Algorithmic Foundations of Big Tech

Number Theory & Cryptography

m Divisibility and Congruence

m Modular Arithmetic and its Applications

m GCD, (Extended) Euclidean Algorithm, Relative Prime
m The Caesar Cipher and Affine Cipher, Modular Inverse
m The Chinese Remainder Theorem

m Fermat’'s Little Theorem and Modular Exponentiation

m Private and Public Key Cryptography, The RSA Cryptosystem
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Cryptography

Cryptography is critical for secure communications on the Internet,
privacy, integrity, and authentication

Cryptography encoding and decoding messages

Cipher: A method for encoding messages
Plaintext: The original message to be encoded
Ciphertext: The encoded message

Encryption: The process of encoding messages

Decryption: The process of decoding messages
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Cryptography

Cryptography encoding and decoding messages

m In ancient Egypt, the first known use of encryption appeared in hieroglyphs,
where simple ciphers were used to encode royal messages

m The evolution of cryptography is marked by key advancements, such as the
Caesar cipher, the development of public-key systems, and the modern use
of symmetric and asymmetric encryption methods
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Introduction to Security in Big Tech

Cybersecurity has become a cornerstone of modern business operations in
major tech companies. With massive user bases, sensitive data handling,
and valuable digital assets, these companies are prime targets for
cyberattacks

m Cyberattacks: Increasing frequency of breaches, phishing, and
ransomware attacks

m Data Privacy: Critical to protect personal information, financial data,
and intellectual property

m Legal Compliance: Regulations like GDPR, CCPA, and HIPAA impose
strict data protection requirements

m Reputation Risk: Data breaches erode public trust and have major
financial consequences
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Symmetric and Assymetric Encryption

Alice wants to send Bob a message, Eve is eavesdropping
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Public Key Cryptography (PKI)

Public Key Infrastructure (PKI) allows secure communication over an

insecure channel without pre-shared secret keys

m Public Key: Known to everyone; used to
encrypt messages

m Private Key: Known only to the recipient;
used to decrypt received messages

m Enables secure communication between
strangers

m Foundation for secure web (HTTPS), cloud
security, digital signatures, and secure
emails

> Before PKI, securely exchanging keys was a
major bottleneck!
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RSA Encryption

RSA (Rivest-Shamir-Adleman) was the first practical public-key cryptosystem,
invented in 1977

m Based on the mathematical difficulty of factoring large prime numbers

m Forms the basis of secure web browsing (HTTPS), encrypted emails, digital
signatures, and cloud security

m Still one of the most widely used encryption systems despite newer
alternatives

> Fun fact: The original RSA algorithm was kept secret by MIT researchers until
officially patented in 1983!

Receiver

B

Communication
Channel

Plaintext Plaintext
(ASCIl code) (ASCll code)
Ciphertext

{722 {722
I N EM) oM I N
Encryption Key Decryption Key

(Public Key) (Private Key)
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Role of Encryption in Modern Tech

Encryption, including RSA, plays a pivotal role across Big Tech
ecosystems:

m End-to-End Encryption: Ensures private conversations (e.g.,
WhatsApp, Gmail)

m Secure Transactions: Protects payment and financial data during
online purchases

m Digital Signatures: Verifies sender identity and message integrity

m Cloud Security: Protects data stored and processed on cloud
platforms
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Google's Use of RSA: Gmail Security

Google uses RSA encryption to secure its email platform, Gmail

m Secure Email Transmission:

m RSA encrypts email during transmission over the internet (TLS)
m Protects against interception by attackers

m Secure Attachments:
m Attachments are encrypted, maintaining confidentiality
m Authentication and Identity Verification:
m Public Key Certificates validate the identity of Gmail servers to users

m Prevents users from connecting to malicious or fake servers during
email transmission

m Secure Inter-Server Communication:
m When Gmail exchanges emails with other providers (e.g., Yahoo,
Outlook), RSA ensures encryption if the other party also supports it
m Protects emails even when crossing into external networks

> Gmail's security warnings (" this message is not encrypted”) appear

when RSA/TLS is not properly used between servers
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Application of RSA in Amazon (E-Commerce Security)

RSA encryption underpins the security of
Amazon's e-commerce ecosystem, especially
during critical payment processes

m SSL/TLS Handshake: RSA is used in establishing secure HTTPS
connections during checkout

m Ensures that credit card information and personal data are encrypted
during transmission

m Payment Gateway Security: Customer payment details are encrypted and
securely transmitted to payment processors

m Protects customers from man-in-the-middle attacks

m Compliance with Industry Standards: RSA encryption helps Amazon meet
PCI-DSS standards for payment card security
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Application of RSA in WhatsApp (Meta)

RSA was used in WhatsApp end-to-end encryption for private communication

m Message Encryption: Messages are encrypted using the recipient’s public key
before transmission

m Only the intended recipient can decrypt using their private key

m Call Encryption: Voice and video calls are protected through similar
asymmetric encryption mechanisms

m Digital Signatures for Authentication: Each message carries a digital
signature - verifies the sender’s identity

m Prevents impersonation or tampering of messages

> Although WhatsApp now mainly uses the Signal Protocol, RSA remains a core
enabler in identity verification and initial key exchange
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RSA in Cloud Security (Google Cloud and AWS)

RSA encryption is a backbone of secure operations for major cloud service
providers like Google Cloud and Amazon Web Services (AWS)

m Data-at-Rest Protection:

m RSA encrypts sensitive files stored in cloud databases and storage
buckets

m Secure APl Communication:

m API calls between cloud services are encrypted and authenticated using
RSA certificates

m |dentity and Access Management (IAM):

m RSA public-private keys ensure that only authorized users can access
cloud resources
m Used in systems like AWS IAM Roles and Google Service Account
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Arithmetic Rules

m We will constrain the operands and results of basic arithmetic

operations to a certain range — the modulus

m This is important for understanding cryptography, especially RSA

Assume arithmetic rules for operations +, %, — on the set of integers

+c ab + ac

a(b+c) =
ab ba
a(bc) = (ab)c
axl = a
ax0 =20
a+0 = a
a—a=20
a

a+1 >
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The divides operator

Definition

Fora,b€Z,a#0,wesay a|b: (adivides b) if JceZ:b=ac

a divides b if there is an integer ¢ such that b = ac

m 412 >12=4-3 =18 >8=1-8
=312 >12=3-4 =26 > 6=-2--3
=50 >0=5-0 = 6|12 b —12=—6-2
I3J(7 l—4)(13

m ais a factor or divisor of b

b is a multiple of a
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Divisibility Facts

Some useful properties of | operator that can make calculations easier

an’n > n=1-n
Vnn|n > n=n-1
Vnn|0 > 0=n-0
A Vn —1|n > n=—-1-—n
B Vn —n’n Dn:—n-—lj
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Divisibility Facts

Halb= albc
Fora,b,c € Z a‘b/\b‘c:>a|c
a‘b/\a|c:>a’b+c

> 3|6 = 3|6-2
>2|4N4[8= 2|8
b 2|4A2](8 = 2|8+4

Corollary: a|b/\a‘cﬁa|mb+nc, m,n €7 J

>2|4AN2|8 = 2[3-8+5-4

IMDAD ULLAH KHAN (LUMS) Number Theory & Cryptography May 13, 2025 16 /93



Divisibility Facts

Corollary: a|b A a‘c — a|mb+nc, m,n €7

Proof: Number theory proofs generally use definition and basic arithmetic

a’b/\a‘c:>5|x,y: b = ax
mb = m(ax) = a(mx) = a|mb

nc = n(ay) = a(ny) = a|nc

By Theorem part (2) a | mb + nc

N € = ay
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The Division Algorithm

Theorem (The Division Algorithm)

Let a be an integer and d a positive integer. Then there are unique
integers q and r, with 0 < r < d such that a = dq + r

m ¢ : quotient(a, d)

m r: remainder(a, d) >a% d
m d : divisor

m a: dividend

remainder(a,d): is the offset in the block

quotient(a, d):block where d lies

r
| | | | | I%

\ \ \ \ \
—2d —d 0 d 2d

e

|
3
Clearly with a and d > 0, g and r are uniquely defined
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Congruence

ForabeZand meZ*, a=n b iff m|(a—0b) )

pronounced as a is congruent to b modulo m

> Standard notation for a =, bis a= b (mod m)

Theorem: Let a,bc Z and me Z™.
Thena =, b iff a% m= b%m

3 =3 6, 3 =3 3, 7 =5 2 -3 =5 2, -1 =3 —4

To avoid confusion between standard notaitons - (mod m) vs mod m, we use
our notation.

Note that % m is an operator, while =, is an equivalence relation over Z
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Congruence

\
552
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Congruence Facts

Ha=, a

Ha=, bc=b=, a

Ba=, bANb=,c— a=,c

> =, IS an equivalence relation on 7

Aa=y, (a%m)
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Congruence

a=pm b JdkeZ :a=b+ km I

> 8 =5 3and 8=3+5(1)
> 16 =5 1and 16 =1+ 5(3)

Proof:

a=n,b

< m|(a—b) > by definition
< dkeZ :a—b=km

< a=b+km
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Congruence

Definition
Fora,bcZand meZ", a=n b iff m|(a—0b)

Fora,b€Z and mec Z™, =nb iff a% m=b%m

ForabcZ and meZ", a=, b IkeEZ :a=b+km
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Modular Arithmetic

Modular Arithmetic rules are similar to the regular arithmetic rules but are
applied to integers within a modular system

Ifa =, bandc =, d, then a+c¢c =, b+d

> 8 =5 3and9 =5 4 — 8+9 =5 3+4
Familiar cases: m =2 and m =10

If (a, b) and (c, d) have the same parity, then a+ ¢ and b+ d have the
same parity

If (a, b) and (c, d) have the same last digit, then a+ ¢ and b+ d have the
same last digit

The lemma says it works for all m
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Modular Arithmetic

Ifa =, bandc =, d, then a+c =, b+d

Proof: a =, b = a = b+xm AND ¢ =, d = ¢ = d+ym
at+c=b+d+xm+ym = (a+c)—(b+d) = m(x+y)
Hence m | (a+ c) — (b + d)

So a+c=, b+d

if a= b (mod m), then adding or multiplying both sides by the same
number does not change the congruence

(84+9) mod 5. First, we find that 8 =3 (mod 5) and 9 = 4 (mod 5).
Now, 8+9=3+4=7=2 (mod 5)
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Modular Arithmetic

Ifa =, bandc =, d, then ac =, bd

Proof:

Very similar!

Ifa =, b, then a* =, bk

Proof:

Very similar!
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Modular Arithmetic

Ifa =, bandc =,, d, then a+c =, b+d

Ifa =, bandc =, d, then ac =, bd
Ifa =, b, then a* =, b¥

(a+b) % m = ((a% m)+(b% m)) % m
ab% m = ((a% m)(b% m)) % m

H % m= (a%m)k%m

This means that while computing (a+ ¢) % m or (ac) % m, we can replace a
with (2 % m) and ¢ with (c % m) > Recall that a =, a% m
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Modular Arithmetic

A /fa=, bandc =,, d, then a+c =, b+d
Ifa =, bandc =, d, then ac =, bd
Ifa =, b, then ak =m bk

(a+b)%m = ((a%m)+(b% m)) % m
ab% m = ((a% m)(b% m)) % m

H*%m-= (a%m)k%m

Compute —706 - 1456 % 19

—706 =19 16 and 1456 =19 12 = —706-1456 % 19 = 16-12 % 19
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Modular Arithmetic

Ifa =, bandc =, d, then a+c =, b+d

Ifa =, bandc =, d, then ac =, bd
Ifa =, b, then ak =m bk

(a+b)%m = ((a%m)+(b% m)) % m
ab% m = ((a% m)(b% m)) % m

H*%m= (a%m)k%m

A = {—706,1456, 88, —41,19,20,38,40}  Compute ( S x) % 19
x€EA

Remainders: R = {16,12,12,16,0,1,0,2}  So ( > x) % 19 — ( > r) % 19
xXEA rer
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Modular Arithmetic

Ifa =, bandc =, d, then a+c =, b+d

Ifa =, bandc =, d, then ac =, bd
Ifa =, b, then ak =m bk

(a+b)%m = ((a%m)+(b% m)) % m
ab% m = ((a% m)(b% m)) % m

H*%m-= (a%m)k%m

Compute 5163931 % 103

516 =103 1 So 5163031 95103 = 13031 9% 103 = 1
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Modular Arithmetic: Applications

A positive integer N is divisible by 9 iff the sum of its digits is divisible by 9

9 | 343233153711  because 9 J[ 12356954236  because

93+4+3+2+3+3+1+5+3+7 941+24+3+5+6+9+5+4+2+3+6
Proof: Note that 10 =g 1

Let N = didk_1...dad1do > d; it digit of N
N = d10% + dy 11071 + - + dr102 + d1 101 + dp10°

Using the congruence identities

N =g di10% + ...+ dr10% + 10! + dg10°

N =g d 1%+ ...+ do1? + di 1t + dp1°

N =g de +di_1+...+do+di + do
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Modular Arithmetic: Applications

A positive integer N is divisible by 3 iff the sum of its digits is divisible by 3

Proof: Essentially the same

A positive integer N is divisible by 11 iff the alternating sum of its digits is
divisible by 11

Proof: Essentially the same, using the fact that 10 =1; —1
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Modular Arithmetic: Applications

BELGIAN
VOTING

Definition (Check Digit)
An extra digit appended to a number, which is
related to the other digits in some way j

> Catches most transposition and single-digit errors

Candidate A .
Candidate B osmic ray

Bit flip
000000000000 212
-

100000000000
4096 extra votes

Bank routing transit number

1001

Airlines Tickets

i Your Name
mancanArines Your Address.

Your Bank Name

9 Digit Routing Number  Your Account Number Check Number

12 digits ticket number, plus a 13" check digit 9-digits bank routing number

check digit is the main number % 7 dgdy ... dsdadidy  do is check digit

01 — 1300696717 — 2 as 11300696717 % 7 = 2 do = 7ds + 3d7 + 9ds + 7ds + 3ds + 9ds + 7d> + 3dy % 10

Difficult to find check digit by most calculators

Easier to compute using modular arithmetic
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Modular Exponentiation

Modular exponentiation is a key operation in RSA encryption. It allows us
to calculate large powers of numbers under a modulus efficiently

Given (large) integers b,m,n  Find b" % m

Compute 28513177 % 4559 > 2851377 has about 12k digits!

Find 22% % 29

Instead of calculating b” and then reducing modulo m, we can repeatedly
reduce the intermediate results modulo m after each multiplication

224 %29 = 22.22.22.22 %29

=22-22-484%29 = 22-22-20% 29

= 22-440%29 = 22-5%29 = 110% 29 = 23

It helps for the number of digits (storage) but number of steps is still large

— We will come back to it
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Prime Numbers

Definition

A positive integer p is prime if it has exactly two divisors, namely 1 and p

1 is not prime

Definition

A positive integer n is composite if it has a divisor d, 1 < d < n

1 is not composite

m In cryptography, prime numbers play a crucial role, especially in RSA
algorithm, where large primes are used to generate public and private keys

m In particular, the difficulty of factoring large composite numbers into their
prime factors is the basis for the security of RSA encryption
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Greatest common divisor

GCD(a, b) := the greatest common divisor
> the largest integer d that divides both a and bJ
m GCD(24,32) =38 m GCD(25,15) =5
B GCD(22,24) =2 m GCD(13,20) =1
m Gcp(15,5) =5 m GoD(11,33) =11

Lemma: pisprime = Va€Z Gcp(p,a)=1orp
> .© p has only two divisors 1 and p

a and b are relatively prime if GcD(a, b) =1
> Equivalently, a and b have no common factors

GCD(25,16) =1, GCD(24,25) =1
A prime number p is relatively prime to all integers except its multiples
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Computing GCD

GCD(a, b) := the greatest common divisor
> the largest integer d that divides both a and bJ

Compute c¢cD(a, b) by

find all divisors of a and b
find the common divisors
find the greatest among the commons

Compute G¢CD(a, b) from the prime factorization of a and b

a = pi'py...par
Gep(a, b) = p;
98
420

GeD(98,420)

IMDAD ULLAH KHAN (LUMS)

b
b = pllpé”...p,’;"

min{al,bl}p;nin{ag,bg} o p,r;win{an,b,,}

2.7-7 =21305072110...
2.2.3.5.7 =223t51 71 110...
=21305071110... = 14

Number Theory & Cryptography
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Computing GCD: Euclidean Algorithm

GCD(28,98) GCD(98, 420)
28 98 3 98 420 4
84 394

28 28 98 3
0 14 28 [ 9
28
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Computing GCD: Euclidean Algorithm

GCD(28,98) GCD(98, 420)
28 | B [ 3
84
28
14> 98 [2
0

Theorem (Euclid)
Ifa = gb+r, then GcD(a,b) = aep(b,r)
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Computing GCD: Euclidean Algorithm

Theorem (Euclid)

Ifa = gb+r, then Gcp(a,b) = aep(b,r)

GCD(98, 420)

98 420 4

IMDAD ULLAH KHAN (LUMS)

Number Theory & Cryptography

a=420, b =98
> 420 =98 -4+ 28
GCD(420,98) = GcD(98, 28)
>98=28-3+ 14
GCD(98,28) = GCD(28, 14)
>28=14-240

(2 GCD(28,14) = acep(14,0) =14

GCD(420,98) = 14
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Computing GCD: Euclidean Algorithm

Theorem (Euclid)
Ifa = gb+r, then Gcp(a,b) = aep(b,r)

GCD(98, 420)

Algorithm Gccp Computation

420

o 394 ! function Gcp(a, b)
) if b= 0 then
28> 2481 (3 return a
else
14 28 92 r<—a%»b
> 28 [ return GCD(b, r)
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Computing GCD: Proof of the Euclidean Algorithm

Theorem (Euclid)
Ifa = gb+r, then Gcp(a,b) = aep(b,r)

Proof: Case 1: r=0 => ccp(b,r)=acD(bh,0)=b,asbh|0
r=0 = a=gb, so GCD(a,b)=b=accD(b,r)

Case 2: r >0

Let d be a common divisor of band r b= xd and r = yd
a=qgb+r=(gx)d+yd=(gx+y)d = d|a

Let d be a common divisor of aand b a=sd and b= td

r=a—qgb=sd—(qt)d =(s+qt)d = d|r

So d is a common divisor of a, b <+ d is a common divisor of b, r
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aeD: Extended Euclidean Algorithm

For all a,b, ds,t: sa+tb = Gcp(a,b)

a =420, b=198 @cp(98, 420) @ep(420,98) = 14
> 420 = 98 - 4 + 28 %‘W“ >14=08—3-28
GoD(420,98) = Gen(98, 28) i — GCD(420,98) = 98 — 3 - 28
> 08 =128-3+14 zgm( b 28 =420 — 98 - 4
GCD(98,28) = Gep(28, 14) ! g ’ acD(420,98) = 98 — 3(420 — 4 - 98)

>28=14-240
* GCD(420,98) = —3-420 + 13 - 98
GeDp(28,14) = acp(14,0) = 14

GCD(420,98) = 14
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aeD: Extended Euclidean Algorithm

For all a,b, ds,t: sa+tb = Gcp(a,b)

a=2899, b=493
>899 = 1493 + 406
GCD(899, 493) = acDp(493, 406)
> 493 = 1406 + 87
GCD(493,406) = Gep(406, 87)
> 406 =4 - 87+ 58
GcD(406,87) = Gep(87,58)
>87=1-58+429
Gep(87,58) = Gep(58,29)
>58=2-2940
Gep(58,29) = aep(29,0) =29

IMDAD ULLAH KHAN (LUMS)

GCD(899,493) = 29
29=87—-1-58
> 58 =406 — 4 - 87
29 = 87 — 1(406 — 4 - 87)
> 87 =493 —1-406
29 = 5(493 — 406) — 406
> 406 = 899 — 1 - 493
29 = 5493 — 6(899 — 493)

29 = —6-899 4 11 - 493

s=—6, t=11
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The Caesar Cipher

A substitution cipher: replaces each letter in the plaintext with another
letter according to a fixed system

The Caesar Cipher (a special case of substitution): Substitute each letter
by the letter a fixed number of places (say 3) down the alphabet

[AlBIC[DJE[F]

[AIB]C]D[E]F|

How about x, y and z7 > Cyclic-modular
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The Caesar Cipher

A substitution cipher: replaces each letter in the plaintext with another
letter according to a fixed system

The Caesar Cipher (a special case of substitution): Substitute each letter
the letter a fixed number of places (say 3) down the alphabet

Replace 3 with some other integer s

Decryption
c(p+s) %26 p<« (c—s) %26

For a Caesar cipher with a shift of 3 (s = 3):

Plaintext: HELLO Ciphertext: KHOOR

Here, H becomes K, E becomes H, L becomes O, and O becomes R

IMDAD ULLAH KHAN (LUMS) Number Theory & Cryptography May 13, 2025 46 /93



Affine Cipher

Affine Cipher: An extension of the Caesar cipher. Instead of shifting
letters by a fixed amount, we apply an affine transformation

Decryption

¢+ (tp+5s) % 26 pe@%%

With t =5, s = 8, and plaintext "HELLO":
H—-7 E—4 L—11, L—11, 0—14

Then applying the affine cipher formula, we get the ciphertext

tp = (c—s) %26 = p=1tlc—s)%26

If t =3,then3-9=27%26=1 > 9=3"1
If t =5, then 5-21 =105 % 26 = 1 > 21 =571
Not every integer has an inverse What is inverse of 4 modulo 267
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Modular Inverse

The modular inverse is an important concept for decryption in RSA

Definition
b is the inverse of a modulo m iff axb =, 1

For real numbers, every x # 0 € R has an inverse

For integers, only 1 has an inverse

What if we were doing modular arithmetic?

Interesting property: integers also have inverses (at least some of them)

Find the modular inverse of 3 modulo 7
Need to find a number b such that 3 x b=1 (mod 7)
We find that 3 x 5 =15 =1 (mod 7), so the inverse of 3 modulo 7 is 5
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Modular Inverse

Definition

b is the inverse of a modulo m iff a-b =, 1

Z1 2 3 4 | Zs |1 2 3 4 5

11 2 3 4 5
1yl 2 3 4 212 a4 0 2 4
212 4 13 33 0 3 0 3
313 1 42 ala 2 0 4 2
A4 321 5015 4 3 2 1
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Modular Inverse

Definition
b is the inverse of a modulo m iff axb =, 1

a has an inverse modulo m iff a and m are relatively primes I

Equivalently, inverse of a modulo m exists iff GcD(a, m) =1

aen(3,7) =1 3-5%7=1
aep(4,11) =1 4.3%11=1
Gep(8,9) =1 8:-8%9=1
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Modular Inverse

a has an inverse modulo m iff ccb(a,m) =1

Proof:

Gep(a,m) =1

= sa+tm=1

= tm=1—sa = m|1—sa
— 1—-sa=,0

— sa=,1

We can find s and t from Extended Euclidean Algorithm
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Modular Arithmetic: Cancellation

Ifa =, b,thena+c =, b+c¢

If a =, b, then ac =,, bc

Just as in ' =’ for real numbers

if ac =, bc, then1s a =, b?

3-4 =3 1-4 but 3 #g1l
4.3 =g 1-3 but 4 #9 1
2-4 =15 5-4 but 2 #;p 5

We cannot cancel two “equal” values on both side of a congruence
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Modular Arithmetic: Cancellation

Let Gep(a,m) =1. Ifab =, ac, then b =, ¢

Gep(a,m)=1 = Jal:aal=,1

ab =, ac
— aba ! =, aca!

= b =, C
Typically modulus is a prime == an inverse exists for every integer

Modulo a prime, integers behave “like” real numbers )
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Solving Congruence

Finding a=! % m is solving the congruence ax =, 1
How about solving other congruences!

Solve 2x =7 3
Gep(2,7) =1 and 24 =21 so 4is 27!

2x =7 3 = 2x-4 =7 3-4

— x =7 12 =7 5

Verify that all integers of the form 5+ 7t satisfy this congruence
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Solving Congruence

Finding a=! % m is solving the congruence ax =, 1
How about solving other congruences!

Solve 3x =¢ 2
Going through all numbers % 6, no x satisfy this congruence

We say
3x =¢ 2 has no solutions
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The Chinese Remainder Theorem

The Chinese remainder theorem characterizes solvable system of
simultaneous congruences and derive a solution

m Make an m x n grid

m Start from lower left and move up and right

m Wrap around both from top to bottom and right to left
m At every step write integers starting from 0

3 3 3
2 2 2 2
1 1 1 1 5|1
0 0 0 0 0 4 0 4
15|11 7|3 |19
1016 | 2 |18|14
51 (17(13|9
0(16(12| 8 | 4
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The Chinese Remainder Theorem

m Make an m x n grid
m Start from lower left and move up and right
m Wrap around both from top to bottom and right to left

m At every step write integers starting from 0
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The Chinese Remainder Theorem

Make an m x n grid

Start from lower left and move up and right

[
[
m Wrap around both from top to bottom and right to left
m At every step write integers starting from 0

[

For which m and n the grid gets completely filled in?

151111 7 |3 |19 7 3 11
10(6 |2 |18|14 6 2 10
1117|113 1 9 5
1612 8 | 4 0 8 4
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)
are left. The Chinese emperor ordered a series of tasks
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)
are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn’t >x%3=1
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)
are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn’t >x%3=1
Task-2: Make groups of 5 and report how many couldn't >x%5=2
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)
are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn’t >x%3=1
Task-2: Make groups of 5 and report how many couldn't >x%5=2
Task-3: Make groups of 7 and report how many couldn’t >Dx%7=2
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)
are left. The Chinese emperor ordered a series of tasks

Task-1: Make groups of 3 and report how many couldn’t >x%3=1
Task-2: Make groups of 5 and report how many couldn't >x%5=2
Task-3: Make groups of 7 and report how many couldn’t >Dx%7=2
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prta it

Magically the emperor figured out their number > x =37
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The Chinese Remainder Theorem

Anceint Tale: In a war some soldiers died, wanted to find how many soldiers (x)
are left. The Chinese emperor ordered a series of tasks

Magically the emperor figured out their number > x =37

Solve a system of modular congruences.

Find x < 3.5.7 satisfying

X =3 1
X =5 2
X =7 2
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The Chinese Remainder Theorem

Theorem

If m1, my, m3 are relatively prime and a1, a», a3 are integers, then

my al

a2 has a unique solution modulo m = mymyms3

X X X
Il
3

ms 43

Proof by construction:

nlzm/ml n2:m/m2 n3:m/m3

@y = n*t % m @y = nyt % m @ ys = ngt % ms
> yk always exists as GCD(ng, myg) = 1
X = aimyr + axmy> + aznzys

x satisfies all congruences.  Uniqueness!
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The Chinese Remainder Theorem

Solve the system of Find nyi, y1, n2, y2, n3, y3

modular congruences as follows
x =3 1 nm=5x7=35 y =35"1modulo3 = 2
X =5 2 nn=3x7=21 y,=21"'modulo5 =1
X =7 2 n3=3x5=15 y3=15"modulo7 = 1

myr =3 1, myis =5 0, my; =7 0
my, =3 0, my, =5 1, my>, =7 0

mys =3 0, my; =5 0, my3; =7 1

Note that by
construction

X = aimy1 +agn2y2—|-a3n3y3 =1-70+2-21+2-15 = 142 =105 37

Verify that 37 =3 1, 37 =5 2, 37 =7 2
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The Chinese Remainder Theorem

If my, my, ..., m, are relatively prime and ai, ay, ..., a, are integers, then
X =m 41
X =m, a2
X =i G
n
has a unique solution modulo m = [] m;
i=1
V.

Proof by construction is the same
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The Chinese Remainder Theorem

Using CRT we can uniquely represent any integer with remainders when
moduli are relatively prime

> The integer has to be less than the product of moduli

Any integer 0 < x < 15 can be represented by (x % 3, x % 5)

12 = (0,2)
11 = (2,1)
How many ordered pairs are possible? > Will the grid fill?

Used two smaller integers to represent a big integer!

To perform arithmetic upon large integers, we can instead perform arithmetic on
these small remainders
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The Chinese Remainder Theorem

Compute 123684 + 413456

By CRT any 0 < x < 99-98-97-95 = 89,403,930 can be represented by
its remainders modulo these moduli

123684 + 413456 = (33,8,9,89) + (32,92, 42, 16)
123684 + 413456 = (65,2,51,10)

To convert back, Solve

X =g9 65 We get
=93 2
X =98 x = 123684 + 413456 = 537140
X =97 51
X =095 10
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The Chinese Remainder Theorem

Compute 1345 x 2368

By CRT any 0 < x < 99-98-97-95 = 89,403,930 can be represented by
its remainders modulo these moduli

1345 x 2368
= (58,71,84,15) * (91, 16, 40, 88) > coordinate-wise products
— (5278,1136,3360, 1320) = (31,58, 62, 85) > Took mod

To convert back, Solve

X =g9 31 We get

X =g 58 x — 1345 x 2368 — 3184960
X =97 62

X =g5 85
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Pseudoprimes

Theorem (Ancient Chinese)

Let n be a prime, then 2" 1 =, 1

Some thought that the converse was also true!

The converse is not true!

2340 —=;,; 1, but 341 = 31-11

Composites having this property are called pseudoprimes
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Fermat's Little Theorem

Theorem (Ancient Chinese)

Let n be a prime, then =t =l

Theorem (Fermat's Little Theorem)

Let p be a prime, then
] pr)(a, then aP~1 =p 1

m aP =, a, for every integer a

Proof: WLOG, assume that a € {0,1,...,p— 1}
If a =0, this trivially holds
If a# 0, then ged(a, p) =1 = a has a multiplicative inverse, modulo p

Multiplying both sides by this inverse a=! yields: =1 =1 (mod p)
Fermat's Little Theorem is very useful for simplifying certain large exponentiations
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Fermat's Little Theorem

Fermat's Little Theorem: Let p be a prime, If p J( a, then aP~1 =, 1 J
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Fermat's Little Theorem

Fermat's Little Theorem: Let p be a prime, If p J( a, then aP~1 =, 1 J

mp=11, a0 =1 forall a > [FLT]

For some a’s the exponent gets to 1 before 10 =p —1
m Patterns are of lengths that divides 10

m The values a for which all numbers 1 < k < 10 appear are called
generators
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Fermat's Little Theorem: Modular Exponentiation

Given int b and ints n,p > 1, find b” % p

When modulus is prime, we use FLT to speed up

Find 2261 % 29
2201 = 2028F28+5 — 2228.2228.225 = 1.1.22°
bk % p repeats after k reaches p — 1, so we use

B %p = bV p

2261 05 29 — 261%28 0y o9 — 225 9 29
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Fermat's Little Theorem: Modular Exponentiation

Fermat's Little Theorem is very useful for simplifying certain large exponentiations

71027 _

82354454459932700149554622847160692519756619023062232427396015584374
99958382473242998087956437374131434593042920370824813986091608202695
03301672056029937808578799506374779881698816017119148232704767843317
10110203798777291466521314775901838301156488182731136678470694472304
89386021161960816645682600107523260601395803318744511904090680348951
83321084488463006318582294519193149813795294091072551244801135441743
89278535778657471699254109989815064297655489544635083531049920621844
45250200344772694140346323000340833641384408455897645626220181349309
70842222614787846583153327598198625424746207198681572552482656563032
02463264976263071006154023466326481984207474225925621916886286895666
77101890054018914525531500897548585341110302017650695463976958126547
33981665536889605328989166044793868231891471438474687310952477472556

7321851877420158736581518028903696311777623045939543 % 13 = 6

710210013 = 71021%12 04 13 — 779 13 = 823543 % 13 = 6
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Generating Large Prime Numbers

To implement RSA, we need large prime numbers. A “guess and check”
heuristic works due to of the following number-theoretic results

Theorem (Prime Number Theorem)

The probability that a random number n is prime is ~ 1/(In n), i.e.,

. . . 1
lim (proportion of numbers < n that are prime) — — =0
n—o00 Inn

m The chances of a random 9-digit number being prime is ~ 4% (i.e., 1
in 25). For a 200-digit number, this is approx. 0.2% (i.e., 1 in 500)

Algorithm 2 Generate Large Prime Number
while true do
n < a random 200-digit number
if nis prime then > Need primality testing
return n

IMDAD ULLAH KHAN (LUMS) Number Theory & Cryptography May 13, 2025 77/93



Checking Whether a Large Number is Prime

The Fermat primality test is a probabilistic method to determine whether
a number is (“probably”) prime

Fermat's Little Theorem: Let p be a prime, If p J( a, then a? =, a J

Algorithm 3 Fermat Primality Test n € N

1: Compute a"~1 (mod n) for many random values of a < n
2: if for some a, a1 # 1 (mod n) then

3:  n must be composite
4. else
5. nis “probably prime”
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Fermat Primality Test

Fermat Primality Test (Revisited)

Given a number n € N, compute a"~! (mod n) for many random values of a < n
m If 2771 # 1 (mod n), then n must be composite. > a is a Fermat witness
m If "1 =1 (mod n), there are two cases:

n is prime
n is composite > a is called a Fermat Iiar)

If a composite number n has a Fermat witness, then at least half of all numbers
ae{1,2,...,n— 1} that are relatively prime to n are Fermat witnesses to n

Proof (Sketch): Let a and b be a Fermat witness and a Fermat liar for n
n—1 _ _n—1 4n-1_ _n-1
(ab)" " =a bt =a"""#£1 (mod n)
#1 =1

In other words, every Fermat liar b has a corresponding Fermat witness ab
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Carmichael Numbers

We saw that if n has a Fermat witness, then it has many
Is it possible that n is composite, but has no Fermat witnesses?

Unfortunately, the answer is YES, but this is very rare
A Carmichael number is a composite number n for which

a"1=1 (mod n)

holds for all a=1,...,n— 1 relatively prime to n

First few Carmichael numbers: 561, 1105, 1729, 2465, 2821, 6601, 8911

For 100-digit numbers, less than 1 in 1030 are Carmichael numbers. For
200-digit numbers, the chances are even less.

If a randomly chosen 200-digit number n is tested for ~ 100 different
values of a without getting a Fermat witness, then almost surely n is primeJ
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Private Key Cryptography

Alice sends message to Bob, Eve eavesdrops

message

X— !l X

|

message
| — x

2 | 3
Alice & Bob

i Eve
S~ Eavesdropper

Exchange the encryption key for a good cipher!

key \ Ve key
message y
o gl gl %messag)e(

Encrypt Decrypt )

[
Alice l & Bob

i Eve
s Eavesdropper

But during key exchange, Eve could get the key and all security is lost!
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Public Key Cryptography

Alice sends message to Bob, Eve eavesdrops

message message
~ — Bl g

X

| —

l X
l o
[ )
Alice v Bob
< Eve
h Eavesdropper

Everyone knows public key, only Bob knows private key

Bob’s Bob’s
public key\ Ve private key
messagiﬁ gl y "l %messag;
Encrypt l Decrypt ~
()
Alice v A Bob
Bobs  — ey Eve
public key > Eavesdropper

Alice encrypts with public key, Bob decrypts with private key
Eve cannot do anything!
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Public Key Cryptography: RSA

Keys generation

m Choose two large primes p and g > p and g are secret

mSetn=pgand T = (p—1)(g—1)

m Choose e such that ccp(e, T) = 1 > e~ ! exists

m choose d = e~ modulo T >de =7 1

m e and n are public keys > published on Internet

m d is private key > only Bob knows it)

m Encode message as an integer M < n

Compute C = M¢ % n > Use modular exponentiation!

Decryption

m Compute M = C? % n > Use modular exponentiation!
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Public Key Cryptography: RSA

m Choose two large primes p and g m p=>59 and g =43

mSetn=pgand T =(p—1)(g—1) m n=2537 and T = 2436

m Choose e such that gep(e, T) =1 m e =13: Gcp(13,2436) =1

m choose d = e ! modulo T m d=937=13"! modulo T

m e and n are public keys m 13 and 2537 are public keys

m d is private key m 937 is private key

w

Encrypt “STOP” S —18, T — 19,0 — 14, P — 15 = 1819 1415
C=M%n 1819" % 2537 = 2081 1415" % 2537 = 2182 )
Encrypted message is 2081 2182
Decrypt “0981 0461"
M=C'%T 0981%" % 2537 = 0704 0461%" % 2537 = 1115 )
07 - H,04 - E,;11 —» L,15 - P — "“HELP” > message is “HELP"
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RSA: Correctness and Security

m Encode message as an integer M < n
m Compute C = M® % n > Use modular exponentiation!

v

m Compute M = C? % n > Use modular exponentiation!

We need to show that
m C?% nis indeed equal to M > Correctness

m Without knowing d cannot compute M from C > Security
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RSA: Proof of Correctness

The Correctness of RSA relies on the fact that the encryption and
decryption processes are inverses of each other

Correctness of RSA:  C9 = (M) =, M J

Proof: de=71 Thus, JkeZ:de=1+k(p—1)(g—1). So
cd = Mde =pq M1+k(p—1)(g—1)

m C4 = M(MP-HKa-Y) =, M1k =, m
m C4 = M(MIYH)kP=1) = pm.1kPD) =, M > FLT

Hmm! a system of modular equations with Gcp(p, q) =1

C? =,4 M is a solution to this system and by CRT its a unique solution
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RSA: Proof of Security

Without knowing d cannot compute M from C > Security

Hardness of the Factorization Problem

To break RSA, an attacker would need to factor the modulus n = p x q. It is
believed to be very hard to find p and g given n = pg

Prime factorization is a difficult problem

> though we do not have theoretical proof for it

m Key Generation: The difficulty of deriving p and g from n ensures that the
private key remains secure.

m Public Key Exposure: The public key (e, n) is shared openly, but it is
infeasible to compute the corresponding private key d without knowledge of
p and g

m One-Way Function: RSA’s encryption and decryption are based on one-way
mathematical functions that are easy to compute in one direction but hard
to reverse
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Challenges to RSA Security

Challenges that can compromise RSA security:

m Small Key Sizes: Using smaller key sizes (e.g., 512-bit keys) makes RSA
susceptible to brute-force attacks. Modern implementations require much
larger key sizes (e.g., 2048-bit or 4096-bit) to ensure security

m Computational Complexity: RSA operations are computationally intensive,
especially as the key size increases. This requires efficient algorithms and
hardware to handle large numbers

m Quantum Computing: Quantum algorithms (theoretically) break RSA
encryption by efficiently factoring large numbers

m Side-Channel Attacks: RSA implementations can be vulnerable to
side-channel attacks (e.g., timing attacks) that exploit weaknesses in the
algorithm's execution or hardware
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Mitigating RSA Vulnerabilities

There are several strategies to mitigate vulnerabilities in RSA encryption:

m Increasing Key Sizes: Using larger key sizes (e.g., 2048-bit or 4096-bit) to
make factorization infeasible for classical computers

m Hybrid Cryptosystems: Combining RSA with symmetric encryption
algorithms (e.g., AES) to reduce computational overhead while maintaining
security

m Quantum-Resistant Algorithms: Researchers are focusing on developing
algorithms that can withstand quantum attacks, ensuring long-term security
for encrypted communications
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Hybrid Cryptosystems and RSA

Hybrid cryptosystems combine asymmetric (e.g., RSA) & symmetric encryption
(e.g., AES) to balance between security and performance

m Key Exchange with RSA: RSA is used to encrypt and securely exchange a
symmetric key (e.g., AES key) between sender and receiver

m Data Encryption with AES: Once the symmetric key is securely exchanged,
AES is used to encrypt large data efficiently

m Decryption Process: The recipient uses RSA to decrypt the symmetric key
and then uses it to decrypt the data encrypted with AES

m Enhance performance: RSA provides strong security, but it is
computationally intensive — Symmetric encryption (e.g., AES) are much
faster but rely on the secure key exchange

m Widely Used in Practice: Commonly used in SSL/TLS protocols (e.g.,
HTTPS) for secure web browsing and in email encryption systems
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Quantum Computing and RSA's Vulnerabilities

RSA (Rivest-Shamir-Adleman) has been a cornerstone in securing online transactions for
decades. However, the rise of quantum computing poses a threat to RSA's security:

m Quantum Computing: Quantum Computing promises to revolutionize computing
by enabling much faster computation than classical computers
m Shor's Algorithm: A quantum algorithm that can break RSA encryption by
factoring large numbers in polynomial time (O((log N)*))
> With enough quantum processing power, RSA’s reliance on the difficulty of
factoring large primes would no longer be secure
> Quantum Supremacy: Quantum computers capable of breaking RSA are still in
the experimental phase, but the potential is real, and tech companies are preparing
for this eventuality

m Post-Quantum Cryptography: Algorithms that are resistant to quantum attacks

m Lattice-based cryptography
m Code-based cryptography
m Multivariate-quadratic-equations-based cryptography

Transition to Post-Quantum Cryptography: Online payment systems will transition to
PQC before commercial quantum computers are available
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Why Post-Quantum Methods Are Quantum-Safe

Unlike RSA or ECC, post-quantum cryptographic schemes are built on
mathematical problems that are hard for both classical and quantum computers:

m Lattice-Based Cryptography:

m Based on problems like Shortest Vector Problem (SVP) and Learning
With Errors (LWE)

m These problems remain hard even for quantum algorithms—no known
quantum polynomial-time algorithm exists for solving them

m Code-Based Cryptography:

m Relies on the hardness of decoding general linear error-correcting codes
m The McEliece cryptosystem (1978) still resists all known classical and
quantum attacks

m Multivariate Polynomial Cryptography:

m Based on the difficulty of solving systems of nonlinear multivariate
equations over finite fields

m Solving these systems (MQ problem) is NP-HARD and quantum
algorithms don’t offer speedups here
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Post-Quantum Cryptography (PQC)

Post-Quantum Cryptography (PQC) refers to cryptographic algorithms that are
secure against quantum computing threats:

m Quantum-Safe Algorithms: Algorithms like lattice-based cryptography,
hash-based cryptography, and code-based cryptography are being researched
as alternatives to RSA

m NIST's PQC Standardization: The National Institute of Standards and
Technology (NIST) is leading an effort to standardize post-quantum
cryptographic algorithms that can replace RSA and other classical systems.

m Hybrid Approaches: Some systems are being designed to combine
quantum-resistant algorithms with RSA to create quantum-safe hybrid
cryptosystems.

IMDAD ULLAH KHAN (LUMS) Number Theory & Cryptography May 13, 2025 93/93



