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Cryptography

Cryptography is critical for secure communications on the Internet,
privacy, integrity, and authentication

Cryptography encoding and decoding messages

Cipher: A method for encoding messages

Plaintext: The original message to be encoded

Ciphertext: The encoded message

Encryption: The process of encoding messages

Decryption: The process of decoding messages
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Cryptography

Cryptography encoding and decoding messages

In ancient Egypt, the first known use of encryption appeared in hieroglyphs,
where simple ciphers were used to encode royal messages

The evolution of cryptography is marked by key advancements, such as the
Caesar cipher, the development of public-key systems, and the modern use
of symmetric and asymmetric encryption methods
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Introduction to Security in Big Tech

Cybersecurity has become a cornerstone of modern business operations in
major tech companies. With massive user bases, sensitive data handling,
and valuable digital assets, these companies are prime targets for
cyberattacks

Cyberattacks: Increasing frequency of breaches, phishing, and
ransomware attacks

Data Privacy: Critical to protect personal information, financial data,
and intellectual property

Legal Compliance: Regulations like GDPR, CCPA, and HIPAA impose
strict data protection requirements

Reputation Risk: Data breaches erode public trust and have major
financial consequences
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Symmetric and Assymetric Encryption

Alice wants to send Bob a message, Eve is eavesdropping
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Public Key Cryptography (PKI)

Public Key Infrastructure (PKI) allows secure communication over an
insecure channel without pre-shared secret keys

Public Key: Known to everyone; used to
encrypt messages

Private Key: Known only to the recipient;
used to decrypt received messages

Enables secure communication between
strangers

Foundation for secure web (HTTPS), cloud
security, digital signatures, and secure
emails

▷ Before PKI, securely exchanging keys was a
major bottleneck!
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RSA Encryption

RSA (Rivest-Shamir-Adleman) was the first practical public-key cryptosystem,
invented in 1977

Based on the mathematical difficulty of factoring large prime numbers

Forms the basis of secure web browsing (HTTPS), encrypted emails, digital
signatures, and cloud security

Still one of the most widely used encryption systems despite newer
alternatives

▷ Fun fact: The original RSA algorithm was kept secret by MIT researchers until
officially patented in 1983!
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Role of Encryption in Modern Tech

Encryption, including RSA, plays a pivotal role across Big Tech
ecosystems:

End-to-End Encryption: Ensures private conversations (e.g.,
WhatsApp, Gmail)

Secure Transactions: Protects payment and financial data during
online purchases

Digital Signatures: Verifies sender identity and message integrity

Cloud Security: Protects data stored and processed on cloud
platforms
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Google’s Use of RSA: Gmail Security

Google uses RSA encryption to secure its email platform, Gmail

Secure Email Transmission:

RSA encrypts email during transmission over the internet (TLS)
Protects against interception by attackers

Secure Attachments:

Attachments are encrypted, maintaining confidentiality

Authentication and Identity Verification:

Public Key Certificates validate the identity of Gmail servers to users
Prevents users from connecting to malicious or fake servers during
email transmission

Secure Inter-Server Communication:

When Gmail exchanges emails with other providers (e.g., Yahoo,
Outlook), RSA ensures encryption if the other party also supports it
Protects emails even when crossing into external networks

▷ Gmail’s security warnings (”this message is not encrypted”) appear
when RSA/TLS is not properly used between servers
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Application of RSA in Amazon (E-Commerce Security)

RSA encryption underpins the security of
Amazon’s e-commerce ecosystem, especially
during critical payment processes

SSL/TLS Handshake: RSA is used in establishing secure HTTPS
connections during checkout

Ensures that credit card information and personal data are encrypted
during transmission

Payment Gateway Security: Customer payment details are encrypted and
securely transmitted to payment processors

Protects customers from man-in-the-middle attacks

Compliance with Industry Standards: RSA encryption helps Amazon meet
PCI-DSS standards for payment card security
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Application of RSA in WhatsApp (Meta)

RSA was used in WhatsApp end-to-end encryption for private communication

Message Encryption: Messages are encrypted using the recipient’s public key
before transmission

Only the intended recipient can decrypt using their private key

Call Encryption: Voice and video calls are protected through similar
asymmetric encryption mechanisms

Digital Signatures for Authentication: Each message carries a digital
signature - verifies the sender’s identity

Prevents impersonation or tampering of messages

▷ Although WhatsApp now mainly uses the Signal Protocol, RSA remains a core
enabler in identity verification and initial key exchange

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 11 / 93



RSA in Cloud Security (Google Cloud and AWS)

RSA encryption is a backbone of secure operations for major cloud service
providers like Google Cloud and Amazon Web Services (AWS)

Data-at-Rest Protection:

RSA encrypts sensitive files stored in cloud databases and storage
buckets

Secure API Communication:

API calls between cloud services are encrypted and authenticated using
RSA certificates

Identity and Access Management (IAM):

RSA public-private keys ensure that only authorized users can access
cloud resources
Used in systems like AWS IAM Roles and Google Service Account
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Arithmetic Rules

We will constrain the operands and results of basic arithmetic
operations to a certain range — the modulus

This is important for understanding cryptography, especially RSA

Assume arithmetic rules for operations +, ∗,− on the set of integers

a(b + c) = ab + ac

ab = ba

a(bc) = (ab)c

a ∗ 1 = a

a ∗ 0 = 0

a+ 0 = a

a− a = 0

a+ 1 > a
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The divides operator

Definition

For a, b ∈ Z, a ̸= 0, we say a
∣∣ b : (a divides b) if ∃ c ∈ Z : b = ac

a divides b if there is an integer c such that b = ac

4
∣∣ 12 ▷ 12 = 4 · 3

3
∣∣ 12 ▷ 12 = 3 · 4

5
∣∣ 0 ▷ 0 = 5 · 0

3
∣∣∤ 7

1
∣∣ 8 ▷ 8 = 1 · 8

−2
∣∣ 6 ▷ 6 = −2 · −3

−6
∣∣ −12 ▷ −12 = −6 · 2

−4
∣∣∤ 13

a is a factor or divisor of b

b is a multiple of a
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Divisibility Facts

Some useful properties of
∣∣ operator that can make calculations easier

1 ∀n 1
∣∣ n ▷ n = 1 · n

2 ∀n n
∣∣ n ▷ n = n · 1

3 ∀n n
∣∣ 0 ▷ 0 = n · 0

4 ∀n − 1
∣∣ n ▷ n = −1 · −n

5 ∀n − n
∣∣ n ▷ n = −n · −1
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Divisibility Facts

Theorem

For a, b, c ∈ Z
1 a

∣∣ b =⇒ a
∣∣ bc

2 a
∣∣ b ∧ b

∣∣ c =⇒ a
∣∣ c

3 a
∣∣ b ∧ a

∣∣ c =⇒ a
∣∣ b + c

▷ 3
∣∣ 6 =⇒ 3

∣∣ 6 · 2
▷ 2

∣∣ 4 ∧ 4
∣∣ 8 =⇒ 2

∣∣ 8
▷ 2

∣∣ 4 ∧ 2
∣∣ 8 =⇒ 2

∣∣ 8 + 4

Corollary: a
∣∣ b ∧ a

∣∣ c =⇒ a
∣∣ mb + nc , m, n ∈ Z

▷ 2
∣∣ 4 ∧ 2

∣∣ 8 =⇒ 2
∣∣ 3 · 8 + 5 · 4

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 16 / 93



Divisibility Facts

Corollary: a
∣∣ b ∧ a

∣∣ c =⇒ a
∣∣ mb + nc , m, n ∈ Z

Proof: Number theory proofs generally use definition and basic arithmetic

a
∣∣ b ∧ a

∣∣ c =⇒ ∃ x , y : b = ax ∧ c = ay

mb = m(ax) = a(mx) =⇒ a
∣∣ mb

nc = n(ay) = a(ny) =⇒ a
∣∣ nc

By Theorem part (2) a
∣∣ mb + nc
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The Division Algorithm

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique
integers q and r , with 0 ≤ r < d such that a = dq + r

q : quotient(a, d)

r : remainder(a, d) ▷ a % d

d : divisor

a : dividend

0 d 2d 3d−d−2d . . .. . .

quotient(a, d):block where d lies

remainder(a,d): is the offset in the block

r

a

Clearly with a and d > 0, q and r are uniquely defined

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 18 / 93



Congruence

For a, b ∈ Z and m ∈ Z+, a ≡m b iff m
∣∣ (a− b)

pronounced as a is congruent to b modulo m

▷ Standard notation for a ≡m b is a ≡ b (mod m)

Theorem: Let a, b ∈ Z and m ∈ Z+.

Then a ≡m b iff a % m = b % m

3 ≡3 6, 3 ≡3 3, 7 ≡5 2 −3 ≡5 2, −1 ≡3 −4

To avoid confusion between standard notaitons - (mod m) vs mod m, we use
our notation.

Note that % m is an operator, while ≡m is an equivalence relation over Z
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Congruence
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Congruence Facts

Fact

1 a ≡m a

2 a ≡m b ⇐⇒ b ≡m a

3 a ≡m b ∧ b ≡m c =⇒ a ≡m c

▷ ≡m is an equivalence relation on Z

4 a ≡m (a % m)

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 21 / 93



Congruence

Theorem

a ≡m b ⇐⇒ ∃ k ∈ Z : a = b + km

▷ 8 ≡5 3 and 8 = 3 + 5(1)

▷ 16 ≡5 1 and 16 = 1 + 5(3)

Proof:

a ≡m b

↔ m|(a− b) ▷ by definition

↔ ∃ k ∈ Z : a− b = km

↔ a = b + km
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Congruence

Definition

For a, b ∈ Z and m ∈ Z+, a ≡m b iff m
∣∣ (a− b)

Theorem

For a, b ∈ Z and m ∈ Z+, a ≡m b iff a % m = b % m

Theorem

For a, b ∈ Z and m ∈ Z+, a ≡m b ⇐⇒ ∃ k ∈ Z : a = b + km
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Modular Arithmetic

Modular Arithmetic rules are similar to the regular arithmetic rules but are
applied to integers within a modular system

Lemma

If a ≡m b and c ≡m d , then a+ c ≡m b + d

▷ 8 ≡5 3 and 9 ≡5 4 =⇒ 8 + 9 ≡5 3 + 4

Familiar cases: m = 2 and m = 10

If (a, b) and (c, d) have the same parity, then a+ c and b + d have the
same parity

If (a, b) and (c , d) have the same last digit, then a+ c and b+ d have the
same last digit

The lemma says it works for all m
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Modular Arithmetic

Lemma

If a ≡m b and c ≡m d , then a+ c ≡m b + d

Proof: a ≡m b =⇒ a = b+ xm and c ≡m d =⇒ c = d + ym

a+ c = b + d + xm + ym =⇒ (a+ c)− (b + d) = m(x + y)

Hence m
∣∣ (a+ c)− (b + d)

So a+ c ≡m b + d

if a ≡ b (mod m), then adding or multiplying both sides by the same
number does not change the congruence

(8 + 9) mod 5. First, we find that 8 ≡ 3 (mod 5) and 9 ≡ 4 (mod 5).
Now, 8 + 9 ≡ 3 + 4 = 7 ≡ 2 (mod 5)
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Modular Arithmetic

Lemma

If a ≡m b and c ≡m d , then ac ≡m bd

Proof:

Very similar!

Lemma

If a ≡m b, then ak ≡m bk

Proof:

Very similar!
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Modular Arithmetic

Lemma

1 If a ≡m b and c ≡m d , then a+ c ≡m b + d

2 If a ≡m b and c ≡m d , then ac ≡m bd

3 If a ≡m b, then ak ≡m bk

Corollary

1 (a+ b) % m =
(
(a % m) + (b % m)

)
% m

2 ab % m =
(
(a % m)(b % m)

)
% m

3 ak % m =
(
a % m

)k
% m

This means that while computing (a+ c) % m or (ac) % m, we can replace a
with (a % m) and c with (c % m) ▷ Recall that a ≡m a % m
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Modular Arithmetic

Lemma

1 If a ≡m b and c ≡m d , then a+ c ≡m b + d

2 If a ≡m b and c ≡m d , then ac ≡m bd

3 If a ≡m b, then ak ≡m bk

Corollary

1 (a+ b) % m =
(
(a % m) + (b % m)

)
% m

2 ab % m =
(
(a % m)(b % m)

)
% m

3 ak % m =
(
a % m

)k
% m

Compute −706 · 1456 % 19

−706 ≡19 16 and 1456 ≡19 12 =⇒ −706 · 1456 % 19 = 16 · 12 % 19
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Modular Arithmetic

Lemma

1 If a ≡m b and c ≡m d , then a+ c ≡m b + d

2 If a ≡m b and c ≡m d , then ac ≡m bd

3 If a ≡m b, then ak ≡m bk

Corollary

1 (a+ b) % m =
(
(a % m) + (b % m)

)
% m

2 ab % m =
(
(a % m)(b % m)

)
% m

3 ak % m =
(
a % m

)k
% m

A = {−706, 1456, 88,−41, 19, 20, 38, 40} Compute
( ∑

x∈A

x
)
% 19

Remainders: R = {16, 12, 12, 16, 0, 1, 0, 2} So
( ∑

x∈A

x
)
% 19 =

( ∑
r∈R

r
)
% 19
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Modular Arithmetic

Lemma

1 If a ≡m b and c ≡m d , then a+ c ≡m b + d

2 If a ≡m b and c ≡m d , then ac ≡m bd

3 If a ≡m b, then ak ≡m bk

Corollary

1 (a+ b) % m =
(
(a % m) + (b % m)

)
% m

2 ab % m =
(
(a % m)(b % m)

)
% m

3 ak % m =
(
a % m

)k
% m

Compute 5163031 % 103

516 ≡103 1 So 5163031 % 103 = 13031 % 103 = 1
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Modular Arithmetic: Applications

Theorem

A positive integer N is divisible by 9 iff the sum of its digits is divisible by 9

9
∣∣ 343233153711 because

9
∣∣ 3 + 4 + 3 + 2 + 3 + 3 + 1 + 5 + 3 + 7

9
∣∣∤ 12356954236 because

9
∣∣∤ 1 + 2 + 3 + 5 + 6 + 9 + 5 + 4 + 2 + 3 + 6

Proof: Note that 10 ≡9 1

Let N = dkdk−1 . . . d2d1d0 ▷ di : i
th digit of N

N = dk10
k + dk−110

k−1 + · · ·+ d210
2 + d110

1 + d010
0

Using the congruence identities

N ≡9 dk10
k + . . .+ d210

2 + d110
1 + d010

0

N ≡9 dk1
k + . . .+ d21

2 + d11
1 + d01

0

N ≡9 dk + dk−1 + . . .+ d2 + d1 + d0
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Modular Arithmetic: Applications

Theorem

A positive integer N is divisible by 3 iff the sum of its digits is divisible by 3

Proof: Essentially the same

Theorem

A positive integer N is divisible by 11 iff the alternating sum of its digits is
divisible by 11

Proof: Essentially the same, using the fact that 10 ≡11 −1
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Modular Arithmetic: Applications

Definition (Check Digit)

An extra digit appended to a number, which is
related to the other digits in some way

▷ Catches most transposition and single-digit errors

Airlines Tickets

12 digits ticket number, plus a 13th check digit

check digit is the main number % 7

01− 1300696717− 2 as 11300696717 % 7 = 2

Bank routing transit number

9-digits bank routing number

d8d7 . . . d3d2d1d0 d0 is check digit

d0 = 7d8 + 3d7 + 9d6 + 7d5 + 3d4 + 9d3 + 7d2 + 3d1 % 10

Difficult to find check digit by most calculators

Easier to compute using modular arithmetic
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Modular Exponentiation

Modular exponentiation is a key operation in RSA encryption. It allows us
to calculate large powers of numbers under a modulus efficiently

Given (large) integers b,m, n Find bn % m

Compute 28513177 % 4559 ▷ 28513177 has about 12k digits!

Find 224 % 29

Instead of calculating bn and then reducing modulo m, we can repeatedly
reduce the intermediate results modulo m after each multiplication

224 % 29 = 22 · 22 · 22 · 22 % 29

= 22 · 22 · 484 % 29 = 22 · 22 · 20 % 29

= 22 · 440 % 29 = 22 · 5 % 29 = 110 % 29 = 23

It helps for the number of digits (storage) but number of steps is still large
– We will come back to it
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Prime Numbers

Definition

A positive integer p is prime if it has exactly two divisors, namely 1 and p

1 is not prime

Definition

A positive integer n is composite if it has a divisor d , 1 < d < n

1 is not composite

In cryptography, prime numbers play a crucial role, especially in RSA
algorithm, where large primes are used to generate public and private keys

In particular, the difficulty of factoring large composite numbers into their
prime factors is the basis for the security of RSA encryption
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Greatest common divisor

gcd(a, b) := the greatest common divisor

▷ the largest integer d that divides both a and b

gcd(24, 32) = 8

gcd(22, 24) = 2

gcd(15, 5) = 5

gcd(25, 15) = 5

gcd(13, 20) = 1

gcd(11, 33) = 11

Lemma: p is prime =⇒ ∀ a ∈ Z gcd(p, a) = 1 or p

▷ ∵ p has only two divisors 1 and p

a and b are relatively prime if gcd(a, b) = 1

▷ Equivalently, a and b have no common factors

gcd(25, 16) = 1, gcd(24, 25) = 1

A prime number p is relatively prime to all integers except its multiples
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Computing gcd

gcd(a, b) := the greatest common divisor

▷ the largest integer d that divides both a and b

Compute gcd(a, b) by

1 find all divisors of a and b
2 find the common divisors
3 find the greatest among the commons

Compute gcd(a, b) from the prime factorization of a and b

a = pa11 pa22 . . . pann b = pb11 pb22 . . . pbnn

gcd(a, b) = p
min{a1,b1}
1 p

min{a2,b2}
2 . . . p

min{an,bn}
n

98 = 2 · 7 · 7 = 21 30 50 72 110 · · ·

420 = 2 · 2 · 3 · 5 · 7 = 22 31 51 71 110 · · ·

gcd(98, 420) = = 21 30 50 71 110 · · · = 14
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Computing gcd: Euclidean Algorithm

gcd(28, 98)

98
28 3

84

14
28
28

0

2

gcd(98, 420)

420
4

394

3

14 28
28

0

2

98

28 98
84
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Computing gcd: Euclidean Algorithm

gcd(28, 98)

98
28 3

84

14
28
28

0

2

gcd(98, 420)

420
4

394

3

14 28
28

0

2

98

28 98
84

Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)
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Computing gcd: Euclidean Algorithm

Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)

gcd(98, 420)

420
4

394

3

14 28
28

0

2

98

28 98
84

a = 420, b = 98

▷ 420 = 98 · 4 + 28

gcd(420, 98) = gcd(98, 28)

▷ 98 = 28 · 3 + 14

gcd(98, 28) = gcd(28, 14)

▷ 28 = 14 · 2 + 0

gcd(28, 14) = gcd(14, 0) = 14

gcd(420, 98) = 14

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 40 / 93



Computing gcd: Euclidean Algorithm

Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)

gcd(98, 420)

420
4

394

3

14 28
28

0

2

98

28 98
84

Algorithm gcd Computation

function gcd(a, b)

if b = 0 then

return a

else
r ← a % b

return gcd(b, r)
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Computing gcd: Proof of the Euclidean Algorithm

Theorem (Euclid)

If a = qb + r , then gcd(a, b) = gcd(b, r)

Proof: Case 1: r = 0 =⇒ gcd(b, r) = gcd(b, 0) = b, as b
∣∣ 0

r = 0 =⇒ a = qb, so gcd(a, b) = b = gcd(b, r)

Case 2: r > 0

Let d be a common divisor of b and r b = xd and r = yd

a = qb + r = (qx)d + yd = (qx + y)d =⇒ d
∣∣ a

Let d be a common divisor of a and b a = sd and b = td

r = a− qb = sd − (qt)d = (s + qt)d =⇒ d
∣∣ r

So d is a common divisor of a, b ↔ d is a common divisor of b, r
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gcd: Extended Euclidean Algorithm

Theorem

For all a, b, ∃ s, t : sa+ tb = gcd(a, b)

a = 420, b = 98

▷ 420 = 98 · 4 + 28

gcd(420, 98) = gcd(98, 28)

▷ 98 = 28 · 3 + 14

gcd(98, 28) = gcd(28, 14)

▷ 28 = 14 · 2 + 0

gcd(28, 14) = gcd(14, 0) = 14

gcd(420, 98) = 14

gcd(98, 420)

420
4

394

3

14 28
28

0

2

98

28 98
84

gcd(420, 98) = 14

▷ 14 = 98− 3 · 28

gcd(420, 98) = 98− 3 · 28

▷ 28 = 420− 98 · 4

gcd(420, 98) = 98− 3(420− 4 · 98)

gcd(420, 98) = −3 · 420 + 13 · 98

s = −3, t = 13

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 43 / 93



gcd: Extended Euclidean Algorithm

Theorem

For all a, b, ∃ s, t : sa+ tb = gcd(a, b)

a = 899, b = 493

▷ 899 = 1 · 493 + 406

gcd(899, 493) = gcd(493, 406)

▷ 493 = 1 · 406 + 87

gcd(493, 406) = gcd(406, 87)

▷ 406 = 4 · 87 + 58

gcd(406, 87) = gcd(87, 58)

▷ 87 = 1 · 58 + 29

gcd(87, 58) = gcd(58, 29)

▷ 58 = 2 · 29 + 0

gcd(58, 29) = gcd(29, 0) = 29

gcd(899, 493) = 29

29 = 87− 1 · 58
▷ 58 = 406− 4 · 87

29 = 87− 1(406− 4 · 87)
▷ 87 = 493− 1 · 406

29 = 5(493− 406)− 406

▷ 406 = 899− 1 · 493
29 = 5 · 493− 6(899− 493)

29 = −6 · 899 + 11 · 493

s = −6, t = 11
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The Caesar Cipher

A substitution cipher: replaces each letter in the plaintext with another
letter according to a fixed system

The Caesar Cipher (a special case of substitution): Substitute each letter
by the letter a fixed number of places (say 3) down the alphabet

How about x , y and z? ▷ Cyclic–modular
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The Caesar Cipher

A substitution cipher: replaces each letter in the plaintext with another
letter according to a fixed system

The Caesar Cipher (a special case of substitution): Substitute each letter
the letter a fixed number of places (say 3) down the alphabet

Replace 3 with some other integer s

Encryption

c ← (p + s) % 26

Decryption

p ← (c − s) % 26

For a Caesar cipher with a shift of 3 (s = 3):

Plaintext: HELLO Ciphertext: KHOOR

Here, H becomes K, E becomes H, L becomes O, and O becomes R
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Affine Cipher

Affine Cipher: An extension of the Caesar cipher. Instead of shifting
letters by a fixed amount, we apply an affine transformation

Encryption

c ← (tp + s) % 26

Decryption

p ← (c − s)

t
% 26

With t = 5, s = 8, and plaintext “HELLO”:

H→ 7, E→ 4, L→ 11, L→ 11, O→ 14

Then applying the affine cipher formula, we get the ciphertext

tp = (c − s) % 26 =⇒ p = t−1(c − s) % 26

If t = 3, then 3 · 9 = 27 % 26 = 1 ▷ 9 = 3−1

If t = 5, then 5 · 21 = 105 % 26 = 1 ▷ 21 = 5−1

Not every integer has an inverse What is inverse of 4 modulo 26?
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Modular Inverse

The modular inverse is an important concept for decryption in RSA

Definition

b is the inverse of a modulo m iff a× b ≡m 1

For real numbers, every x ̸= 0 ∈ R has an inverse

For integers, only 1 has an inverse

What if we were doing modular arithmetic?

Interesting property: integers also have inverses (at least some of them)

Find the modular inverse of 3 modulo 7

Need to find a number b such that 3× b ≡ 1 (mod 7)

We find that 3× 5 = 15 ≡ 1 (mod 7), so the inverse of 3 modulo 7 is 5
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Modular Inverse

Definition

b is the inverse of a modulo m iff a · b ≡m 1

Z5 1 2 3 4

1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Z6 1 2 3 4 5

1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1
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Modular Inverse

Definition

b is the inverse of a modulo m iff a× b ≡m 1

Theorem

a has an inverse modulo m iff a and m are relatively primes

Equivalently, inverse of a modulo m exists iff gcd(a,m) = 1

gcd(3, 7) = 1 3 · 5 % 7 = 1

gcd(4, 11) = 1 4 · 3 % 11 = 1

gcd(8, 9) = 1 8 · 8 % 9 = 1
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Modular Inverse

Theorem

a has an inverse modulo m iff gcd(a,m) = 1

Proof:

gcd(a,m) = 1

=⇒ sa+ tm = 1

=⇒ tm = 1− sa =⇒ m
∣∣ 1− sa

=⇒ 1− sa ≡m 0

=⇒ sa ≡m 1

We can find s and t from Extended Euclidean Algorithm
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Modular Arithmetic: Cancellation

If a ≡m b, then a+ c ≡m b + c

If a ≡m b, then ac ≡m bc

Just as in ‘ =′ for real numbers

if ac ≡m bc, then is a ≡m b?

3 · 4 ≡8 1 · 4 but 3 ̸≡8 1

4 · 3 ≡9 1 · 3 but 4 ̸≡9 1

2 · 4 ≡12 5 · 4 but 2 ̸≡12 5

We cannot cancel two “equal” values on both side of a congruence
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Modular Arithmetic: Cancellation

Lemma

Let gcd(a,m) = 1. If ab ≡m ac , then b ≡m c

gcd(a,m) = 1 =⇒ ∃ a−1 : aa−1 ≡m 1

ab ≡m ac

=⇒ aba−1 ≡m aca−1

=⇒ b ≡m c

Typically modulus is a prime =⇒ an inverse exists for every integer

Modulo a prime, integers behave “like” real numbers
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Solving Congruence

Finding a−1 % m is solving the congruence ax ≡m 1

How about solving other congruences!

Solve 2x ≡7 3

gcd(2, 7) = 1 and 2 · 4 ≡7 1 so 4 is 2−1

2x ≡7 3 =⇒ 2x · 4 ≡7 3 · 4

=⇒ x ≡7 12 ≡7 5

Verify that all integers of the form 5 + 7t satisfy this congruence
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Solving Congruence

Finding a−1 % m is solving the congruence ax ≡m 1

How about solving other congruences!

Solve 3x ≡6 2

Going through all numbers % 6, no x satisfy this congruence

We say
3x ≡6 2 has no solutions
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The Chinese Remainder Theorem

The Chinese remainder theorem characterizes solvable system of
simultaneous congruences and derive a solution

Make an m × n grid

Start from lower left and move up and right

Wrap around both from top to bottom and right to left

At every step write integers starting from 0

0 40

1

0

1

2

0

1

2

3

0

1

2

3

40

1

2

3

5

0 40

1

0

1

2

0

1

2

3

0

1

2

3

40

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

40

1

2

3

5
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The Chinese Remainder Theorem

Make an m × n grid

Start from lower left and move up and right

Wrap around both from top to bottom and right to left

At every step write integers starting from 0

0 40

1

0

1

2

0

1

2

3

0

1

2

3

40

1

2

3

5

40

1
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The Chinese Remainder Theorem

Make an m × n grid

Start from lower left and move up and right

Wrap around both from top to bottom and right to left

At every step write integers starting from 0

For which m and n the grid gets completely filled in?

6

7

8

9

10

11

12

13

14

15

16

17

18

19

40

1

2

3

5

40

1

2
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6

7

8

9

10

11
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)

are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn’t ▷ x % 3 = 1

Task-2: Make groups of 5 and report how many couldn’t ▷ x % 5 = 2

Task-3: Make groups of 7 and report how many couldn’t ▷ x % 7 = 2

Magically the emperor figured out their number ▷ x = 37
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The Chinese Remainder Theorem
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The Chinese Remainder Theorem
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)

are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn’t ▷ x % 3 = 1

Task-2: Make groups of 5 and report how many couldn’t ▷ x % 5 = 2

Task-3: Make groups of 7 and report how many couldn’t ▷ x % 7 = 2

Magically the emperor figured out their number ▷ x = 37
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)

are left. The Chinese emperor ordered a series of tasks

Magically the emperor figured out their number ▷ x = 37

Solve a system of modular congruences.

Find x ≤ 3 · 5 · 7 satisfying

x ≡3 1

x ≡5 2

x ≡7 2
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The Chinese Remainder Theorem

Theorem

If m1,m2,m3 are relatively prime and a1, a2, a3 are integers, then

x ≡m1 a1

x ≡m2 a2

x ≡m3 a3

has a unique solution modulo m = m1m2m3

Proof by construction:

(1) n1 = m/m1

(2) y1 = n−1
1 % m1

(1) n2 = m/m2

(2) y2 = n−1
2 % m2

(1) n3 = m/m3

(2) y3 = n−1
3 % m3

▷ yk always exists as gcd(nk ,mk) = 1

x = a1n1y1 + a2n2y2 + a3n3y3

x satisfies all congruences. Uniqueness!
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The Chinese Remainder Theorem

Solve the system of
modular congruences

x ≡3 1

x ≡5 2

x ≡7 2

Find n1, y1, n2, y2, n3, y3
as follows

n1 = 5× 7 = 35 y1 = 35−1 modulo 3 = 2

n2 = 3× 7 = 21 y2 = 21−1 modulo 5 = 1

n3 = 3× 5 = 15 y3 = 15−1 modulo 7 = 1

Note that by
construction

n1y1 ≡3 1, n1y1 ≡5 0, n1y1 ≡7 0

n2y2 ≡3 0, n2y2 ≡5 1, n2y2 ≡7 0

n3y3 ≡3 0, n3y3 ≡5 0, n3y3 ≡7 1

x = a1n1y1 + a2n2y2 + a3n3y3 = 1 · 70 + 2 · 21 + 2 · 15 = 142 ≡105 37

Verify that 37 ≡3 1, 37 ≡5 2, 37 ≡7 2

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 66 / 93



The Chinese Remainder Theorem

Theorem

If m1,m2, . . . ,mn are relatively prime and a1, a2, . . . , an are integers, then

x ≡m1 a1

x ≡m2 a2
...

x ≡mn an

has a unique solution modulo m =
n∏

i=1
mi

Proof by construction is the same
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The Chinese Remainder Theorem

Using CRT we can uniquely represent any integer with remainders when
moduli are relatively prime

▷ The integer has to be less than the product of moduli

Any integer 0 ≤ x < 15 can be represented by (x % 3, x % 5)

12 = (0, 2)
11 = (2, 1)

How many ordered pairs are possible? ▷ Will the grid fill?

Used two smaller integers to represent a big integer!

To perform arithmetic upon large integers, we can instead perform arithmetic on

these small remainders
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The Chinese Remainder Theorem

Compute 123684 + 413456

By CRT any 0 ≤ x < 99 · 98 · 97 · 95 = 89, 403, 930 can be represented by
its remainders modulo these moduli

123684 + 413456 = (33, 8, 9, 89) + (32, 92, 42, 16)

123684 + 413456 = (65, 2, 51, 10)

To convert back, Solve

x ≡99 65
x ≡98 2
x ≡97 51
x ≡95 10

We get

x = 123684 + 413456 = 537140
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The Chinese Remainder Theorem

Compute 1345× 2368

By CRT any 0 ≤ x < 99 · 98 · 97 · 95 = 89, 403, 930 can be represented by
its remainders modulo these moduli

1345× 2368

= (58, 71, 84, 15) ∗ (91, 16, 40, 88) ▷ coordinate-wise products

= (5278, 1136, 3360, 1320) = (31, 58, 62, 85) ▷ Took mod

To convert back, Solve

x ≡99 31
x ≡98 58
x ≡97 62
x ≡95 85

We get

x = 1345× 2368 = 3184960

Imdad ullah Khan (LUMS) Number Theory & Cryptography May 13, 2025 70 / 93



Pseudoprimes

Theorem (Ancient Chinese)

Let n be a prime, then 2n−1 ≡n 1

Some thought that the converse was also true!

The converse is not true!

2340 ≡341 1, but 341 = 31 · 11

Composites having this property are called pseudoprimes
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Fermat’s Little Theorem

Theorem (Ancient Chinese)

Let n be a prime, then 2n−1 ≡n 1

Theorem (Fermat’s Little Theorem)

Let p be a prime, then

If p
∣∣∤ a, then ap−1 ≡p 1

ap ≡p a, for every integer a

Proof: WLOG, assume that a ∈ {0, 1, . . . , p − 1}
If a = 0, this trivially holds

If a ̸= 0, then gcd(a, p) = 1 =⇒ a has a multiplicative inverse, modulo p

Multiplying both sides by this inverse a−1 yields: ap−1 ≡ 1 (mod p)

Fermat’s Little Theorem is very useful for simplifying certain large exponentiations
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Fermat’s Little Theorem

Fermat’s Little Theorem: Let p be a prime, If p
∣∣∤ a, then ap−1 ≡p 1

p = 11

a a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

2 2 4 8 5 10 9 7 3 6 1

3 3 9 5 4 1 3 9 5 4 1

4 4 5 9 3 1 4 5 9 3 1

5 5 3 4 9 1 5 3 4 9 1

6 6 3 7 9 10 5 8 4 2 1

7 7 5 2 3 10 4 6 9 8 1

8 8 9 6 4 10 3 2 5 7 1

9 9 4 3 5 1 9 4 3 5 1

10 10 1 10 1 10 1 10 1 10 1
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Fermat’s Little Theorem

Fermat’s Little Theorem: Let p be a prime, If p
∣∣∤ a, then ap−1 ≡p 1

p = 11, a10 = 1 for all a ▷ [FLT]

For some a’s the exponent gets to 1 before 10 = p − 1

Patterns are of lengths that divides 10

The values a for which all numbers 1 ≤ k ≤ 10 appear are called
generators
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Fermat’s Little Theorem: Modular Exponentiation

Given int b and ints n, p ≥ 1, find bn % p

When modulus is prime, we use FLT to speed up

Find 2261 % 29

2261 = 2228+28+5 = 2228 · 2228 · 225 = 1 · 1 · 225

bk % p repeats after k reaches p − 1, so we use

bn % p = bn%(p−1) % p

2261 % 29 = 2261%28 % 29 = 225 % 29
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Fermat’s Little Theorem: Modular Exponentiation

Fermat’s Little Theorem is very useful for simplifying certain large exponentiations

71027 =
82354454459932700149554622847160692519756619023062232427396015584374
99958382473242998087956437374131434593042920370824813986091608202695
03301672056029937808578799506374779881698816017119148232704767843317
10110203798777291466521314775901838301156488182731136678470694472304
89386021161960816645682600107523260601395803318744511904090680348951
83321084488463006318582294519193149813795294091072551244801135441743
89278535778657471699254109989815064297655489544635083531049920621844
45250200344772694140346323000340833641384408455897645626220181349309
70842222614787846583153327598198625424746207198681572552482656563032
02463264976263071006154023466326481984207474225925621916886286895666
77101890054018914525531500897548585341110302017650695463976958126547
33981665536889605328989166044793868231891471438474687310952477472556

7321851877420158736581518028903696311777623045939543 % 13 = 6

71027 % 13 = 71027%12 % 13 = 77 % 13 = 823543 % 13 = 6
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Generating Large Prime Numbers

To implement RSA, we need large prime numbers. A “guess and check”
heuristic works due to of the following number-theoretic results

Theorem (Prime Number Theorem)

The probability that a random number n is prime is ∼ 1/(ln n), i.e.,

lim
n→∞

(proportion of numbers ≤ n that are prime)− 1

ln n
= 0

The chances of a random 9-digit number being prime is ∼ 4% (i.e., 1
in 25). For a 200-digit number, this is approx. 0.2% (i.e., 1 in 500)

Algorithm 2 Generate Large Prime Number

while true do
n← a random 200-digit number
if n is prime then ▷ Need primality testing

return n
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Checking Whether a Large Number is Prime

The Fermat primality test is a probabilistic method to determine whether
a number is (“probably”) prime

Fermat’s Little Theorem: Let p be a prime, If p
∣∣∤ a, then ap ≡p a

Algorithm 3 Fermat Primality Test n ∈ N
1: Compute an−1 (mod n) for many random values of a < n

2: if for some a, an−1 ̸≡ 1 (mod n) then

3: n must be composite
4: else
5: n is “probably prime”
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Fermat Primality Test

Fermat Primality Test (Revisited)

Given a number n ∈ N, compute an−1 (mod n) for many random values of a < n

If an−1 ̸≡ 1 (mod n), then n must be composite. ▷ a is a Fermat witness

If an−1 ≡ 1 (mod n), there are two cases:

1 n is prime
2 n is composite ▷ a is called a Fermat liar

Lemma

If a composite number n has a Fermat witness, then at least half of all numbers
a ∈ {1, 2, . . . , n − 1} that are relatively prime to n are Fermat witnesses to n

Proof (Sketch): Let a and b be a Fermat witness and a Fermat liar for n

(ab)n−1 = an−1︸︷︷︸
̸≡1

· bn−1︸︷︷︸
≡1

≡ an−1 ̸≡ 1 (mod n)

In other words, every Fermat liar b has a corresponding Fermat witness ab
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Carmichael Numbers

We saw that if n has a Fermat witness, then it has many

Is it possible that n is composite, but has no Fermat witnesses?

Unfortunately, the answer is YES, but this is very rare

A Carmichael number is a composite number n for which

an−1 ≡ 1 (mod n)

holds for all a = 1, . . . , n − 1 relatively prime to n

First few Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, 8911

For 100-digit numbers, less than 1 in 1030 are Carmichael numbers. For
200-digit numbers, the chances are even less.

If a randomly chosen 200-digit number n is tested for ≈ 100 different
values of a without getting a Fermat witness, then almost surely n is prime
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Private Key Cryptography

Alice sends message to Bob, Eve eavesdrops

Eve
Eavesdropper

Encrypt Decrypt

public key
Bob’s

private key
Bob’s

public key
Bob’s

keykey

message
x

message
x

Alice Bob

x

Exchange the encryption key for a good cipher!

Eve
Eavesdropper

Encrypt

y

Decrypt

public key
Bob’s

private key
Bob’s

public key
Bob’s

keykey

message
x

message
x

Alice Bob

But during key exchange, Eve could get the key and all security is lost!
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Public Key Cryptography

Alice sends message to Bob, Eve eavesdrops

Eve
Eavesdropper

Encrypt Decrypt

public key
Bob’s

private key
Bob’s

public key
Bob’s

keykey

message
x

message
x

Alice Bob

x

Everyone knows public key, only Bob knows private key

Eve
Eavesdropper

Encrypt

y

Decrypt

public key
Bob’s

private key
Bob’s

public key
Bob’s

message
x

message
x

Alice Bob

Alice encrypts with public key, Bob decrypts with private key

Eve cannot do anything! ▷ No key exchange
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Public Key Cryptography: RSA

Keys generation

Choose two large primes p and q ▷ p and q are secret

Set n = pq and T = (p − 1)(q − 1)

Choose e such that gcd(e,T ) = 1 ▷ e−1 exists

choose d = e−1 modulo T ▷ de ≡T 1

e and n are public keys ▷ published on Internet

d is private key ▷ only Bob knows it

Encryption

Encode message as an integer M < n

Compute C = Me % n ▷ Use modular exponentiation!

Decryption

Compute M = C d % n ▷ Use modular exponentiation!
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Public Key Cryptography: RSA

Keys generation

Choose two large primes p and q

Set n = pq and T = (p − 1)(q − 1)

Choose e such that gcd(e,T ) = 1

choose d = e−1 modulo T

e and n are public keys

d is private key

Example Keys

p = 59 and q = 43

n = 2537 and T = 2436

e = 13: gcd(13, 2436) = 1

d = 937 = 13−1 modulo T

13 and 2537 are public keys

937 is private key

Encrypt “STOP’’ S → 18,T → 19,O → 14,P → 15 =⇒ 1819 1415

C = Me % n 181913 % 2537 = 2081 141513 % 2537 = 2182

Encrypted message is 2081 2182

Decrypt “0981 0461′′

M = C d % T 0981937 % 2537 = 0704 0461937 % 2537 = 1115

07 → H, 04 → E , 11 → L, 15 → P =⇒ “HELP’’ ▷ message is “HELP’’
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RSA: Correctness and Security

Encryption

Encode message as an integer M < n

Compute C = Me % n ▷ Use modular exponentiation!

Decryption

Compute M = Cd % n ▷ Use modular exponentiation!

We need to show that

Cd % n is indeed equal to M ▷ Correctness

Without knowing d cannot compute M from C ▷ Security
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RSA: Proof of Correctness

The Correctness of RSA relies on the fact that the encryption and
decryption processes are inverses of each other

Correctness of RSA: Cd = (Me)d ≡n M

Proof: de ≡T 1 Thus, ∃ k ∈ Z : de = 1 + k(p − 1)(q − 1). So

Cd = Mde ≡pq M1+k(p−1)(q−1)

Cd = M(Mp−1)k(q−1) ≡p M ·1k(q−1) ≡p M

Cd = M(Mq−1)k(p−1) ≡q M ·1k(p−1) ≡q M ▷ FLT

Hmm! a system of modular equations with gcd(p, q) = 1

Cd ≡pq M is a solution to this system and by CRT its a unique solution
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RSA: Proof of Security

Without knowing d cannot compute M from C ▷ Security

Hardness of the Factorization Problem

To break RSA, an attacker would need to factor the modulus n = p × q. It is
believed to be very hard to find p and q given n = pq

Prime factorization is a difficult problem

▷ though we do not have theoretical proof for it

Key Generation: The difficulty of deriving p and q from n ensures that the
private key remains secure.

Public Key Exposure: The public key (e, n) is shared openly, but it is
infeasible to compute the corresponding private key d without knowledge of
p and q

One-Way Function: RSA’s encryption and decryption are based on one-way
mathematical functions that are easy to compute in one direction but hard
to reverse
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Challenges to RSA Security

Challenges that can compromise RSA security:

Small Key Sizes: Using smaller key sizes (e.g., 512-bit keys) makes RSA
susceptible to brute-force attacks. Modern implementations require much
larger key sizes (e.g., 2048-bit or 4096-bit) to ensure security

Computational Complexity: RSA operations are computationally intensive,
especially as the key size increases. This requires efficient algorithms and
hardware to handle large numbers

Quantum Computing: Quantum algorithms (theoretically) break RSA
encryption by efficiently factoring large numbers

Side-Channel Attacks: RSA implementations can be vulnerable to
side-channel attacks (e.g., timing attacks) that exploit weaknesses in the
algorithm’s execution or hardware
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Mitigating RSA Vulnerabilities

There are several strategies to mitigate vulnerabilities in RSA encryption:

Increasing Key Sizes: Using larger key sizes (e.g., 2048-bit or 4096-bit) to
make factorization infeasible for classical computers

Hybrid Cryptosystems: Combining RSA with symmetric encryption
algorithms (e.g., AES) to reduce computational overhead while maintaining
security

Quantum-Resistant Algorithms: Researchers are focusing on developing
algorithms that can withstand quantum attacks, ensuring long-term security
for encrypted communications
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Hybrid Cryptosystems and RSA

Hybrid cryptosystems combine asymmetric (e.g., RSA) & symmetric encryption
(e.g., AES) to balance between security and performance

Key Exchange with RSA: RSA is used to encrypt and securely exchange a
symmetric key (e.g., AES key) between sender and receiver

Data Encryption with AES: Once the symmetric key is securely exchanged,
AES is used to encrypt large data efficiently

Decryption Process: The recipient uses RSA to decrypt the symmetric key
and then uses it to decrypt the data encrypted with AES

Enhance performance: RSA provides strong security, but it is
computationally intensive – Symmetric encryption (e.g., AES) are much
faster but rely on the secure key exchange

Widely Used in Practice: Commonly used in SSL/TLS protocols (e.g.,
HTTPS) for secure web browsing and in email encryption systems
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Quantum Computing and RSA’s Vulnerabilities

RSA (Rivest-Shamir-Adleman) has been a cornerstone in securing online transactions for
decades. However, the rise of quantum computing poses a threat to RSA’s security:

Quantum Computing: Quantum Computing promises to revolutionize computing
by enabling much faster computation than classical computers

Shor’s Algorithm: A quantum algorithm that can break RSA encryption by
factoring large numbers in polynomial time (O((logN)3))

▷ With enough quantum processing power, RSA’s reliance on the difficulty of
factoring large primes would no longer be secure

▷ Quantum Supremacy: Quantum computers capable of breaking RSA are still in
the experimental phase, but the potential is real, and tech companies are preparing
for this eventuality

Post-Quantum Cryptography: Algorithms that are resistant to quantum attacks

Lattice-based cryptography
Code-based cryptography
Multivariate-quadratic-equations-based cryptography

Transition to Post-Quantum Cryptography: Online payment systems will transition to
PQC before commercial quantum computers are available
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Why Post-Quantum Methods Are Quantum-Safe

Unlike RSA or ECC, post-quantum cryptographic schemes are built on
mathematical problems that are hard for both classical and quantum computers:

Lattice-Based Cryptography:

Based on problems like Shortest Vector Problem (SVP) and Learning
With Errors (LWE)
These problems remain hard even for quantum algorithms—no known
quantum polynomial-time algorithm exists for solving them

Code-Based Cryptography:

Relies on the hardness of decoding general linear error-correcting codes
The McEliece cryptosystem (1978) still resists all known classical and
quantum attacks

Multivariate Polynomial Cryptography:

Based on the difficulty of solving systems of nonlinear multivariate
equations over finite fields
Solving these systems (MQ problem) is NP-hard and quantum
algorithms don’t offer speedups here
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Post-Quantum Cryptography (PQC)

Post-Quantum Cryptography (PQC) refers to cryptographic algorithms that are
secure against quantum computing threats:

Quantum-Safe Algorithms: Algorithms like lattice-based cryptography,
hash-based cryptography, and code-based cryptography are being researched
as alternatives to RSA

NIST’s PQC Standardization: The National Institute of Standards and
Technology (NIST) is leading an effort to standardize post-quantum
cryptographic algorithms that can replace RSA and other classical systems.

Hybrid Approaches: Some systems are being designed to combine
quantum-resistant algorithms with RSA to create quantum-safe hybrid
cryptosystems.
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