characteristics:

Conductance is defined as the ratio of the number of edges that go between
two communities (partitions) to the number of edges that are entirely within
the communities.

High conductance means that the communities are well-connected to the
rest of the network, making it easier for influence or information to spread
across communities.

Low conductance indicates that there is limited interaction between
communities, which can restrict the spread of influence.

Conductance is an important concept in community detection and influence
maximization, especially when determining how influence can cross boundaries
between communities.

Imdad ullah Khan (LUMS) Social Networks Analysis 72 / 139



Community Detection Algorithms
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Community Detection Algorithms

We want to identify groups (or communities) of nodes in a network such that
nodes within the same group are more densely connected to each other than to
nodes outside the group.

Networks (graphs) are ubiquitous: social, biological, information,
infrastructure systems.

Community detection helps reveal latent structure, functional modules, or
clusters in such networks.

Algorithms vary in:

Optimization objective: modularity, likelihood, label agreement.
blueApproach: greedy, hierarchical, spectral, probabilistic.
Scalability and resolution: efficiency on large graphs, ability to detect
fine-grained or coarse communities.

Understanding community structure aids in compression, recommendation,
epidemic modeling, fraud detection, and more.
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Graph Partitioning and Community Detection

Community detection aims to divide a graph into subgraphs (communities) with dense
intra-group connections and sparse inter-group connections.

Goal

Find partitions C1,C2, . . . ,Ck of the node set V such that edges are denser within
communities than between them.

Two Main Approaches:

Optimization-based: Maximize an objective like modularity.

Clustering-based: Use similarity metrics to group nodes.

Examples of Optimization-based Methods:

LP Relaxation: Relax integer partitioning into a continuous linear program.

Modularity Optimization: Find a partition maximizing the modularity function Q:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci , cj)

where A is the adjacency matrix, ki is the degree of node i , and ci is its community.
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Clustering-Based Community Detection

Clustering methods group nodes using similarity derived from adjacency or embedding.

k-Means Clustering:

Assigns nodes to k groups by minimizing intra-cluster variance.
Often applied on graph embeddings.

Agglomerative Clustering:

Each node starts in its own cluster; merge clusters based on similarity.

Hierarchical Clustering:

Builds a tree (dendrogram) of nested communities.
Can be agglomerative (bottom-up) or divisive (top-down).

Spectral Clustering:

Uses eigenvectors of the graph Laplacian to embed nodes.
Clustering is then applied in the spectral space.
Low eigenvalues of the Laplacian correspond to smooth variations
across well-connected nodes—ideal for detecting communities.
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LP Relaxation for Community Detection: Intuition

Community detection is often formulated as a discrete optimization
problem (e.g., minimize cut, maximize modularity). These are NP-hard in
general.

Idea

Relax the discrete constraints (like binary variables indicating cluster
membership) into continuous variables and solve using Linear
Programming.

Encode community assignment using indicator variables xi ,c ∈ {0, 1},
where xi ,c = 1 if node i is in community c .

Constraints such as: each node belongs to exactly one community.

Objective encodes edge-based cost: e.g., minimize inter-cluster edge
weights.

Relax xi ,c ∈ [0, 1] to make problem solvable via LP.

Goal: Efficient approximation of optimal community structures.
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LP Relaxation for Community Detection: Formulation

Consider the Min-k-Cut problem: partition graph G = (V ,E ) into k
communities minimizing total edge weight across communities.

Let xij = 1 if nodes i and j are in the same community, else 0.

Integer Program (IP):

min
∑

(i ,j)∈E

wij(1− xij) (penalize inter-community edges)

subject to: xij ∈ {0, 1} ∀i , j

xij + xjk − xik ≤ 1 ∀i , j , k (transitivity constraint)

LP Relaxation: Replace xij ∈ {0, 1} with xij ∈ [0, 1]

LP now solvable in polynomial time

Use rounding or spectral post-processing to extract communities
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LP Relaxation: Interpretation and Limitations

Interpretation of LP Solution

The relaxed solution assigns “soft” similarity scores between nodes.

xij close to 1 ⇒ nodes i and j likely in same community.

Can view xij as a similarity matrix, usable for spectral clustering or rounding.

Pros

Convex, globally optimal solutions

Can incorporate complex constraints

Useful for approximating NP-hard problems

Limitations

May yield fractional results (need post-processing)

Doesn’t scale well for very large graphs

Objective must be linear (limits expressiveness)
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Newman’s Modularity Optimization

Modularity Q measures the strength of division of a network into communities.
High modularity means dense connections within communities and sparse
connections between them.

Modularity Function

Q =
1

2m

∑
i,j

(
Aij −

kikj
2m

)
δ(ci , cj)

Aij : adjacency matrix

ki : degree of node i

m: total number of edges

δ(ci , cj) = 1 if i and j are in the same community
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Newman’s Modularity Optimization

Greedy Community Merging

At each step, merge the pair of communities Ci ,Cj that yields the maximum
increase in modularity ∆Q:

∆Q =

[
eij
m

− 2
aiaj
(2m)2

]
where

eij : number of edges between communities i and j

ai =
∑

k∈Ci
kk : total degree of community i

Intuition: Communities with many edges between them relative to a random
model merge first.

Repeat until no merge increases modularity.
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Newman’s Modularity Optimization

Complexity and Limitations

Naive implementation is O(n3) due to repeated modularity
calculations.

Works well for small to medium networks.

Can get stuck in local maxima (greedy).

The greedy hierarchical approach is conceptually simple and provides
interpretable communities, but computational improvements are needed
for large networks.
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Clauset-Newman-Moore Algorithm

The Clauset-Newman-Moore Algorithm is a fast greedy hierarchical
modularity optimization that improves on Newman’s basic approach by
using efficient data structures.

Key idea: Maintain a max-heap or priority queue of modularity gains
for community pairs.

Update modularity gain after each merge efficiently.

Modularity Gain (Same as Newman)

∆Qij =
eij
m

− 2
aiaj
(2m)2
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Clauset-Newman-Moore Algorithm

Data Structures for Efficiency

Sparse adjacency representation: Store only non-zero ∆Qij

Max-heaps to quickly find pair (i , j) with max ∆Q

After merging Ci and Cj , update ∆Q values incrementally

O(m log2 n)

for a sparse network with n nodes and m edges.

Much faster than naive greedy approach.

Can handle large sparse networks efficiently.

Still greedy and may get stuck in local maxima.

The CNM algorithm is widely used when a scalable, fast community
detection method is needed without sacrificing too much accuracy.
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Louvain Algorithm: Step 1 — Initialization

Initialization:
Assign each node i ∈ V to its own community Ci = {i}.

Initially, there are N communities for N nodes.

Modularity Q for a partition is defined as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci , cj)

where

Aij = edge weight between nodes i and j
ki =

∑
j Aij = degree of node i

m = 1
2

∑
i,j Aij = total edge weight in the network

ci = community assignment of node i
δ(ci , cj) = 1 if ci = cj , else 0

Starting with fine-grained communities (one node per community) allows the
algorithm to explore local improvements efficiently.
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Louvain Algorithm: Step 2 — Local Moving Phase

For each node i , consider moving i from its current community C to the
community C ′ of a neighbor.

Compute modularity gain ∆Q when moving i to C ′:

∆Q =

[
Σin + ki,in

2m
−

(
Σtot + ki

2m

)2
]
−

[
Σin

2m
−
(
Σtot

2m

)2

−
(

ki
2m

)2
]

where

Σin = sum of weights of edges inside community C ′

Σtot = sum of weights of edges incident to nodes in C ′

ki = degree of node i
ki,in = sum of weights of edges from i to nodes in C ′

Move i to the community C ′ that yields the largest positive ∆Q.

Repeat for all nodes until no further improvement.

Intuition

This step greedily maximizes modularity locally by relocating nodes, balancing
internal density and total degree.

Imdad ullah Khan (LUMS) Social Networks Analysis 86 / 139



Louvain Algorithm: Step 3 — Community Aggregation and Iteration

Once local moving stabilizes, build a new network:

G ′ = (V ′,E ′)

where each node in V ′ represents a community from previous step.

Edge weights between nodes in G ′ are the sum of edge weights between
corresponding communities:

wCi ,Cj =
∑

u∈Ci ,v∈Cj

Auv

Repeat Step 2 (local moving) on this aggregated network.

Continue iterating until modularity no longer improves.

.

By aggregating communities, the Louvain algorithm uncovers hierarchical
structure, detecting communities at multiple scales efficiently.
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Louvain vs. CNM: Community Detection Algorithms

Both Louvain and CNM are greedy algorithms for optimizing modularity — a
common quality function for community detection.

Clauset–Newman–Moore (CNM):

Hierarchical agglomerative method.
Starts with singleton communities and repeatedly merges pairs with
the highest modularity gain.
Suffers from getting trapped in local optima.

Louvain Algorithm:

Uses a two-phase iterative process:

Local Modularity Optimization: Move nodes to neighboring
communities greedily.
Community Aggregation: Collapse communities into super-nodes and
repeat.

Can escape poor local optima by re-optimizing after collapsing.

Key Implementation Advantage: Louvain’s repeated re-optimization over
progressively coarsened graphs improves both speed and modularity quality.
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Louvain vs. CNM: Performance and Scalability

Comparison between the two algorithms

Feature Louvain CNM

Strategy Local greedy + Hierarchical Agglomerative Hierarchical
Modularity Quality Typically Higher Often Lower
Complexity (sparse) O(n log n) O(n log2 n)
Speed Faster Slower
Scalability High (Millions of nodes) Moderate (Up to 100K nodes)
Heuristics Multi-level Coarsening Pairwise Merging

Louvain improves upon CNM on both scalability and quality due to its
multi-phase re-optimization approach.
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k-Partition Problem

Given a set of n points, P ⊂ Rm and k ∈ Z, number of clusters

Assume Euclidean distance measure over P ▷ ℓp, cosine can be used

For a subset Ci ⊆ P, denote by ci the centroid of Ci ci := 1
|Ci |

∑
x∈Ci

x

Centroid is the arithmetic mean of m-dim vectors (coordinate-wise mean)

Goodness of a k-partition C = {C1,C2, . . . ,Ck} is measured by

sum of squared error, SSE (C) =
∑k

i=1

∑
x∈Ci

∥x − ci∥2 also called Within SSE

Problem: Find a k-partition C∗ of P with minimum SSE

Brute force approach (try all
(
n
k

)
partitions) is not feasible
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k-means Algorithm

A basic greedy algorithm for the k-Partition problem

Algorithm : k-means algorithm (P, k)

Select k random points as initial centroids

▷ Alternatives of centroids can be used

while Stopping criterion is not met do ▷ Many choices

Assign each point x ∈ P to the centroid closest to x

▷ closeness w.r.t the similarity measure

▷ Assignment Step

Compute the centroids of (modified) clusters

▷ Refitting Step
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k-means Algorithm: Illustration

Refitting

Assignment
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k-means Algorithm: Runtime

Algorithm : k-means algorithm (P, k)

Select k random points as initial centroids ▷ Alternatives of centroids can be used
while Stopping criterion is not met do ▷ Many choices

Assign each point x ∈ P to the centroid closest to x
▷ closeness w.r.t the similarity measure

Compute the centroids of (modified) clusters

Each iteration: O(nk) distance computations

For each x ∈ P compute distances to centroids and find closest

Recompute centroids: in total takes O(n) time

number of iterations is t =⇒ total runtime is O(tkn)

t depends on the stopping rule, generally, t, k ≪ n

Total time: O(n) distance computations ▷ very efficient
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k-Medians algorithm

Median is less sensitive to outliers than mean

We use ’median of clusters’ instead of centroids as clusteroids

Let medi be the ‘median’ of a cluster Ci .

Goodness of a k-partition C = {C1,C2, . . . ,Ck} is measured by

Smed(C) :=
k∑

i=1

∑
x∈Ci

∥xi −medi∥2

Problem: Find a k-partition C∗ of P with minimum Smed(·)

Various definitions of median for points in higher dimensions

Oja Median, Simplicial Median, 1-Median, Coordinate-wise median
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k-Medians algorithm

We give a generic version of k-medians algorithms

Algorithm : k-medians algorithm (P, k)

Select k points as initial medians ▷ randomly or arbitrarily

while Stopping criterion is not met do ▷ many choices

Assign each point x ∈ P to the median closest to x ▷ closeness w.r.t

the similarity measure

Compute the medians of (modified) clusters
▷ using the adopted definition of median
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Partition Around Medoids

A pseudocode of Partition Around Medoids (PAM) is as follows:

Algorithm : Partition Around Medoids (P, k)

Select k points as initial clustroids (medoids) arbitrarily

while Stopping criterion is not met do ▷ many choices

Choose a non-medoid point p

Compute change in SSE with replacing a medoid m with p

If the change in SSE is negative, then swap m with p

Runtime is O(k(n − k)2) in each iteration
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Hierarchical Clustering

Hierarchical Clustering

Creates a hierarchy of clusters (multi-level partitions)

returns a set of nested clusters

Generally no requirement of a fixed number of k clusters

Hierarchical method can be

Divisive Approach (Top-Down)

Initially all points are in one huge cluster

In every step one current cluster is split into two

Generates a top-down hierarchy of clusters

Agglomerative Approach (Bottom-Up)

Initially each point is a cluster itself

In every step two clusters are merged into one

Generates a bottom-up hierarchy of clusters
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Hierarchical Clustering

Hierarchical Clustering: Agglomerative and Divisive Approach

Agglomerative Divisive
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Hierarchical Clustering

Output of hierarchical clustering is represented by a dendrogram
(a tree recording the sequence of merges or splits)
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Hierarchical Clustering: Agglomerative Approach

Agglomerative Clustering

Initially each point is a cluster itself

In every step two ‘close by’ clusters are merged into one

Generates a bottom-up hierarchy of clusters

Key considerations:

Representation of clusters

Distance between clusters

The choice of pairs of clusters to be merged

A stopping criterion
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Spectral Clustering: Intuition

Spectral clustering uses the eigenstructure of a graph to reveal hidden
clusters.

Nodes are mapped to a low-dimensional space using eigenvectors of a
matrix derived from the graph (e.g., Laplacian).

Idea: nodes in the same community have similar positions in the spectral
space.

Analogy: Like PCA, but for graphs — preserve connectivity structure rather
than variance.

Once embedded, traditional clustering methods like k-means are applied.

Spectral embedding reveals bottlenecks and well-connected regions in the graph
structure.

Imdad ullah Khan (LUMS) Social Networks Analysis 101 / 139



Spectral Clustering: Graph Laplacian

Let G = (V ,E ) be an undirected graph with:

Adjacency matrix A ∈ Rn×n

Degree matrix D where Dii =
∑

j Aij

Unnormalized Laplacian:
L = D − A

Normalized Laplacians:

Lsym = D−1/2LD−1/2 = I − D−1/2AD−1/2

Lrw = D−1L = I − D−1A

These Laplacians capture smoothness and flow in the graph.

Eigenvectors of L encode important structural info.
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Spectral Clustering: Algorithm

Input: Graph G (or similarity matrix), number of clusters k

Steps:

1 Construct the (normalized) Laplacian L

2 Compute the first k eigenvectors u1, . . . , uk of L

3 Form matrix U ∈ Rn×k with rows ui

4 Normalize rows of U (optional: especially for Lsym)

5 Cluster rows of U using k-means −→ get cluster assignments

Output: Partition of nodes into k communities based on spectral features

Why it works: Low eigenvectors encode smooth cuts with minimal edge crossing
— ideal for identifying well-separated communities.
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Finding Communities: Similarity between nodes

Suppose nodes of G = (V ,E ) are labeled v1, . . . , vn. vi is referred to as i

Let A be the adjacency matrix, i.e. Ai j = A(i , j) = 1 ↔ (vi , vj) ∈ E

Jaccard Index ▷ treating A’s rows as sets

sJ(i , j) =
N(i) ∩ N(j)

N(i) ∪ N(j)
=

∑
k AikAkj∑

k(Aik + Akj)

Consine Similarity ▷ treating A’s rows as vectors

scos(i , j) =

∑
k AikAkj√∑

k A
2
ik

√∑
k A

2
jk

=
d(i , j)√
didj

d(i , j) = |N(i) ∩ N(j)| called co-degree of vi and vj
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Finding Communities: Similarity between nodes

Suppose nodes of G = (V ,E ) are labeled v1, . . . , vn. vi is referred to as i

Let A be the adjacency matrix, i.e. Ai j = A(i , j) = 1 ↔ (vi , vj) ∈ E

Euclidean distance ▷ treating A’s rows as bit-strings

d(i , j) =
∑

k(Aik − Ajk)
2

Normalized Euclidean distance

d(i , j) =

∑
k(Aik − Ajk)

2

d(i) + d(j)
= 1− 2

d(i , j)

d(i) + d(j)

Adjust denominator appropriately when d(i)’s, or d(i , j)’s can be 0
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Finding Communities: Similarity between sets of nodes

Suppose nodes of G = (V ,E ) are labeled v1, . . . , vn. vi is referred to as i

Let A be the adjacency matrix, i.e. Aij = A(i , j) = 1 ↔ (vi , vj) ∈ E

Let X ,Y ⊆ V and s(i , j) be a similarity measure between nodes

Single link ▷ tend to make small clusters SXY = minu∈X ,v∈Y s(u, v)

Complete link ▷ tend to make large clusters
SXY = maxu∈X ,v∈Y s(u, v)

Average link ▷ regular SXY =

∑
u∈X ,v∈Y s(u, v)

|X | × |Y |
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Clustering Methods Share a Common Goal

Across different techniques—k-means, agglomerative, hierarchical, spectral—the
core goal is:

Partition the nodes into groups that are ”similar”

In networks, ”similarity” often reflects:

Structural proximity (connected nodes)
Shared neighborhoods or patterns
Similar roles in the graph

Thus, clustering becomes community detection when:

Similarity is derived from the graph structure.
The resulting clusters correspond to densely connected subgraphs.
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Unifying View: Clusters Are Communities

Community detection is a special case of clustering—just over graph data.

Different clustering methods use different ”lenses”:

k-means: partitions based on node embeddings
Hierarchical: builds nested community structures
Spectral: uses smooth partitions via Laplacian
Agglomerative: merges local dense regions

But they all aim to: Group together nodes that are tightly connected or
structurally similar

When applied carefully, all of these methods become powerful tools for
uncovering hidden communities in graphs.
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Clustering as a Lens on Community Structure

Core idea: Use clustering to discover structure in data.

In networks, this structure is often community-based:

Groups with high internal connectivity
Fewer connections to outside nodes

All clustering methods discussed:

Are unsupervised (no labels)
Operate on representations of nodes (adjacency, embeddings, spectral)
Seek to uncover latent groupings — which in graphs, are communities

Conclusion: Clustering ≈ Community Detection when the similarity signal
reflects structural connectivity.
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Challenges in Community Detection

Community detection, while valuable, faces several challenges in real-world
networks:

Scalability: Social networks are massive, with millions or billions of nodes
and edges. Algorithms must scale efficiently to handle such large data sets
without excessive computational costs

Overlapping Communities: In real life, individuals often belong to multiple
communities (e.g., a user may belong to both a work-related and a
family-related community). Many algorithms struggle to handle these
overlapping structures effectively.

Dynamic Networks: Social networks evolve over time. Algorithms need to
adapt to changes in community structure as new connections form and
existing ones disappear.

incremental algorithms detect communities by updating the structure locally
rather than recomputing the entire solution from scratch
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Overlapping vs Disjoint Community Detection

Clustering based algorithms assume each node belongs to one community. In real-world
networks, nodes may participate in multiple communities e.g., people belong to multiple
groups, such as family, friends, work colleagues, and interest-based communities.

Classical community detection (e.g., CNM, Louvain):

Partition V =
k⋃

i=1

Ci , Ci ∩ Cj = ∅, ∀i ̸= j

Each node belongs to exactly one community.

Overlapping community detection:

∃ v ∈ V such that v ∈ Ci and v ∈ Cj , i ̸= j

Nodes may belong to multiple communities simultaneously.

Realistic modeling: Social actors participate in multiple groups.

Classical modularity optimization unsuitable due to hard partitions.

Requires new representations, algorithms, and evaluation metrics.
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Formal Problem Statement

Given an undirected graph G = (V ,E ), detect a family of communities:

C = {C1,C2, . . . ,Cm}, Ci ⊆ V

with the property that

∃ v ∈ V , v ∈ Ci , v ∈ Cj , i ̸= j

Goal: Find C such that communities are:

Cohesive: nodes in each Ci densely connected.

Overlapping : nodes can appear in multiple Ci .

Evaluation metrics: Overlapping modularity, Omega Index, F1 score for overlaps.
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Clique Percolation Method: Intuition

Cliques: Complete subgraphs Kk of size k .

Communities are formed by percolating or linking adjacent cliques.

Two cliques are adjacent if they share k − 1 nodes.

Chains of adjacent cliques form overlapping communities.

Why?

Cliques represent tightly connected groups.

Overlaps naturally arise as cliques share nodes.
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Clique Percolation Method: Formal Definition

Define the set of all k-cliques:

Kk = {S ⊆ V : |S | = k , and G [S ] is complete}

Define adjacency of cliques:

S ,T ∈ Kk are adjacent ⇐⇒ |S ∩ T | = k − 1

Construct clique graph Gk = (Kk ,Ek), where edges correspond to adjacency.

Communities −→ connected components in Gk :

C = {connected components of Gk}

Each community corresponds to union of nodes in cliques in a component.
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Clique Percolation Algorithm

1 Enumerate all cliques of size k in G (using e.g., Bron–Kerbosch algorithm).

2 Build clique adjacency graph Gk where two k-cliques are connected if they
share k − 1 nodes.

3 Find connected components in Gk .

4 Output communities as unions of nodes in each connected component.

Complexity:

O(f (k, |V |, |E |)), clique enumeration is exponential in worst case.

Practical for moderate k and sparse graphs.
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Clique Percolation Example

k = 3 (triangles)

Two triangles are adjacent if they share an edge.

Overlapping community formed by chaining triangles:

Community =
⋃

adjacent cliques

nodes

Nodes in multiple triangles belong to overlapping communities.

[Include diagram here showing overlapping triangles merging]
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Fuzzy Clustering for Overlapping Communities

Idea: Nodes belong to multiple communities with membership degrees.

Define membership matrix:

U = [uvi ] where uvi ∈ [0, 1],
m∑
i=1

uvi = 1 ∀v ∈ V

Here, uvi represents membership strength of node v in community Ci .

Goal: Minimize objective function (Fuzzy c-means):

J =
n∑

v=1

m∑
i=1

uqvi∥xv − ci∥2

where

ci = center of community i ,

q > 1 = fuzziness parameter,

xv = feature vector for node v .
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Fuzzy Clustering Algorithm

1 Initialize cluster centers {ci} randomly.

2 Update memberships:

uvi =
1∑m

j=1

(
∥xv−ci∥
∥xv−cj∥

) 2
q−1

3 Update centers:

ci =

∑n
v=1 u

q
vixv∑n

v=1 u
q
vi

4 Repeat until convergence.

Output: Soft assignment of nodes to multiple communities.
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Interpreting Fuzzy Memberships

Nodes with high membership in multiple communities belong to overlaps.

Allows modeling of gradations of belonging.

Fuzzy clustering can incorporate node features or topology-based
embeddings.

Suitable when soft boundaries exist between communities.

Limitations:

Sensitive to initialization and parameter q.

May produce memberships that are hard to interpret without thresholding.
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Other Overlapping Community Detection Methods

Label Propagation Variants: Allow multiple labels per node, update
memberships iteratively.

Link Clustering: Cluster edges instead of nodes, naturally overlapping nodes.

Mixed Membership Stochastic Block Models (MMSB):

P(edge (u, v)) =
∑
i,j

πu(i)πv (j)θij

where πu is the membership distribution of node u.
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Summary of overlapping community detection

Overlapping community detection relaxes the disjoint membership
constraint.

CPM leverages clique adjacency for natural overlap detection but is
computationally demanding.

Fuzzy clustering provides soft memberships, accommodating uncertainty
and partial participation.

Choice depends on data nature, network size, and interpretability needs.
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Community Detection in Temporal/Dynamic Networks
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Static vs Temporal Community Detection

Static detection: Given a single graph snapshot

G = (V ,E)

find communities C = {C1, . . . ,Ck} with

k⋃
i=1

Ci = V , Ci ∩ Cj = ∅, i ̸= j .

Temporal detection: Given a sequence of graph snapshots

G = {G1,G2, . . . ,GT}, Gt = (Vt ,Et),

detect a sequence of community partitions

Ct = {C t
1 , . . . ,C

t
kt},

that capture evolving community structure over time.

Key distinction:
Temporal smoothness =⇒ Ct ≈ Ct−1

communities should evolve smoothly rather than jump arbitrarily.
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Formal Problem Statement

Input:
G = {G1, . . . ,GT}, Gt = (Vt ,Et).

Optionally, Vt = V fixed or varying.

Output: Sequence of community assignments

Ct = {C t
1 , . . . ,C

t
kt},

⋃
i

C t
i = Vt ,

with partitions that respect temporal consistency:

maximize
T∑
t=1

(Q(Ct ,Gt)− λD(Ct , Ct−1))

where

Q(·): quality function (e.g. modularity),

D(·): distance between partitions,

λ: trade-off parameter for smoothness.

Goal: Detect meaningful, temporally consistent communities.
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Snapshot-Based Methods

Approach:

Detect communities independently on each snapshot Gt using static
algorithms (e.g., Louvain).

Post-process communities to match clusters across time steps (e.g.,
Hungarian algorithm).

Mathematically:
Ct = argmax

C
Q(C,Gt)

Find matching Mt−1→t : Ct−1 → Ct
to track evolution (splits, merges, births, deaths).

Limitations:

Ignores temporal smoothness during detection.

Matching post-processing can be unstable.
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Evolutionary Clustering Framework

We want to incorporate temporal smoothness explicitly in clustering.

Optimization problem:

Ct = argmax
C

(Q(C,Gt)− λD(C, Ct−1))

where
Q(·) : quality function (modularity, conductance),

D(·) : distance between partitions, e.g., Variation of Information

Variation of Information (VI):

VI (C, C′) = H(C) + H(C′)− 2I (C, C′)

with

H(C) = −
∑
i

pi log pi , pi =
|Ci |
|V |

and mutual information
I (C, C′) =

∑
i,j

pij log
pij
pip′

j

where pij =
|Ci∩C ′

j |
|V | .
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Algorithmic Approaches for Evolutionary Clustering

Example: Evolutionary Spectral Clustering

min
Ut

∥At − UtU
⊤
t ∥2F︸ ︷︷ ︸

fit to Gt

+λ ∥Ut − Ut−1∥2F︸ ︷︷ ︸
temporal smoothness

where

At : adjacency matrix at time t, Ut ∈ Rn×k spectral embedding

Iteratively solve:

U
(r+1)
t = argmin

Ut

∥At − UtU
⊤
t ∥2F + λ∥Ut − Ut−1∥2F

Extract communities by clustering rows of Ut .
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Dynamic Stochastic Block Models (DSBM)

Probabilistic model: At each t, nodes belong to latent communities z
(t)
i .

Edges generated via

P(A
(t)
ij = 1|z (t)i = a, z

(t)
j = b) = θ

(t)
ab

Temporal dynamics:

P(z
(t)
i |z (t−1)

i ) = Markov chain transition probabilities

Inference goal:
max

{z(t)i },{θ(t)}
P({A(t)}, {z (t)}, {θ(t)})

via Expectation-Maximization or Variational Bayes.

Allows modeling birth, death, evolution of communities naturally.
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Incremental and Online Algorithms

Motivation: Large-scale temporal graphs require efficient updates.

Incremental methods:
Ct = Ct−1 +∆t ,

where ∆t updates communities based on changes Et \ Et−1.

Examples:

Label propagation updates with changed edges.

Incremental Louvain by locally refining communities.

Complexity: O(|∆t |), significantly faster than re-clustering.
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Tensor Factorization Methods for Temporal Communities

Tensor representation of temporal graphs:

A temporal network with T snapshots is encoded as a 3D tensor:

A ∈ Rn×n×T , Aijt = A
(t)
ij ,

where A
(t)
ij = 1 if node i is linked to node j at time t, otherwise 0.

Goal: Extract evolving communities via low-rank decomposition of A.
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Canonical Polyadic (CP) Decomposition

Idea: Decompose the tensor into a sum of k rank-1 components:

A ≈
k∑

r=1

λr ur ⊗ ur ⊗ vr ,

Component meanings:

ur ∈ Rn: community membership vector for mode-1 (source nodes)

ur ∈ Rn: same vector used for mode-2 (target nodes, assuming undirected)

vr ∈ RT : temporal activity pattern of community r

λr : importance of component r

Kronecker interpretation: ⊗ denotes outer product, forming rank-1 tensors:

(ur ⊗ ur ⊗ vr )ijt = ur (i) · ur (j) · vr (t)
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Optimization Objective

We minimize the squared Frobenius norm of the approximation error:

min
{ur ,vr ,λr}k

r=1

∥∥∥∥∥A−
k∑

r=1

λrur ⊗ ur ⊗ vr

∥∥∥∥∥
2

F

Solution strategy: Alternating Least Squares (ALS)

Fix two factor matrices, optimize the third

Repeat until convergence

Result: For each r , we get:

ur (i) large ⇒ node i is in community r

vr (t) large ⇒ community r active at time t
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Interpretation and Use Cases

Key insights from CP factorization:

Communities are soft clusters determined by ur

Each cluster evolves over time via vr

Overlapping is allowed — nodes can appear in multiple ur ’s

Use cases:

Detecting evolving functional groups in social or biological networks

Modeling temporal user behavior in recommendation systems

Identifying temporally coherent topics in co-authorship or citation networks
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Evaluation Metrics for Temporal Communities

Quality metrics:
Qt = Q(Ct ,Gt)

static quality at each snapshot.

Temporal smoothness:

S =
1

T − 1

T∑
t=2

(
1− D(Ct , Ct−1)

maxD

)

Combined objective:

J = α
1

T

T∑
t=1

Qt + (1− α)S , α ∈ [0, 1]

Tracking events:

Birth, death, merge, split of communities

Use metrics such as normalized mutual information (NMI) over time
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Summary: Temporal Community Detection

Temporal community detection generalizes static methods by integrating
time and smoothness.

Mathematical formulation balances snapshot quality and temporal
smoothness.

Algorithms include snapshot methods, evolutionary clustering, probabilistic
models, incremental updates, and tensor factorization.

Evaluation requires metrics capturing both quality and temporal consistency.
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Personalized PageRank (PPR) for Community Detection

We can also used random walk based methods like pagerank, the goal is to
identify local communities around seed nodes by biased random walks

Standard PageRank: Stationary distribution π of a random walk with
teleportation:

π = α
1

n
1+ (1− α)P⊤π,

where P is the transition matrix, α teleport prob.

Personalized PageRank: Restart biased towards seed node s:

πs = αes + (1− α)P⊤πs ,

with es the indicator vector for seed s.

Interpretation: πs(i) is the probability of being at node i in a random walk
restarting at s.
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Computing Personalized PageRank

Iterative method (power iteration):

π(t+1)
s = αes + (1− α)P⊤π(t)

s

with initialization π
(0)
s = es .

Convergence: Guaranteed for α ∈ (0, 1) since P is stochastic.

Computational complexity:

O

(
m

α

)
,

where m is number of edges.

Approximate methods: Use push algorithms for scalable local computations.
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Using PPR for Local Community Detection

Idea: Nodes with high πs(i) values are strongly connected to seed s.

Thresholding: Define community

Cs = {i | πs(i) ≥ τ},

where τ controls community size.

Conductance-based refinement: Select τ minimizing conductance ϕ(Cs)

ϕ(S) =
|∂S |

min(vol(S), vol(S̄))
,

with |∂S | edges crossing S and vol(S) =
∑

i∈S di .

Result: Extracts well-connected local clusters overlapping with global structure.
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Advantages and Extensions of PPR

Locality: Efficient for large graphs, focuses on neighborhood of s.

Overlapping communities: Nodes can belong to multiple PPR communities
from different seeds.

Personalization vector: Can generalize restart to multiple seeds or
distributions:

πv = αv + (1− α)P⊤πv ,

where v is a probability vector over nodes.

Dynamic graphs: Incremental PPR methods update πs after graph changes
without full recomputation.
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