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Crowdsourcing

Human Based Computation Human based Data Gathering

Collective intelligence can be brought to bear on a wide variety of problems,
and complexity is no bar . . . conditions that are necessary for the crowd to be
wise: diversity, independence, and . . . decentralization.

James Surowiecki– The Wisdom of Crowds

Crowdsourcing: The practice of obtaining input, ideas, or services from a
large, diverse group of people, typically via the internet

Wikipedia - Content Creation

Amazon Mechanical Turk – Task Solving

Amazon, IMDB, . . . Rating Aggregation

Harnesses collective intelligence for better decision-making

Offers scalability, diversity of inputs, and cost efficiency
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Crowdsourcing Applications: reCAPTCHA

reCAPTCHA Inc. (now owned by Google) enables web host to
distinguish between spambots and human website access

Asked users to decipher hard-to-read text or match images

Used to crowd source digitization of books illegible for scanning
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Crowdsourcing Applications: ESP and GWAP

ESP game (extrasensory perception game) rebranded as GWAP
(game with a purpose)

Google Image Labeler (based on ESP) allows users to label images

Used to create difficult metadata for problems (image recognition)

Used to tag or associate keywords with Google indexed images for
Google Image Search
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Crowdsourcing Applications: Foldit

An online puzzle to fold the structure of selected protein using game tools

Uni. of Washington center for Game Science and department of Biochemistry

Protein’s function 3d structure prediction is computationally challenging

Foldit’s 57,000 players provided useful results that matched or
outperformed algorithmically computed solutions

Cooper S, Khatib F, Treuille A, et al. “Predicting protein structures with a multiplayer online game”. Nature (2010)
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Crowdsourcing Applications: Duolingo

An online platform allowing bilingual volunteers to teach a language using
another language

Translate thousands of words and sentences between the languages and
arrange those words and sentences into lessons and skills
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Crowdsourcing Application
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Tetsuro Saisho (2019), Crowdsourcing Strategy of Information Society



Human Based Computation - Crowd Sourcing

Francis Galton’s 1906 demonstrated “wisdom of the crowd”—the idea
that the collective judgment of a group can often be surprisingly accurate
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Crowdsourcing: Three Important Factors

Three main factors effecting the performance, cost, and user satisfaction
of a crowdsourcing system:

1 Latency (execution time): Worker pool size and job attractiveness

2 Monetary cost: Cost per question, task volume and no. of workers,
also impacts the scalability and affordability of the system

3 Quality of answers: Workers skills, task complexity and proportion
of malicious responses; impacts system’s reliability and accuracy
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Human Based Comparisons - Similarity Triplets
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Human Based Computation - Compute or Compare?

Humans have a hard time to

Explain embedding coordinate

Quantify a coordinate value

Evaluate pairwise similarity sim(A,B) =?

But humans are good at

Differentiating things perceptually

Comparing objects’ features

Comparing pairwise similarities sim(A,B) > sim(A,C )?
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Human Based Computation - Compute or Compare

Humans can easily assess that

The first two images more similar than the first and the third
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Human Based Computation - Compute or Compare

Humans can easily assess that

Rocky mountains Snow-covered peak Sea-view

Rocky mountains and snow-covered peak are similar, by scenic view
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Human Based Computation - Compute or Compare

Humans can easily assess that

Icecream Steak Cookies

Ice cream and cookies are more similar, based on taste
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Human Based Computation - Compute or Compare

Humans can easily assess that

Car Jeep Truck

A car is more similar to a jeep as compared to a truck, by utility
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Encoding Comparison Result

Comparison of pair-wise similarities of three objects encoded as triplets

(x, y, z)O =⇒ d(x, y) > d(y, z) and d(x, z) > d(y, z)

x is the outlier among the three

Outlier: (x, y, z)O

(x, y, z)O

x

zy

(x, y, z)C =⇒ d(x, y) < d(y, z) and d(x, z) < d(y, z)

x is the central among the three

(x, y, z)C

y z

x
Central: (x, y, z)C

(x, y, z)A =⇒ d(x, y) < d(x, z)

x is the closer to y than z

Anchor: (x, y, z)A

(x, y, z)A

y

z

x
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Crowd sourcing: Find Max

Input: An array A of n distinct numbers
Output: The largest number x ∈ A and its index

Algorithm FindMax(A)

max ← A[1] ▷ A[1] is maximum of A[1 · · · 1]
for i = 2 to n do

if A[i ] > max then
max ← A[i ] ▷ Update max if A[i ] is larger

Runtime is n − 1 comparisons

Crowd-Sourcing Find Max: Find the “best” or “most popular” item from
a pool of options based on user inputs, without comparing all items

▷ Commonly used in crowdsourcing platforms (e.g., Amazon ratings) to
determine top-rated or most-liked products
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Crowd sourcing: Find Max

Input: An array A of n distinct numbers
Output: The largest number x ∈ A and its index

Tournament Style Algorithm

2 3 8 9 6 7 5 4

3 9 5

9

7

7

9 max

Runtime is n − 1 comparisons
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Crowd sourcing Max: Bubble Max

Bubble Max adapts a bubble-sort-like method to find maximum by
gradually narrowing down the candidate items based on human responses

Leverages human ability to compare multiple items simultaneously

Bubble Max actually is a family of algorithms with parameters controlling
the number of items compared and number of questions per comparison

binary question (s = 2) s-ary question (s > 2)

Diagrams adapted from Dongwon Lee @ Penn State Univeristy

Number of human responses (r)
r = 2 r = 3

It iteratively compares groups of items and eliminates weaker options
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Crowd sourcing Max: Bubble Max

Input: A set E of items

Parameters: r1, r2, . . ., s1, s2, . . . si : Size of subset compared in round i

ri : Number of human responses in round i

Output: The maximum item from E

Algorithm 2 Bubble Max Algorithm {si}, {ri}
if |E | = {e} then

return e
S1 ← random subset of E of size min(s1, |E |)
E ← E \ S1

w ← Comp(S1, r1)
i ← 2
while E ̸= ∅ do

Si ← random subset of E of size min(si − 1, |E |)
E ← E \ Si

S ′
i ← Si ∪ {w}

w ← Comp(Si , ri )
i ← i + 1

return w
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Crowd sourcing Max: Bubble Max

si : Size of the sets compared by humans at step in round i

ri : Number of human responses sought in round i . This number helps
manage the trade-off between accuracy and the cost of human labor

The algorithm dynamically adjusts the comparison set size and the number
of responses to optimize for both error rates and operational costs

Cost: Determined by the number of human comparisons r × Cost(s) across
all steps

Quality: Probability of correctly identifying the maximum item, influenced
by aggregation rules and error models

Execution Time: Measured by the number of steps required, reflecting the
latency in obtaining results
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Crowd sourcing Max: Bubble Max

source: Dongwon Lee @ Penn State Univeristy
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Crowd sourcing Max: Bubble Max

source: Dongwon Lee @ Penn State Univeristy
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Crowd sourcing Max: Tournament Max

Group items into a tournament structure where winners from each group
progress until one remains

Groups of items compete in rounds

Winner of each group progresses to the next round until the best item
is determined

Algorithm 3 Tournament Max Algorithm {si}, {ri}
i ← 1
Ei ← E
while |Ei | ̸= 1 do

Partition Ei into disjoint sets Sj , |Sj | = si ▷ the last set may have fewer items

Ei+1 ← results of Comp(Sj , ri ) for all j

i ← i + 1

return the remaining item in Ei
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Crowd sourcing Max: Tournament Max

source: Dongwon Lee @ Penn State Univeristy
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Bubble Max vs Tournament Max

Bubble Max:

Total comparisons = r1+ r2+ ...+ rn (depends on the size of sets, si ).

Worst case, with si =2, O(n) comparisons needed.

Tournament Max:

Fewer rounds than Bubble Max but may require larger comparison
sets si per round.

Worst case, with si = 2, O(n) comparisons needed.

Bubble Max is a special case of Tournament Max

source: Venetis-WWW12
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Rating Aggregation
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Rating Aggregation

Rating Aggregation Combining several individual ratings to create an
overall score representing a collective insight

Reduces many individual ratings into a simple metric – Aggregates
multiple viewpoints and consolidates information into a single score

It can highlight product quality, trust, and satisfaction levels and
helps consumers make informed decisions

Aggregation must takes into account both the number of reviews and
the diversity of scores

Trust worthiness and credibility of reviews can be impacted by
aggregation mechanisms

Crowdsourcing in rating aggregation provides the volume and diversity of
inputs needed for reliable aggregation
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Applications of Rating Aggregation

Rating Aggregation enables benchmarking, comparison, ranking,

E-Commerce (e.g., Amazon): Ratings help prioritize search results
and recommend products

Social Media: Reviews/likes are aggregated to enhance content
visibility

Crowd-Sourced Platforms (e.g., Trip Advisor): Aggregated reviews
provide users with collective insight into the quality of restaurants,
hotels, etc.

Employee Performance Ratings

Review system is used everywhere. Graduate applications, tenure review,
research papers reviews
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Review System

Rating: 1–5, -3 – 3, 1–10, thumbs up thumbs down

Review: Text could be short like a line or multiple pages
Recreating Amazon’s New Generative AI Feature: Product Review Summaries (medium.com)

Reviews of Review:

Imdad ullah Khan (LUMS) Rating Aggregation 37 / 161



Importance of Rating

Durable Dominance on Amazon https://www.momentumcommerce.com/amazon-star-ratings-drop/
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Challenges in Crowdsourced Rating Aggregation

Diverse User Opinions: Users’ varying backgrounds and preferences

Biases and Extremes: Extreme ratings based on personal bias

Manipulation: Deliberately inflated/deflated ratings to promote/harm

Can everyone review or only buyers, anonymous reviews, fake reviews

Sparse Data: A few users provide ratings–

How many reviews are good enough? even if they are independent

Subjectivity and Objectivity: Product’s nature (movie vs PC)

https://www.linkedin.com/pulse/subjectivity-vs-objectivity-reviews-dane-cobain/

Independence of Reviews: Reviews can be biased by other reviews

Temporal Effects: Older ratings may no longer be relevant

Rating Scale: Is 0–10 the same as −5–5
Performance Metric: For who, Amazon, seller, buyer?
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Types of Attributes: Nominal/Categorical

Possible values are symbols, labels or names of things, categories

gender, major, state, color

Describe a feature qualitatively and values have no order

Not quantitative, arithmetic operations can’t be performed on them

male − female = ?? green + blue = ??

Can code by numbers (numeric symbols) e.g. postal codes, roll num

Can compute
frequency of values and the most frequent value

middle value

average value of an attribute

Binary Attribute: - special case of nominal true/false, Pass/Fail, 0/1

Symmetric: Both symbols carry the same weight e.g. gender

Asymmetric: Both symbols are not equally important, e.g. Pass/Fail
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Types of Attributes: Ordinal Attributes

Possible values have meaningful order

Grades : A,B,C,D

Serving Sizes : Small, Medium, Large

Ratings : poor, average, excellent

No quantified difference between two levels

A is higher/better than B but

Cannot quantify how much higher is A than B, or

if the difference between A and B the same as the difference between
B and C

Can be obtained by discretizing numeric quantities (data reduction)

Can compute
frequency of values and the most frequent value

middle value

average value of an attribute
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Types of Attributes: Numeric Attributes

Quantitative and measurable

can quantify the difference between two values
temperature, age, number of courses, height, years of experience

Can compute frequency of values and the most frequent value

middle value

average value of an attribute

Discrete Numeric Attributes
values come from a finite or countably infinite sets

Continuous Numeric Attributes
values are real (continuous)

Interval-Scaled: No point 0, ratios have no meaning

e.g. Temperature in Celsius. 30◦ is not double as hot as 15◦

Ratio-Scaled: Well-Defined point 0, ratios are meaningful

e.g. Temperature in Kelvin. 30◦ is double as hot as 15◦
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Mapping Vectors to Scalars

Let x =
[
x1 . . . xn

]T ∈ Rn

compare its competing estimates y =
[
y1 . . . yn

]T
and z =

[
z1 . . . zn

]T
Error vectors ey = x− y =

[
x1−y1
...

xn−yn

]
and ez =

[
x1−z1
...

xn−zn

]
e.g. ey =

[
10 − 10 10 20

]
and ez =

[
20 − 5 0 20

]
Need to map ey and ez to real numbers and compare

Compare lengths ∥ey∥ =
√

102 + (−10)2 + 102 + 202 = 26.45, ∥ez∥ = 28.72

Since smaller are better, y is a better estimate of x

One can argue that with a different mapping, z is better
∥ey∥1 = |10|+ |−10|+ |10|+ |20| = 50, ∥ez∥1 = |20|+ |−5|+ |0|+ |20| = 45

Note the absolute value sign ∵ error on either side is bad

No universally good mapping of vectors to numbers

Amazon product ratings is not a vector, it is a time series
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Measures of Central Tendencies: Mean

For a dataset X = {x1, x2, · · · , xn}

(Arithmetic) Mean is the average of the data set
▷ This definition readily extend to higher dimensional data

x =
x1 + x2 + . . .+ xn

n
=

∑n
i=1 xi
n

Harmonic Mean
x =

n∑n
i=1

1
xi

Geometric Mean

x =

(
n∏

i=1

xi

)1/n
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Trimmed or Truncated Mean

Arithmetic mean is sensitive to outliers ▷ unstable statistic

Just one very high/low value (think ±∞) makes mean very high/low

99

Mean = 13.57

5

2.5 2.5 3 3.5 3.5 3.5 3.5 4 4 4 4.5 4.5 4.5 5 5 5.5 5.5 6 98 99

Trimmed Mean: Ignore k% of values at both extremes to compute mean

995

Mean = 4.34

2.5 2.5 3 3.5 3.5 3.5 3.5 4 4 4 4.5 4.5 4.5 5 5 5.5 5.5 6 98 99
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Median Aggregation

Alternatives to simple and weighted mean, esp. for robustness to outliers

Median: The value that divides the ratings into two equal halves

Median = middle value of the sorted ratings

Median is less sensitive to outliers as compared to mean

Median is good for asymmetric distributions and where data has
outliers

99

Mean = 13.57

5

Median = 4.25

Various possible definitions for median of higher dimensional data

Mean together with variance (see below) has nice properties
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Mode Aggregation

Alternatives to the simple and weighted means, esp. for nominal data

Mode: The most frequent element in the dataset. Best suited for
categorical or discrete data-

Mode is the most frequent element

Can have more than one modes

unimodal (one mode in data)

multi-modal (bimodal, trimodal): more than one modes in data

Not the same as majority element (a value with frequency > 50%)
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Naive Rating Aggregation: Mean

Why simple mean worked in the Galton’s experiment?

1 Task Definition:

There was a correct/objective answer
In many cases there is no ground truth and the task is subjective

2 Unbiased and Independent Estimates:

Everybody guessed independently (without looking at others’ guesses)
Dependence of participants’ action breaks the wisdom of crowds and
turn it into an information cascade

3 Review Population: 787 was a good enough large number

https://www.ecomengine.com/blog/impact-amazon-product-reviews
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Naive Rating Aggregation: Mean

Average number of stars

n ratings scaled 1-star to 5-stars ri ratings give i-stars

Naive Average =
1

n

5∑
i=1

i × ri

Product A: Average stars: 4.5, Number of reviews 2

Product B: Average stars 4, Number of reviews 1000

▷ Evaluate the change if one more 5 stars review appears for A and B

Product C: Average stars: 4.3, Number of reviews 100

Product D: Average stars 4.1, Number of reviews 200
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Naive Rating Aggregation: Cumulative Rating

Since the number of reviews is an issue, what if we just add up the total
number of stars a product has accumulated over all reviews

It favors old/popular product not highly rated products

Product A: 100 reviews with 5 stars

Product B: 1M reviews with 2 stars 4

The rating is unbounded in this case
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Naive Rating Aggregation: Median Rating

What if we use the median rating a product has received over all reviews?

This approach fails when the distribution of ratings is skewed

Product A Ratings:

1000 Ö 1-star

1 Ö 3-star

1000 Ö 5-star

Median Rating = 3 stars

Product B Ratings:

100 Ö 3-star

1 Ö 3-star

1000 Ö 5-star

Median Rating = 3 stars

Product C Ratings:

200 Ö 2-star

1 Ö 3-star

200 Ö 3-star

Median Rating = 3 stars

Product D Ratings:

10 Ö 3-star

1 Ö 3-star

10 Ö 4-star

Median Rating = 3 stars

The median rating ignores rating distribution!
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Visualizing Raw Rating Data

One can display ratings data - Aggregating is a heuristic

Bar Charts: Generally used for a nominal and ordinal variables

Height of bar represent frequencies of each symbol (value)

Can reveal variables that have no or limited information e.g. constants

We can use pie charts for the same purpose too

Humans perceive difference in lengths better than in angles
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Reviews Rating over Time

https://support.appfollow.io/hc/en-us/articles/360020979238-Rating-Analysis-Stars

eComEngine

Cunningham et.al. (2010) Does TripAdvisor Makes Hotels Better?
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Product Life Cycle

Traditional: Grows, matures, and eventually declines

Boom or Classic: Sustains maturity for long time with minimal decline

Fad: Rapidly gains popularity but fades quickly

Extended Fad: Similar to a fad but declines more gradually

Seasonal: Peaks and dips in demand due to seasonal trends

Revival or Nostalgia: Declines but regains popularity later

Bust: Fails quickly with little to no growth
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Mean Aggregation

Let x be the truth/fact/actual value of a product (e.g., the ox)

n actors in the crowd

Estimate of actor i is yi
yi = x + ϵi (x)

ϵi depends only on i and x , ϵi is independent of ϵj for j ̸= i

For all i , ϵi is unbiased i.e., Ex [ϵi (x)] = 0– This expectation is over the
distribution of x

▷ Think of x being the true value/rating of a product chosen from a
collection of products each with its true rating

Error Measure: MSE between the aggregate and x

Imdad ullah Khan (LUMS) Rating Aggregation 55 / 161



Mean Aggregation: Average of Errors

The average of (expected, mean squared) errors (AE ) is

EAE =
1

n

n∑
i=1

Ex

[
(ϵi (x))

2
]

The expected, mean-squared error of the average (EA) is

EEA = Ex

[(1
n

n∑
i=1

ϵi (x)
)2]

=
1

n2
Ex

[( n∑
i=1

ϵi (x)
)2]

Using yi = x + ϵi (x) we get

1

n

(
n∑

i=1

(yi − x)

)
=

1

n

(
n∑

i=1

ϵi (x)

)
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Mean Aggregation: Average of Errors

Recall (a+ b)2 = a2 + b2 + 2ab

EEA =
1

n2
Ex

[( n∑
i=1

ϵi (x)
)2]

=
1

n2
Ex

[ n∑
i=1

ϵi (x)
2+2

n∑
i=1

n∑
j=i+1

ϵi (x)ϵj(x)

]
By linearity of expectation

EEA =
1

n2

n∑
i=1

Ex

[
ϵi (x)

2
]
+ 2

n∑
i=1

n∑
j=i+1

Ex [ϵi (x)ϵj(x)]

When ϵi (x) and ϵj(x) are independent, i.e., Ex [ϵi (x)ϵj(x)] = 0, we get

EEA =
1

n2

n∑
i=1

Ex

[
ϵi (x)

2
]
=

1

n
EAE
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Mean Aggregation: Average of Errors

We got

EEA =
1

n
EAE rmseEA =

1√
n
rmseAE

EEA (error of average) is smaller than the average of errors, i.e., if we
aggregate estimates of many actors the error decreases (wisdom of crowd)

The decrease is by a factor of n or
√
n, meaning with larger crowd the

error is going to be even smaller

This is true only, if estimates are independent and unbiased

If estimate are completely dependent (copies of each other), then

EEA = EAE

The truth is somewhere in between!
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Ranking - Bayesian Ranking
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Ranking vs Rating Aggregation

Aggregation: The process of combining ratings to produce a
representative score, such as a mean or weighted average

Ranking: The process of ordering items based on their aggregated
scores or other relevant factors

Aggregation:

Focuses on computing a representative score from multiple ratings

Methods like mean, median, or weighted averages are common

Objective: Summarize the collective opinion of users

Ranking:

Involves sorting items in order of preference or relevance

Ranking may consider other factors (popularity, recency or diversity)
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Bayesian Ranking

Bayesian Ranking Approach

If a product has “few” ratings, estimate its rating closer to a global average
R (prior).

If a product has enough ratings, its estimated rating should converge to its
actual average.

The estimated rating r̃i lies between ri (product’s average rating) and R.

More reviews shift r̃i closer to ri .

ri Rr̃i
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Bayesian Ranking

Bayesian analysis is really good for such situation, when you want to
estimate something but you don’t have enough data

Give scores to product as a convex combination of ri and R

r̃i = βri + (1− β)R

Generally, β = ni
ni+N

Note that when ni is very large (relative to N), then β → 1, and r̃i → ri
and vice-versa

β ∈ [0, 1]

β is monotonically increasing with increasing ni , approaching 1 as ni
approaches ∞
β is close to 0, when ni is 0
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Dynamic Nature of Bayesian Ratings: Sequential Updates

Sequential Updates:

Initially: Few reviews with high ratings

As more reviews are added, ratings tend to vary, and the Bayesian
adjustment provides a stabilizing effect

Example updates:

After 10 reviews: 4.5 stars

After 50 reviews: 4.2 stars

After 100 reviews: 4.1 stars

Each update recalculates the Bayesian estimate, showing how
perceptions of product quality can evolve
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Bayesian Ranking

Why is Bayesian Ranking Needed?

When ranking products in the same category, relying on average or
cumulative ratings alone can be misleading

The number of reviews is critical—fewer reviews make the ranking
unreliable

Challenges with Simple Ranking Approaches

Ranking only products with at least n0 ratings is a simple approach
but has limitations

How should we choose the threshold n0? Too low or too high can
create bias
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Bayesian Ranking

Gadget A: 5 reviews, average rating 4.6 stars.

Gadget B: 200 reviews, average rating 4.4 stars.

Global average R is 4.0, N is 50.

Bayesian adjusted rating for Gadget A:

r̂A =
50× 4.0 + 5× 4.6

50 + 5
≈ 4.05

Bayesian adjusted rating for Gadget B:

r̂B =
50× 4.0 + 200× 4.4

50 + 200
≈ 4.32

This adjustment reduces the influence of the smaller sample size for
Gadget A, positioning Gadget B as the higher-quality option when
considering the volume of feedback.
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Bayesian Ranking

Analyzing Rating Patterns for a New Tech Gadget:

Initial few ratings for a new gadget are highly positive

▷ Generally, initial ratings are from passionate fans

A Bayesian adjustment is applied to evaluate its performance against
established products with similar characteristics

r̂ =
50× 4.0 + 25× 4.8

50 + 25
≈ 4.27

This adjusted rating, which might be lower than the simple average,
provides a more realistic expectation of the gadget’s quality
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Bayesian Ranking: Real world examples

Many companies use Bayesian ranking to aggregate ratings and reduce
biases in rankings

IMDb: Uses a Bayesian-adjusted weighted average to rank the Top
250 movies:

R =
v

v +m
r +

m

v +m
C

Ensures movies with few ratings don’t dominate rankings

R : final Bayesian rating
v : number of votes
m : minimum votes required

Beer Advocate: Implements Bayesian smoothing to prevent spam
and rating manipulation. Requires minimum votes (Nmin) for a beer
to be ranked. Caps maximum votes (Nmax) to prevent dominance
by a single beer
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Bayesian Ranking: Real world examples

Bayesian ranking is also widely used in e-commerce, social media, and
recommendation systems

Amazon: Uses Bayesian inference to weigh product reviews: -
Prioritizes verified purchases - Adjusts early reviews using a prior
distribution - Identifies and downweighs biased reviews (e.g., fake or
incentivized reviews)

Reddit & Stack Overflow: Applies Bayesian averaging to prevent
posts with very few votes from reaching the top too quickly. Adjusts
karma scores based on recency and voting patterns

Netflix & Spotify: Uses Bayesian hierarchical models to predict
ratings based on:

User behavior and preferences
Recency of ratings and interactions
Similar users’ choices
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How Bayesian ranking can change order

Bayesian ranking can sometimes completely reverse the naive ranking
order due to the varying number of ratings each product receives.

The naive rating for each product in the table given below was
calculated by simply taking the average rating.

But when we calulate the bayesian adjusted rating depending on the
Global average R, we reduce the influence of the smaller sample size.

DVD player Num Ratings Rank Rating Bayesian Rating

Panasonic 11 1 4.18 3.57

Philips 37 2 4 3.62

Sony 67 3 3.47 3.55

Toshiba 54 5 3.407 3.533
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Rating and Ranking System of Amazon Products

Amazon’s rating and ranking system is designed to provide customers with
useful insights into product quality while mitigating the impact of rating
manipulation or bias

Rating System: Aggregates individual ratings using Bayesian methods
to prevent bias due to small sample sizes

Ranking System: Combines product ratings with other factors, e.g.,
sales velocity and review quality, to rank products within search
results

Features Considered:

Number of reviews
Average rating
Review recency and helpfulness
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Variance and Bias in Machine Learning
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Classification

Classification is a supervised task

Input: A collection of objects

feature vectors with class labels

Output: A model for the class attribute
as a function of other attributes

o1
o2

...
oi

x1 x2 . . . xm y

features︷ ︸︸ ︷class label︷ ︸︸ ︷
. . .

d
a
ta
se
t

on

...

train instances

test instances

o3

?

Training Set: Instances whose class labels are used for learning

Test Set: Instances with same attributes as training set but
missing/hidden class labels

Goal: Model should accurately assign class labels to unlabeled instances
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Classification

Input: A collection of objects

▷ feature vectors with class labels

Output: A model for the class attribute
as a function of other attributes

o1
o2

...
oi

x1 x2 . . . xm y

features︷ ︸︸ ︷class label︷ ︸︸ ︷
. . .

d
a
ta
se
t

on

...

train instances

test instances

o3

?

source: javapoint.com
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Classification: Training-Validation split

Generally obtained by randomly splitting the dataset

e.g. 70− 30, 80− 20 random Train-Validation split

Use average performance of multiple random (splits)

source: medium.com
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Classification

The model (binary classifier) is learned by finding patterns in training set

A classifier h approximates y(o)

h takes an object o and outputs the class
label ŷ(o)

(aka model, hypothesis, discriminator, ... )

o1
o2

...
oi

x1 x2 . . . xm y

features︷ ︸︸ ︷class label︷ ︸︸ ︷
. . .

d
a
ta
se
t

on

...

train instances

test instances

o3

?

A validation set (a representative subset of training set) is used to learn
parameters and tune architecture of classifier and estimate error

mse(h) = E
[ ∑
o∈ data set

(y(o)− h(o))2
]

Test set, not used for training, provides an estimate of generalization error

h(o) can be real number (regression), labels of binary/multi classes, or
class membership probability
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Classification: Cross-Validation

The dataset is randomly split into k folds

In each of k the ith fold is used for validation and the rest for training

Every instance is used once for validation and k − 1 times for training

k is usually 5 or 10

source: Scikit-learn
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Classification: Overfitting

Overfitting: The phenomenon when model performs very well on training
data but does not generalize to testing data

The model learns the data and not the underlying function

▷ Essentially learning by-rote

Model has too much freedom (many parameters with wider ranges)

Validation, Cross-validation, early stopping, regularization, model
comparison, Bayesian priors help avoiding overfitting
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Classification: Overfitting
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Variance and Bias in Machine Learning Models

A model h approximates y(·) using
D = {(o1, y1), . . . , (on, yn)}

For any unseen object o, we want

h(o;D) = ŷ(o) = ŷ to be equal to y(o) = y

o1
o2

...
oi

x1 x2 . . . xm y

features︷ ︸︸ ︷class label︷ ︸︸ ︷
. . .

d
a
ta
se
t

on

...

train instances

test instances

o3

?

Bias: Error due to erroneous assumptions in the learning algorithm

Bias(ŷ) = ED [ŷ ]− y

▷ High Bias: Model is oversimplified; misses the relevant relations between
features and target outputs (underfitting)

Variance: Error due to sensitivity to fluctuations in training set

Var(ŷ) = ED

[
(ŷ − ED [ŷ ])

2 ]
▷ High Variance: Model captures noise rather than output (overfitting)
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Variance and Bias in Machine Learning Models

Low Variance High Variance

L
o
w

B
ia
s

H
ig
h

B
ia
s

A
cc
u
ra

te
N
o
t
A
cc
u
ra

te

Precise Not Precise
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Variance and Bias in Machine Learning Models

mse(h) =E[(y − ŷ)2]

=E[(y − E[ŷ ] + E[ŷ ] + ŷ)2]

=E[(y − E[ŷ ])2] + 2E[(y − E[ŷ ])(E[ŷ ]− ŷ)] + E[(E[ŷ ]− ŷ)2]

E[(y − E[ŷ ])2] =E[y2 − 2yE[ŷ ] + E[ŷ ]2]
=E[y2]− 2E[yE[ŷ ]] + E[E[ŷ ]2]
=y2 − 2yE[ŷ ] + E[ŷ ]2 = (y − E[ŷ ])2 = Bias(ŷ)2

E[(y − E[ŷ ])(E[ŷ ]− ŷ)] = E[yE[ŷ ]− E[ŷ ]2 − y ŷ + E[ŷ ]ŷ ]
= yE[ŷ ]− E[ŷ ]2 − yE[ŷ ] + E[ŷ ]2 = 0

E[(E[ŷ ]− ŷ)2] = Var(ŷ)

Total Error = mse(ŷ) = Bias(ŷ)2 + Var(ŷ) + Noise
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Ensemble Learning
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Ensemble Learning

source: Fernando López (towardsdatascience.com)
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Ensemble Learning

Ensemble learning combines several machine learning techniques into one
predictive model to decrease variance (bagging), bias (boosting), or
improve predictions (stacking)

Ensemble methods

are used when single model cannot achieve high accuracy

typically generalize well on unseen data

have good theoretical guarantees

are easy to implement
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Ensemble Learning: Intuition

Ensemble learning combines several machine learning techniques into one
predictive model

The magic of Independent Trials: Suppose we have k classifiers with
probability of error, p1, p2, . . . , pk

Let p = maxi{pi}, suppose p = 0.25

Number of classifier making error

P
ro

b
a
b
il
it
y
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Ensemble Learning: Intuition

Ensemble learning combines several machine learning techniques into one
predictive model

The magic of Independent Trials: Suppose we have k classifiers with
probability of error, p1, p2, . . . , pk

Let p = maxi{pi}, suppose p = 0.25

Number of classifier making error

P
ro

b
a
b
il
it
y

Pr[ ≥ 10 classifiers make error]

≤ .001386
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Majority Voting and Weighted Aggregation

Majority voting is a simple ensemble technique

Votes: The predicted class of each sub-model

Ensemble prediction: The class with majority votes

source: Sebastian Riaschka@ Wisconsin
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Majority Voting and Weighted Aggregation

Majority voting is a simple ensemble technique

Votes: The predicted class of each sub-model

Ensemble prediction: The class with majority votes
source: Sebastian Riaschka@ Wisconsin

Suppose we have n classifiers with probability of error, p1, p2, . . . , pn

Let 0.5 > p = maxi{pi} ▷ p : base probability, we need p < 0.5

Ensemble error: pens <
∑
i> n

2

(
n

i

)
pi (1− p)n−i

↓ n p → 0.25 0.49 0.75

11 0.03433 0.47295 0.96567

21 0.00642 0.29888 0.97937

31 0.0013 0.45531 0.9987
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Majority Voting and Weighted Aggregation

Majority voting is a simple ensemble technique

Votes: The predicted class of each sub-model

Ensemble prediction: The class with majority votes
source: Sebastian Riaschka@ Wisconsin

n classifiers, error rates p1, . . . , pn Base probability p = maxi{pi}

pens <
∑
i>n

2

(
n
i

)
pi(1− p)n−i
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Soft Voting – Weighted Aggregation

Soft voting ensembles classifiers that predict class membership probabilities

Votes: pi,j predicted class membership probability for class j of sub-model i

Weights: wi weight/trust/reputation of sub-model i

▷ default wi =
1
n , ∀i ∈ {w1, . . . ,wn}

Ensemble prediction: The class j such that

argmax
j

n∑
i=1

wipi,j = ŷf
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Soft Voting – Weighted Aggregation

Soft voting ensembles classifiers that predict class membership probabilities

Votes: pi,j predicted class membership probability for class j of sub-model i

Weights: wi weight/trust/reputation of sub-model i

Ensemble prediction: The class j such that

argmax
j

n∑
i=1

wipi,j = ŷf

Binary classification: class j ∈ {0, 1} and hi (i ∈ {1, 2, 3, 4}):

h1(x)→ [0.67, 0.33]

h2(x)→ [0.3, 0.7]

h3(x)→ [0.35, 0.65]

h4(x)→ [0.4, 0.6]

p(j = 0|o) = 1/4(0.8 + 0.3 + 0.35 + 0.4) = 0.43

p(j = 1|o) = 1/4(0.2 + 0.7 + 0.65 + 0.6) = 0.57

ŷf (o) = argmax
j
{p(j = 0|o), p(j = 1|o)}
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Ensemble Learning: Hard and Soft Voting

source: Fernando López (towardsdatascience.com)
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Stacking

Stacking trains a new model using predictions of base classifiers as input

Base models (e.g., logistic regression, decision tree) predict on input data
Meta-model (e.g., neural network) uses the predictions for final prediction

source: analyticsvidhya.com
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Stacking

Stacking trains a new model using predictions of base classifiers as input

Base models (e.g., logistic regression, decision tree) predict on input data
Meta-model (e.g., neural network) uses the predictions for final prediction

Algorithm 4 Stacking

Input: Training data D = {(xi , yi )}mi=1 where xi ∈ Rn, yi ∈ Y
Output An ensemble classifier H

for t = 1 to T do ▷ T first-level classifiers

Learn a base classifier ht based on D
for i = 1 to m do ▷ Construct new data set from D

Construct a new data set {x′i , yi}, x′i = {h1(xi ), h2(xi ), . . . , hT (xi )}

Learn a new classifier h′ based on the newly constructed data set

Return H(x) = h′(h1(x), h2(x), . . . , hT (x))
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Blending

Blending is similar to stacking but uses a holdout set from the training
dataset to train the combiner model (the meta-model)

E.g., base models are trained on 75% of data, and predictions are made on
the remaining 25%. These predictions are used as features for meta-model

Blending Architecture

Stacking Architecture

source: https://www.codeproject.com/Tips/4354591/Step-by-Step-Guide-to-Implement-Machine-Learning-V
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Bagging

Bagging, or Bootstrap Aggregating, reduces variance by training multiple
models on different subsets of the dataset and averaging their predictions.

Bagging helps reduce variance and helps to avoid overfitting

Algorithm 5 Bagging (n) bootstrap samples

Input: Training data X = {(xi , yi )}mi=1 where xi ∈ Rn, yi ∈ Y
Output An ensemble classifier H

for i = 1→ n do

Xi ← bootstrap sample of size m from training dataset X

▷ i.i.d sampling with replacement from X

Train classifier hi on Xi ▷ sub-model

return ŷf (x)← mode
{
h1(x), h2(x), . . . , hn(x)

}
▷ x is test instance
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Bagging: Bootstrap Sampling

source: Sebastian Riaschka@ Wisconsin

Pr [xi is not chosen] = (1− 1/n)n

lim
n→∞

(1− 1/n)n = 1/e

Pr [xi is chosen] = 1− (1− 1/n)n

≃ 06327
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Bagging Workflow

ŷf = mode
{
h1(x), h2(x), . . . , hn(x)

}
where hi(x) = ŷi(x)

Diagram adapted from Sebastian Riaschka@ Wisconsin
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Benefits and Limitations of Bagging

Bagging reduces variance by averaging

Bagging has little effect on bias

Can we also reduce Bias? – Yes Boosting

source: analyticsvidhya.com

Imdad ullah Khan (LUMS) Rating Aggregation 99 / 161



Boosting

Boosting is an ensemble technique that attempts to create a strong
classifier from a number of weak classifiers

PAC Learning model (Mathematical Analysis framework for ML)

get random examples from unknown, arbitrary distribution

Strong PAC Learning Algorithm: if for any distribution D, parameters ϵ, δ,
using polynomially many examples and polynomial time, we can find
classifier h such that Pr [errorD(h) ≤ ϵ] ≥ 1− δ

Weak PAC Learning Algorithm: Same as above, but generalization error
only has to be slightly better than random guessing, i.e. ∃γ such that
Pr [errorD(h) ≤ 1

2 − γ] ≥ 1− δ

[Kearns & Valiant (1988)] Does weak learnability imply strong learnability?

Yes, boost by majority voting Freund (1990)
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Boosting Workflow

Boosting reduces the overall bias by enhancing weak learners through
focusing on samples that previous models misclassified

source: analyticsvidhya.com

Popular Algorithms: 1) AdaBoost 2) Gradient Boosting
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Boosting

1 Initialization:

Given Training data X = {(xi , yi )}mi=1 where xi ∈ Rn, yi ∈ {−1, 1}

Initialize a distribution D1(i) = 1/m for i = 1, . . . ,m

2 For t = 1 to T :
Training:

Train weak classifier ht : X → {−1,+1} under the distribution Dt

ϵt = Pr
i∼Dt

[ht(xi ) ̸= yi ] e.g., ϵt =
m∑
i=1

Dt(i) · 1[ht(xi ) ̸= yi ] ▷ error of ht

If ϵt ≥ 1/2, terminate or adjust the algorithm

Update Distribution:

Compute αt = 1/2 log (1−ϵt/ϵt) ▷ measure performance of ht

Dt+1(i) = Dt (i)e
−αt yi ht (xi )/Zt ▷ Updated distribution

Zt is a normalization factor to ensures Dt+1 is a probability distribution

3 Final Classifier:

Hf(x) = sign

(
T∑
t=1

αtht(x)

)
▷ weighted majority of T weak classifiers
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Boosting
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AdaBoost for Rating Aggregation

AdaBoost can be adapted to aggregate product ratings

Multiple models are trained each providing an aggregate rating,
focusing on different aspects of the product and reviews - e.g.,

A model that predicts product ratings based on user demographics
(e.g., their history of ratings)

A model that predicts ratings based on product features (e.g., price,
category)

A model that predicts ratings based on the sentiment of reviews
(positive or negative sentiment)

Final aggregated rating is then a weighted average of the submodels

This approach can be employed when we have a good number of products
for which the ground truth is available, i.e. we know the true rating or
score of the products
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AdaBoost for Rating Aggregation

Estimator p1 p2 p3 · · ·

Estimator 1 y1(p1) y1(p2) y1(p3) · · ·

Estimator 2 y2(p1) y2(p2) y2(p3) · · ·

Estimator 3 y3(p1) y3(p2) y3(p3) · · ·

· · · · · · · · · · · · · · ·

Correct Answer t1 t2 t3 · · ·

Train n estimators on m products

yi (pj) is the prediction from the i-th estimator

αi : weight assigned to estimator i (based on performance)

Final aggregate estimate: y(pj) =
∑n

i=1 αiyi (pj)

We train these estimator using boosting strategy

Imdad ullah Khan (LUMS) Rating Aggregation 105 / 161



AdaBoost for Rating Aggregation

Adjusts Training weights: wij for the i-th estimator and j-th product to
focus on products earlier models performed poorly

Initial weights, wij =
1
m

Then sequentially for each i , we train estimator yi to minimize∑m
j=1 wij1[yi (pj) ̸= tj ]

Error Calculation for model i : ϵi =

∑
j wij1[yi (pj) ̸= tj ]∑

j wij

Estimator Combining Weight (importance of model i): αi = log (1/ϵi − 1)

Update instances weights for next model: wi+1,j = wij · eαi1[yi (xj )̸=tj ]

Note that wi+1,j =

{
wij if model i gets pj right

wi j · (1/ϵi − 1) if model i makes a mistake on pj
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Time-Sensitive Rating Aggregation
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Time-Sensitive Rating Aggregation

Time-sensitive rating aggregation accounts for changes over time

Older reviews may be less relevant to current product quality, while recent
reviews might provide more accurate assessments

Review Decay: Older reviews may be down-weighted to prioritize newer
feedback

Trend Identification: (e.g., improving or declining quality) based on the
temporal distribution of reviews

Modeling Time: Algorithms incorporate timestamps into rating models to
apply different weights to reviews based on recency
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Time-Sensitive Rating Aggregation

Adjusting the weight of each review based on its timestamp

▷ The older the review, the less weight it may carry in the overall rating

Time Decay Function: Reviews weighted based on their recency

w(t) = e−λt

t is the time since the review was posted

λ is the decay rate that controls how fast the decay occurs

Time-Weighted Aggregation:

Reviews {r1, r2, . . . , rn} , timestamps of reviews {t1, t2, . . . , tn}
Decay rate λ

R̂(t) =

∑n
i=1 w(ti ) · ri∑n
i=1 w(ti )

Provides a evolving reflection of product or service quality
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Seasonality in Rating Data

Many products and services experience periodic changes in popularity

Seasonality, holidays, and events can cause temporary spikes or drops in
ratings that do not reflect long-term quality

Fourier Analysis: Decomposes the rating data into sine and cosine
components to detect underlying periodicity

Autocorrelation Function (ACF): Measures the correlation of the
ratings with their lagged values to identify repeating patterns

Seasonal Decomposition of Time Series: Separates a time series into
seasonal, trend, and residual components

▷ Seasonal and Trend decomposition using LOESS (Locally Weighted
Regression and Scatterplot Smoothing)
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Seasonality in Rating Data

Seasonal Adjustment: Adjust or compensate for seasonality/periodicity

Seasonal adjustment removes/normalizes periodic trends from rating data,
leaving a “deseasonalized” time series that reflects long-term patterns

Seasonal Decomposition (STL): Removes the seasonal component
detected by STL to leave only the trend and residual components

Radj(t) = R(t)− S(t)

where S(t) is the seasonal component of the time series

Ratio-to-Moving-Average Method: Divides the rating at each time
point by the corresponding seasonal factor, which is derived from a
moving average of ratings over a fixed time period p

Radj(t) = R(t)/S(t)

S(t) = R(t)/MA(t) ▷ seasonal factors

MA(t) =
∑t

i=t−p+1 R(i)/p ▷ Moving Average over period p
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Aggregating Streaming Ratings

Aggregating streaming ratings involves handling a continuous flow of data
from users. Ratings arrive over time and must be integrated into the
aggregate score in real-time without reprocessing historical data

Cumulative Moving Average: Incrementally updates the average
rating as new ratings arrive

µn =
1

n

n∑
i=1

Ri

Exponential Moving Average (EMA): Assigns exponentially decreasing
weights to older ratings, giving more importance to recent data

µt = αRt + (1− α)µt−1

Window-Based Approaches: Aggregates ratings over a sliding window
of recent data, providing real-time feedback using limiting memory
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Identifying and Mitigating Bias in Ratings

Bias in ratings can distort the accuracy of aggregated results

Reviewer Selection Bias: Occurs when some users, often with extreme
experiences, are more likely to review, skewing the rating distribution

▷ Leads to an unbalanced and non-representative set of ratings

Temporal Bias: Ratings fluctuate over time due to changes in product
quality, update, service improvements, or upgrade/degradation

▷ Use time-decay models to down-weight older reviews

Platform-Induced Bias: Platforms can introduce biases through default
rating settings or by incentivizing users to leave reviews

Default Rating Bias: Some platforms pre-select a default rating (e.g., 5
stars), influencing users to submit ratings without much thought

Incentivized Reviews: Platforms may offer rewards or discounts in exchange
for reviews, which often leads to artificially inflated ratings
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Debiasing Algorithms

Debiasing algorithms aim to mitigate the effects of various biases

Statistical Methods for Debiasing Review Aggregation often assume
certain statistical properties about unbiased reviews and use those
properties to adjust the ratings

Weighted Averages: Assign different weights to reviews based on
their perceived bias. For example, recent reviews may be weighted
more heavily than older ones

Bias-Correction Models: Estimate the bias in each review and apply a
correction to bring it closer to the expected true rating

Propensity Score Adjustment: Adjust reviews based on the likelihood
of a review being biased
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Handling Noise and Uncertainty in Rating Systems

Noise and uncertainty in rating systems can arise due to randomness,
human error, or anomalous behavior. These factors can significantly
impact the accuracy and reliability of aggregated ratings

Sources of Noise in Crowdsourced and User-Generated Ratings:

Random User Behavior: Users may assign ratings arbitrarily without
careful evaluation

Inconsistent Standards: Different users have varying interpretations of
rating scales, leading to inconsistent ratings

Human Error: Accidental misclicks or misunderstandings of the
product being rated

External Factors: External biases, such as emotional state or
environmental influences, can distort ratings
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Anomalies in Ratings Due to Noise and Randomness

Anomalies in ratings caused by noise and randomness include outliers or
sudden deviations from the usual pattern of ratings

Types of Anomalies:

Outliers: Extreme ratings that deviate significantly from rest of data

Fluctuations in Ratings: High variability in ratings for a product,
often caused by noise

Random or Baseless Ratings: Users assigning ratings without any
valid reason

Outlier Detection: Identify ratings that deviate significantly

Smoothing: Apply moving average or exponential smoothing

Weighted Averaging: Weigh noisy or suspicious ratings lower

Noise Filtering: Model and filter out noise based on patterns
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Aggregating Inconsistent or Conflicting Ratings

Inconsistent or conflicting ratings are common. Users may have divergent
opinions or provide contradictory ratings for the same product or service

Aggregating such ratings requires models to produce a consensus that
minimizes the impact of conflicts and reflects an accurate assessment

Consensus Models: Aim to resolve disagreements in ratings by finding an
aggregate score that best represents the group’s overall opinion

Median-Based Consensus: Median minimizes influence of outliers and
provides a central estimate

Weighted Consensus: Weigh ratings based on the credibility of the
reviewers or the strength of the evidence behind the ratings

Delphi Method: Iterative approach where experts provide ratings, and
the aggregation is revised until consensus is reached

Probabilistic Models: Use distributions (e.g., Beta, Dirichlet) to account for
uncertainty in the ratings
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Trust and Reputation in Online Platforms

Reputation System collects, distributes, and aggregates information about
behavior

Examples: BBB, Bizrate, eBay, Epinions

Reputation is mainly used to assert sellers’ trustworthiness

Explicit Trust Models: Trust ratings can be obtained via explicit
feedback/review

▷ Paid but didn’t receive, not as advertised, slow shipping

Implicit Trust Models: Trust is inferred from buyers’ behavior (number of
reviews written, accuracy of their past ratings, or reputation in community)

Hybrid Trust Models: Combine both explicit and implicit trust signals to
compute a final trust score for each user

Trust-based aggregation systems adjust the weight of ratings (e.g., a
seller) based on the trustworthiness/reliability of the rater

▷ E.g., On Yelp, reviews from verified or frequent users have more influence
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Trust Propagation in Reputation System

Trust propagation: Extending trust scores from known users to unknown
users by considering their relationships or interactions.

Helps assign trust scores to users who have not been explicitly evaluated

Trust Networks: Users are nodes, and trust relationships are edges.
Trust propagates through the network to assign scores to all users

Propagation Algorithms: TrustRank or personalized PageRank

Reputation-Trust Feedback Loop: Trust and reputation influence
each other, with higher reputation increasing trust in a user and
trusted users contributing more reliable ratings
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Review Inconsistencies, Spam Reviews

Inconsistencies due to differences in user experiences, expectations, or preferences

Temporal Normalization: Adjust ratings based on the timing of the review
(e.g., newer reviews may carry more weight)

Contextual Adjustments: Incorporate factors like reviewer location or
expertise to balance out contextual differences in reviews

Weighting by Review History: Frequent reviewers with consistent reviewing
patterns are given more weight in the aggregated rating

A hotel that receives varying reviews based on the time of year (e.g., peak season vs.

off-season) will have its ratings normalized to account for these differences

Fake reviews, Spam, and Manipulation attempts

Spam Reviews: Overly +ve/-ve reviews, generated by bots or paid users

Review Manipulation: Inflated ratings by coordinating fake reviews

Pattern Analysis: e.g., an unusual number of reviews in short time

Review Filtering: Down-weights or removes suspicious reviews

Flag suspicion, if a product suddenly receives a spike in 5-star reviews from new accounts
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Social Choice Theory: Voting and Ranking Aggregation
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Voting Theory

Voting theory: The study of collective decision-making where individuals
preferences are aggregated into a collective outcome

Rank aggregation techniques are methods used to combine multiple
rankings into a single aggregated ranking

Political systems: Elect officials or make decisions on policy matters

Collaborative decisions: Group choices in committees/organizations

Search Engine: Pagerank/HITS interpret links as votes

Social Media: Upvoting and downvoting to rank posts and media

Recommendaters: Aggregate preferences to recommend videos

Crowdsourcing Platforms (Wikipedia): Consensus-driven voting methods to
decide on content and edits
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Voting Theory
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Voting: Problem Formulation

Aggregate individual preferences into a collective decision or outcome

Profiles: The set of voters’ preferences

Outcomes: The possible decisions or alternatives

Voting Rule: A function that maps profiles to an outcome

Voting

What are the set of alternatives?

What are the voters’ preference orders or profiles?

What is the aggregation method to determine the final outcome?
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Profiles and Outcomes

A = {a1, a2, . . . , am} : Alternatives/Candidates N = {1, 2, . . . , n} : Voters

Each voter i ∈ N has a preference relation Pi over the alternatives in A
▷ Typically modeled as a ranking (linear order) of the alternatives

A profile P is a set of rankings (preferences) for all voters:

P =
(
P1,P2, . . . ,Pn

)
Candidates A = {A,B,C} and voters N = {1, 2, 3}:

Profile P =
(
A ≻1 B ≻1 C , B ≻2 C ≻2 A, C ≻3 A ≻3 B

) Voter 1 ranking: A ≻1 B ≻1 C

Voter 2 ranking: B ≻2 C ≻2 A

Voter 3 ranking: C ≻3 A ≻3 B

An outcome is an alternative W ∈ A (winner) selected based on the profile

The function f maps a profile P to an outcome ▷ Single-winner outcome

Social welfare outcome: f produces a ranking (ordering) of all alternatives

Imdad ullah Khan (LUMS) Rating Aggregation 125 / 161



Accuracy and Representation in Preference Aggregation

Accuracy in Preference Aggregation: Ensure that the outcome
accurately reflects the true preferences of voters

Strategic voting: Voters may misrepresent their preferences to
influence the outcome in their favor

Incomplete preferences: Not all voters may rank all alternatives,
leading to incomplete profiles

Majority bias: Some aggregation methods may favor the majority,
ignoring minority preferences

Representation:

Condorcet paradox: Collective preference can become cyclic =⇒
impossible to select a clear winner

Lack of expressiveness: Methods like plurality rule allow voters to
express only their top choice, potentially losing valuable information
about their preferences for other alternatives
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Properties of Voting Systems

These properties are essential for ensuring that the voting system reflects the true
preferences of the electorate in a fair and balanced manner

Anonymity: All voters equal (their votes are given equal weight)

Neutrality: All candidates equal

Monotonicity: If a voter ranks a candidate higher, it should not harm the
candidate’s chances of winning

Independence of Irrelevant Alternatives (IIA): The system’s result should not
change if a non-winning candidate is added or removed from the ballot

Condorcet loser criterion: The candidate who would lose every pairwise
contest does not win

Condorcet winner criterion: The candidate who would win every pairwise
contest always win

Non-dictatorship: No single voter can determine the outcome

Pareto efficiency: If all voters prefer one candidate over another, that
candidate will win
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Properties of Voting Systems

source: https://www.equal.vote/
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Plurality Voting System

Mechanism: ▷ aka first-past-the-post (FPTP) used in Pak, US, UK

Each voter selects one candidate from a set of alternatives

The candidate who receives the most votes wins

Need a tie-breaking rule ▷ e.g., runoff election or random draw

Simple to understand: Each voter has a single vote to cast

Winner-takes-all: The candidate with the most votes wins

Majority not required: Can be won with less than 50% of
the total vote if multiple candidates are running

Susceptible to many issues

Candidates A = {A,B,C} and voters N = {1, 2, 3, 4, 5}:
Voter 1: A, Voter 2: B, Voter 3: A, Voter 4: C, Voter 5: B

Vote counts: [A : 2], [B : 2], [C : 1]

Time complexity: O(n), as we iterate through the voters once
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Strategic Voting

Voters may not vote for their true favorite candidate if they believe that
candidate has little chance of winning

Voters may choose to vote for a “lesser evil” candidate who has a
better chance of winning over their least preferred candidate

▷ Leads to distorted outcome: the elected candidate may not be the
most preferred choice of the majority

Candidate A is favorite of a small group, B and C are more popular. A’s voters may

strategically vote for B to prevent C from winning

source: Institute for Mathematics and Democracy
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The Spoiler Effect

A candidate enters the race to split the vote and change the outcome in a
way that might not reflect the true preferences of the electorate

The spoiler is often a candidate with no real chance of winning but who
siphons votes away from a more viable candidate

Candidate A (40% of votes)

Candidate B (35% of votes)

Candidate C (25% of votes)

A wins with 40% of the vote. If C had

not run, C ’s voters might have gone to

B, allowing B to win a majority source: Institute for Mathematics and Democracy

source: https://fairvote.org/

Imdad ullah Khan (LUMS) Rating Aggregation 131 / 161



Vote Splitting in Plurality Voting

Two or more candidates appealing to the same voter group may split
votes, potentially allowing a less popular candidate to win

Candidates {A,B,C}, where A and B share similar policy positions

A receives 35 votes B receives 30 votes C receives 35 votes

Here, Candidate C wins, even though candidates A and B together represent a majority

of the voters (65 out of 100)

Weakening of majority preference:
A majority-preferred candidate
can lose if their support base is
divided among similar candidates

Underrepresentation of
ideologically similar candidates:
They collectively hold more votes
but lose due to vote splitting

source: https://www.equal.vote/
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Impact on Representation

Plurality voting can distort representation, especially in elections with
more than two candidates

A candidate wins without the support of the majority of voters

Minority candidates with strong support in specific regions or groups
are underrepresented

Popular candidates lose because of vote splitting, leading to
unrepresentative outcomes

Imdad ullah Khan (LUMS) Rating Aggregation 133 / 161



Runoff Voting

Runoff voting (a Sequential-Loser method) sometime also called
Two-Round system is based on plurality voting

The top two candidates from the first plurality voting round continue
to the second round
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Borda Count

Borda Count is a Positional Voting System It works as follows

Voters rank the candidates from most to least preferred

Each rank/position is assigned a specific point value, typically with the
top-ranked candidate receiving the most points

A candidate ranked first by a voter receives the maximum number of
points (equal to the total number of candidates minus 1)

A candidate ranked second receives one point fewer, and so on, until
the last-ranked candidate receives zero points

Points assigned to each position can vary

Points for candidates are summed over all voters to get final score

Points= 2

Points= 2

Points= 0
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Borda Count: Aggregation

Algorithm 6 Borda Count
1: Input: Set of voters N and set of alternatives A
2: Initialize array score[a]← 0 for each a ∈ A
3: for each voter i ∈ N do
4: for each alternative a ranked in position k by voter i do
5: Add m − k points to score[a] ▷ Where m is the number of alternatives

6: Output: Alternative a∗ = argmaxa∈A score[a]

Candidates A = {A,B,C} and voters N = {1, 2, 3}:

Voter 1: B ≻1 A ≻1 C Voter 2: C ≻2 A ≻2 B Voter 3: A ≻3 C ≻3 B

Voter

R
a
n
k
in
g

1 2 3

B

B B

A A

AC

C

C

A : Voter 1 (1 points), Voter 2 (1 points), Voter 3 (2 point)

B : Voter 1 (2 point), Voter 2 (0 points), Voter 3 (0 points)

C : Voter 1 (0 points), Voter 2 (2 point), Voter 3 (1 points)

Borda Scores: A: 1 + 1 + 2 = 4 B: 2 + 0 + 0 = 2 C : 0 + 2 + 1 = 3
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Weighting Positions

In positional voting systems, the number of points awarded to a candidate
depends on their rank. Different systems use different weightings:

Borda Count: Points decrease linearly based on rank, the top
candidate gets m − 1 points and last candidate gets 0 points

▷ Balanced and comprehensive, susceptible to strategic voting

Plurality Voting: Only the top-ranked candidate gets points

▷ Simple, efficient, prone to vote splitting

Anti-Plurality Voting: All candidates except last-ranked get points

▷ Focuses on avoiding least popular option, ignores important voter preferences

For a 3-candidate election, Borda count assigns 2 points to first-ranked candidate,
1 point to second, and 0 points to third

In anti-plurality voting, the top two candidates each get 1 point, and last-ranked
candidate gets 0 points
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Fairness Borda Count

Borda count accounts for voters’ entire preferences, not just top choices

m candidates and n voters. For candidate c , their Borda score is the sum
of the points they receive from all voters

Sc =
n∑

i=1

(m − rank(ci ))

Pairwise comparison: If a candidate consistently ranks higher than
another across voters, they will have a higher score

Borda count satisfies non-dictatorship and Pareto efficiency

Borda count satisfies Condorcet loser criterion: A candidate, ranked
last by majority will accumulate the lowest score and thus cannot win

It may not satisfy Condorcet winner criterion
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Strengths and Limitations of the Borda Count

Comprehensive representation: Takes into account voters’ entire preferences,
not just top choices, leading to more balanced outcomes

▷ Highly ranked candidate wins even if not top choice of all

▷ Avoid extreme outcomes (candidate who is polarizing/disliked)

Avoid vote splitting: The Borda Count reduces the risk of vote splitting by
accounting for each voter’s full ranking

Reduced spoiler effect: Since candidates receive points based on their rank,
third-party candidate does not significantly distort the result

Susceptibility to tactical voting/manipulation: Voters can strategically rank
less-preferred candidates lower to boost their favorite’s score

▷ A voter prefers A and to reduce B’s score they may rank B last, even if B is not

truly their least preferred candidate

Failure to select the Condorcet winner: Borda Count does not always select
the Condorcet winner
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Manipulation in Borda Count

The Borda Count is susceptible to strategic voting

3 candidates: A, B, and C , and three voters. Each voter assigns points based on their
ranking: 2 points for first, 1 for second, and 0 for third

True Preferences:

Voter 1: A ≻ B ≻ C (A(2),B(1),C(0))

Voter 2: B ≻ A ≻ C (B(2),A(1),C(0))

Voter 3: C ≻ B ≻ A (C(2),B(1),A(0))

Final Tally: [A : 3], [B : 4], [C : 2] Outcome: B wins

Voter 1 strategically votes A ≻ C ≻ B to lower B’s rank

Final Tally: [A : 3], [B : 3], [C : 3]

Outcome: A tie between A, B, and C , potentially favoring A in tiebreaker
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Ranked-Choice Voting

Ranked-Choice Voting is more expressive than plurality

Voters rank the candidates from most to least preferred

If a candidate has majority of first-place vote, they win

The candidate with fewest first-place vote is eliminated ▷ instant runoff

The process is repeated until there is a majority

Voter

R
a
n
k
in
g

1 2 3

A A

A A A

B B B

BB

4 5

Candidate B wins

Round 2

Voter

R
a
n
k
in
g

1 2 3

A A

A

A A

B B

B

B

B

C

C C

CC

4 5

C (least favored) is eliminated

Round 1

Unless a tie, the winner will receive the majority of votes

Voters do not have to worry about wasting their vote

Avoids the spoiler effect

Encourages more diverse candidates to run

Discourages negative campaigning
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Approval Voting

Approval Voting is a single-winner rated voted system

Voters can approve of as many candidates as they like

Voters express their support for multiple candidates in no order

▷ Cardinal rather than ordinal voting

The candidate with the most approval wins

1 2 3 4 5

B

A

C

D

Candidate A wins (4 approvals)
Approval Ballot

any number

of candidates

Approve

B

A

C

D

Eliminates the spoiler effect

Reduces the chances of vote
splitting

Susceptible to strategic voting

Votes cannot express true
preferences
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Condorcet Voting System: Pairwise Comparisons of Candidates

Condorcet Method: All candidate pairs are compared head-to-head

Voters express their preferences between each pair of candidates

Candidate preferred by majority in this pairwise comparison wins

Condorcet Aggregation of outcomes of pairwise contests to find winner

Make a digraph with candidates as nodes and an edge from A to B means A
wins in pairwise contest against B ▷ Majority prefers A over B

The candidate who wins all pairwise comparisons has no incoming edges and
is the Condorcet winner ▷ source node

The Condorcet winner is not always the same as the plurality or Borda
winner, especially in elections with more than two candidates

If a Condorcet winner exists, they are a strong consensus choice

Voter

R
a
n
k
in
g

1 2 3

B

B B

A A

AC

C

C

A

B C

(2, 1) (2, 1)

(2, 1)
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Cycle in Condorcet Voting

The Condorcet Paradox: When collective preferences,
derived from pairwise comparisons, is cyclic, even though
individual preferences are not

No clear winner in case of cyclic preferences (intransitive
ranking)

▷ A source node may not exist if the graph is not a DAG

For 3 candidates (A, B, C), and the following 3 positional votes

Voter 1: A ≻ B ≻ C Voter 2: B ≻ C ≻ A Voter 3: C ≻ A ≻ B

Pairwise comparisons shows a cycle

A vs. B: A wins (2 votes for A, 1 vote for B)

B vs. C : B wins (2 votes for B, 1 vote for C)

C vs. A: C wins (2 votes for C , 1 vote for A)

A defeats B B defeats C C defeats A

Voter

R
a
n
k
in
g

1 2 3

B

B

B

A

A

AC

C

C

A

B C

(2, 1) (2, 1)

(2, 1)
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Impact of Cyclicity on Decision-Making

Ambiguous Results: Cyclic preferences fails to provide a definitive outcome

Need for Tie-Breakers: Additional rules to resolve the cycle

Potential for Manipulation: Strategic voting exacerbate cyclic preferences

True Preferences:

Voter 1: A ≻ B ≻ C

Voter 2: B ≻ C ≻ A

Voter 3: C ≻ A ≻ B

Pairwise results:

A vs. B: A wins (2 to 1)

B vs. C : B wins (2 to 1)

C vs. A: C wins (2 to 1)

Voter 3, who prefers C , strategically votes C ≻ B ≻ A to break the cycle in C ’s favor-

changes outcome in pairwise comparison between A and B

Dealing with Cycles in Condorcet Voting

Tideman’s Ranked Pairs: Locks in the strongest pairwise victories while
avoiding the creation of cycles

Schulze Method: Identifies the “best” path of victories and breaks the cycle

Random Tie-Breaking: Random tie-breaking to select the winner
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Ranking Systems: Applications

Positional voting systems can be applied beyond elections to ranking
problems where items or alternatives must be ranked by a group of people

Ranking sports teams in competitions - usually Borda count

Aggregating rankings for university or product/content reviews

▷ use ranking algorithms to aggregate user preferences and
interactions with content

Ranking candidates for job positions or grants

▷ Universities or journals may use positional systems to rank
applicants for grants, fellowships, or awards

Social media and crowdsourcing platforms (Reddit or Stack Overflow)
use up/downvotes (forms of positional feedback) to rank posts
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Distance Metric Between Rankings: Kendall Tau

Rank correlation metrics measure the agreement between two ranked lists

Kendall Tau: Measures similarity between two rankings by counting pairwise
agreements and disagreements ▷ Range: [-1, 1]

τ =
|{concordant pairs}| − |{discordant pairs}|

n(n − 1)/2

τ =

∣∣{(i , j) : i < j , σ(i) < σ(j), π(i) > π(j)}
∣∣

n(n − 1)/2

Three rankings of five
contestants:

π : 1, 2, 3, 4, 5

σ : 2, 1, 4, 3, 5

γ : 5, 4, 3, 2, 1

Total Pairs:
(
5
2

)
= 10

conc.
pairs

disc.
pairs

(π, σ): 6 4
(π, γ): 0 10
(σ, γ): 4 6

τ(π, σ) =
6− 4

10
= 0.2

τ(π, γ) =
0− 10

10
= −1.0

τ(σ, γ) =
4− 6

10
= −0.2
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Distance Metric Between Rankings: Spearman’s Rank Correlation

Rank correlation metrics measure the strength and direction of association
between two ranked lists

Spearman’s Rank Correlation: Measures similarity between two rankings based
on their relative positions ▷ Range: [-1, 1]

ρ =
cov(R[σ],R[π])

std(R[σ])std(R[π])
= 1− 6

∑
d2
i

n(n2 − 1)

where di = σ(i)− π(i) represents the rank differences

Three rankings of five
contestants:

π : 1, 2, 3, 4, 5

σ : 2, 1, 4, 3, 5

γ : 5, 4, 3, 2, 1

Total Pairs: n = 5

Pair Rank Diffs
(π, σ) −1, 1,−1, 1, 0
(π, γ) −4,−2, 0, 2, 4
(σ, γ) −3,−3, 1, 1, 4

ρ(π, σ) = 1− 6× 4

5(25− 1)
= 0.8

ρ(π, γ) = 1− 6× 40

5(25− 1)
= −1.0

ρ(σ, γ) = 1− 6× 36

5(25− 1)
= −0.8
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Distance Metric Between Rankings: Spearman-Footrule Distance

Rank correlation metrics measure the sum of absolute differences between
ranked lists

Spearman-Footrule Distance: Computes the displacements of two orderings
▷ Range: [0, n(n − 1)/2]

F (σ, π) =
∑
i

|σ(i)− π(i)|

where |σ(i)− π(i)| represents the absolute rank differences

Three rankings of five
contestants:

π : 1, 2, 3, 4, 5

σ : 2, 1, 4, 3, 5

γ : 5, 4, 3, 2, 1

Total Pairs: n = 5

Pair Abs Diffs
(π, σ) 1, 1, 1, 1, 0
(π, γ) 4, 2, 0, 2, 4
(σ, γ) 3, 3, 1, 1, 4

F (π, σ) = 1+1+1+1+0 = 4

F (π, γ) = 4+2+0+2+4 = 12

F (σ, γ) = 3+3+1+1+4 = 12
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Rank Aggregation with Minimal Disagreement

The Kemeny-Young method combines individual voters’ rankings into a
“consensus ranking” that minimizes the number of pairwise disagreements with
the voters’ individual rankings

A pairwise disagreement occurs when the consensus ranking reverses the
order of two candidates compared to a voter’s ranking

For two rankings of m candidates σ and π, Let d(σ, π) be the number of pairwise
disagreements between σ and π

Suppose r1, r2, . . . , rn are complete rankings of m candidates by n voters

The KY method seeks to find a consensus ranking argmin
σ

n∑
i=1

d(σ, ri )

1 For each pair (A,B), find number of votes for A ≻ B and B ≻ A

2 Find one of the m! orderings to maximize sum of scores for all pairs

Finding the optimal ordering is NP-Hard
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Kemeny-Young Aggregation

For 3 candidates (A, B, C), and the following 3 positional votes

Voter 1: A ≻ B ≻ C Voter 2: B ≻ C ≻ A Voter 3: C ≻ A ≻ B

Pairwise Comparison: Compare candidates A, B, and C based on the voters’ rankings

For each pair, count how many voters prefer one candidate over the other

(A,B): A preferred by Voter 1 and Voter 3, B preferred by Voter 2. Result: A wins

(A,C): A preferred by Voter 1, C preferred by Voter 2 and Voter 3. Result: C wins

(B,C): B preferred by Voter 1, C preferred by Voter 2 and Voter 3. Result: C wins

Consensus Ranking: Based on these pairwise comparisons, the final ranking is

C ≻ A ≻ B, minimizing the total pairwise disagreements

For each pair (i , j), count how often voter rankings disagree on their relative order

For m voters and n candidates, the complexity of computing the Kendall tau
distance for all pairs is O(m × n2)

Find one of n! rankings that minimizes total Kendall tau distance over all voters
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Five Axioms of Arrow’s Theorem

Arrow’s Impossibility Theorem: No rank-order voting system can convert
individual preferences into a collective decision meeting all of the following
five axioms (desirable characteristics) under certain conditions

1 Universality: The voting system should work for all voter preferences

2 Pareto Efficiency: If all voters prefer one candidate to another, the system
should reflect this

If A ≻i B for all i , then the social ranking should have A ≻ B

3 Independence of Irrelevant Alternatives (IIA): Ranking between two
candidates should not be affected by the presence of other candidates

4 Non-Dictatorship: No single voter should dictate the outcome

5 Transitivity: Collective preference should be transitive
(A ≻ B ∧ B ≻ A =⇒ A ≻ C )

Practical voting systems often relax one or more of Arrow’s axioms to
achieve acceptable outcomes in real-world settings
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Five Axioms of Arrow’s Theorem

Arrow’s Impossibility Theorem: No rank-order voting system can convert
individual preferences into a collective decision meeting all of the following
five axioms (desirable characteristics) under certain conditions
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Independence of Irrelevant Alternatives (IIA)

The IIA axiom: Relative Ranking between two candidates should not be
affected by the presence of other candidates

Consider three candidates {A,B,C} and the following voters preferences (not votes)

A ≻ B ≻ C 25% voters

B ≻ C ≻ A 40% voters

C ≻ A ≻ B 35% voters

Plurality Winner?

Borda Winner?

Condorcet Winner?

For any voting method (any way of aggregating these preferences)

Case 1: A wins =⇒ IIA violated (75% would vote C ≻ A if B was not present)

Case 2: B wins =⇒ IIA violated (60% would vote A ≻ B if C was not present)

Case 3: C wins =⇒ IIA violated (65% would vote B ≻ C if A was not present)

IIA violations are common and lead to counterintuitive outcomes

Spoiler Effect

Strategic Voting

Impact on Policy and Perception: Perception of undue influence of irrelevant
alternatives undermine trust in the fairness of the election
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Sen’s Axioms and Impossibility Theorem

Sen’s Impossibility theorem: “under certain conditions, it is impossible to
design a social decision function satisfying two axioms:

1 Decisive Voter Axiom (Minimal Liberalism): For every candidate pair
(A,B), there exists at least one decisive voter , i.e., the group’s preference
between A and B always reflects the preference of this decisive voter,
regardless of others’ preferences

Preferences of a single voter can override the collective will of the group

2 Transitivity in Group Decisions: The collective preferences must be
transitive. If the group prefers A over B and B over C , then the group must
prefer A over C . Transitivity ensures that the group’s preferences is acyclic

Consider three candidates {A,B,C} and the following voters preferences

Voter 1: A ≻ B ≻ C Voter 2: B ≻ C ≻ A Voter 3: C ≻ A ≻ B

Apply Decisive Voter Axiom: Assume Voter 1 is decisive for the pair A ≻ B. According to the
Decisive Voter Axiom, the group preference must also be A ≻ B

Apply Transitivity: Now consider the group’s preferences between A, B, and C . By transitivity,

the group must rank A ≻ C and B ≻ C , but this leads to a cycle where transitivity breaks down
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Sen’s Theorem - Example

To make this more clear lets look at the following example:

Suppose a two-member search committee for an economics department is
charged with hiring one of the final candidates Amy, Bill, and Cindy.

As part of evaluation, each candidate’s citation index and quality of published
papers are examined; assume this leads to the following listing of relevant
information
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Sen’s Theorem - Example (continued)

The rules for assembling the committee ranking are natural:

Unrestricted Domain: Each committee member can rank the candidates in
any desired manner as long as the ranking is complete and transitive

Pareto. If everyone ranks a pair in the same manner, this common ranking
will be the committee’s ranking

Minimal Liberalism (ML)—or Division of Expertise. Committee members
were selected because of their expertise. As Garrett’s expertise is
macroeconomics—an area in which both Amy and Bill claim ability—it is
natural to defer to Garrett’s knowledge by asserting that how he ranks Amy
and Bill will be the committee ranking. Similarly, Sandy is an expert in
microeconomics where both Bill and Cindy claim abilities: Sandy’s ranking
of Bill and Cindy determines their committee ranking

No Cycles. In order to make a decision, the committee ranking must be
cycle free
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Sen’s Theorem - Example

By identifying this example with Sen’s Theorem, it follows that with three or
more candidates and two or more committee members, no ranking rule will
always satisfy these conditions

Without the transitivity assumption, Sen’s result loses all surprise: the conclusion
becomes obvious and immediate. After all, if the voters can have cyclic
preferences, then we must expect cyclic societal outcomes

Sen’s assertion mandates that situations exist where the search committee cannot
satisfy the specified requirements. Indeed, according to the table:

1 Garrett prefers Amy over Bill because of their relative performances in
macroeconomics.

2 His one disappointment is that Cindy, who has the best performance, no
longer is interested in this area: Garrett’s ranking is C ≻ A ≻ B

3 Sandy, on the other hand, is impressed with Bill’s citation record based on
his theory papers, so she ranks Bill above Cindy. But with her negative
opinion of Amy, Sandy’s ranking is B ≻ C ≻ A
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Sen’s Theorem

Using a dash to represent where information from a person is irrelevant (because
the decision is determined by another member), the information used to assemble
the committee ranking follows:

Sen’s assertion is demonstrated by the cyclic outcome, and, in practice, by the
need to hold more committee meetings. Obvious modifications can be made;
e.g., each committee member could be replaced with several members where
decisions are made by majority vote, the committee could use a wider assortment
of information including letters of recommendation, etc.
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Intensity of Preference (IIIA)

The Intensity of Preference (IIIA) measures not just the order of voters’
preferences but also the strength of those preferences

In contrast to IIA treats all preferences equally

Voters indicate the degree of their preference between candidate pairs

System aggregates rankings and intensity of preferences (numeric values)

IIIA incorporates strengths of preferences =⇒ more representative outcome

Example: Voter 1: A ≻ B [7] and B ≻ C [3]

More Nuanced Collective Decisions

Better Reflects Voter Sentiment

Reduces Impact of Irrelevant Alternatives
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Possible Voting Systems that Avoid Arrow’s Paradox

Alternative voting systems can be constructed based on modified assumptions
that avoid the paradoxes identified in Arrow’s theorem for use in

Used in corporate governance, academic peer review, crowdsourcing and collaborative platforms

Single-Peaked Preferences: Restrict preferences to be single-peaked, avoids
many Arrow’s paradoxes, as there is a clear “middle” candidate who can win

Weighted Voting Systems: Allowing for weighted votes based on intensity of
preference or expertise. can resolve conflicts between axioms

Ranked Pairs or Schulze Method: Avoid some cyclic inconsistencies in
Condorcet methods by focusing on the strongest pairwise victories

Approval Voting: Voters can approve of multiple candidates, and candidate
with most approvals wins. Avoids some issues with rank-order methods

Majority Judgment: Ranks candidates based on median evaluation of voters,
rather than on rank-order or pairwise comparisons, avoids many paradoxes

Range Voting: Voters assign a score to each candidate, and the candidate
with the highest total score wins, avoids the need for strict rankings or IIA
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