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Recommenders: Motivation and Applications

Recommendation systems aim to provide users with personalized
suggestions based on their preferences and behavior

The Web, they say, is leaving the era of search and entering one of
discovery. What’s the difference? Search is what you do when you’re
looking for something. Discovery is when something wonderful that
you didn’t know existed, or didn’t know how to ask for, finds you.

J. O’Brien, Nov 20, 2006 The race to create a ’smart’ Google

Items

S
e
a
rch

R
e
co

m
m
e
n
d
a
ti
o
n
s

Products, news, friends,

websites,movies, courses

Early 1990s: using predefined rules to suggest items

Hand-Curated: Chef’s specials, editor’s picks, favorites
Simple aggregates: Top 10, Trending, Recent uploads

Mid-1990s: Collaborative filtering approaches

Tapestry (1992): Allowing users to manually annotate
documents and share recommendations

GroupLens (1994): Recommending Usenet news articles,
using user-user similarity to predict preferences

2000s: Content-based and hybrid recommenders

2010s: Context-aware and personalized recommenders
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Recommendation Systems

Retailers cannot shelve everything

Online retailers and digital content providers have millions of products
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The Hits

The Long Tail

Products

Create demand for these products

Near zero-cost dissemination of information about products

More choice necessitates better information filtering (customization)

Data-driven recommendation customized to individual user
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Recommendation Systems

Perhaps the single most important algorithmic distinction between “born
digital”’ enterprises and legacy companies is not their people, data sets,
or computational resources, but a clear real-time commitment to deliv-
ering accurate, actionable customer recommendations.2017

Netflix: 75% of movies watched are recommended 1

“... personalization and recommendations save us more $1B per year” 2

Amazon: 35% of purchases on Amazon come from recommendations 1

Google News: recommendation genearate 38% more click-throughs 1

Airbnb: “Together, Search Ranking and Similar Listings drive 99% of
our booking conversions”3

Alibaba: For 11.11. mega sale, targeted personalized landing pages,
resulted in 20% higher conversion rate from previous year 4

1
X. Amatriain, (2014) Machine Learning Summer School, CMU

2
Gomez-Uribe & Hunt, Netflix Inc., (ACM Trans. on MIS 2015)

3
Grbovic et.al [Airbnb Engineering & Data Science] (2018)

4
InsideRetail.Asia (2017)
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Growth in Importance Across Different Sectors

Recommendation systems have become critical in various sectors

E-commerce: Driving sales by suggesting products

Content Streaming: Content recommendations to keep users engaged

Social Media: Suggest friends, pages, content to improve user
retention
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Recommendation Systems: Monetization of User Preferences

Monetizing user preferences through recommendation systems via

Targeted Advertising: By analyzing user behavior, platforms can
present ads tailored to individual preferences, increasing the likelihood
of clicks and purchases

Product Recommendations: E-commerce platforms like Amazon use
collaborative filtering to suggest items frequently bought together or
by similar users, boosting sales

Subscription Retention: Media platforms like Netflix use
recommendations to encourage users to discover new content,
reducing the likelihood of subscription cancellations
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Recommendation Systems: User Retention

Recommendation systems significantly enhance user experience and
retention:

Reduced Cognitive Load: Users no longer need to browse through
large catalogs; recommendations provide them with relevant items
quickly

Engagement: Personalized recommendations lead to higher user
engagement, as users spend more time interacting with suggested
content

Retention: Platforms that offer valuable recommendations foster user
loyalty, as users feel the system understands their preferences and
returns relevant content
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Recommendation Systems: User Engagement

Social networks rely on recommendation systems to create personalized
experiences for their users (Personalized Feeds):

Friend Suggestions: Platforms like Facebook use collaborative
filtering and deep learning to suggest friends based on mutual
connections and similar interests

Content and Page Recommendations: Platforms such as Twitter and
Instagram suggest posts, pages, or groups based on a user’s past
interactions and behaviors

Advertisement Personalization: Social networks utilize user data for
personalized advertisements, increasing engagement and monetization

Facebook’s recommenders are key drivers behind its friend suggestions,
personalized content feeds, and targeted ads, significantly improving user
engagement and time spent on the platform
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Problem Formulation and Evaluation
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Recommendation Systems: Problem Formulation

n users - {c1, . . . , cn} and m items - {p1, . . . , pm}
Utility Matrix U: n ×m matrix row/column for each user/item

U(i , j) : rating of user i for item j

U(i , j) could be

0− 5 stars

∈ [0, 1]

∈ {0, 1}

Computational linear algebra problem of matrix completion
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Recommendation Systems: Problem Formulation

n users - {c1, . . . , cn} and m items - {p1, . . . , pm}
Utility Matrix U: n ×m matrix row/column for each user/item

U(i , j) : rating of user i for item j

?

U(i , j) could be

0− 5 stars

∈ [0, 1]

∈ {0, 1}

If prediction for U(i , j) is high recommend product j to user i

Imdad ullah Khan (LUMS) Recommendation Systems 11 / 135



Evaluation of Recommendation Systems

Understand its effectiveness and ensuring it meets user needs

Measuring Effectiveness: Ensures that the recommendation system is
providing relevant and useful suggestions

Identifying Weaknesses: Helps uncover areas where the model is
underperforming, such as handling new users or items

Balancing Multiple Objectives: Evaluation helps measure trade-offs
between different objectives like accuracy, diversity, and novelty

User Satisfaction: Directly impacts the user experience by ensuring
recommendations are aligned with user preferences

Business Objectives: Evaluating the system helps determine if the
recommendations are driving engagement, retention, and revenue

Model Comparison: Evaluation allows for the comparison of different
algorithms or model versions to select the best-performing one
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Recommenders Accuracy Metrics: rmse

Test Set

Compare predictions U ′(i , j) with known (hidden) ratings

Root-mean-squared-error, rmse =
√ ∑

i,j∈ Test Set
(U(i ,j)−U′(i ,j))2/|Test Set|

▷ rmse is sensitive to outliers and does not account for ranking

▷ rmse does not capture user satisfaction
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Recommenders Accuracy Metrics: Precision, Recall, and F1 Score

Precision:

Precision =
Number of Relevant Items Recommended

Total Number of Recommended Items

Recall:

Recall =
Number of Relevant Items Recommended

Total Number of Relevant Items

F1 Score:

F1 Score = 2 · Precision · Recall
Precision + Recall
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Spearman’s rank correlation coefficient

A measure of similarity between two variables based on rank

Correlation between ranks of values of the variables

ρxy =
cov(rgX , rgY )

σrgXσrgY

X 3 3 3 4 4 4 5 5 5 0 0 1 1 2 2 2

Y 4 3 4 5 4 5 4 4 3 0 1 0 1 3 2 3

Z 1 0 1 2 1 2 1 1 0 3 4 3 4 0 5 0
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Spearman’s rank correlation coefficient

A measure of similarity between two variables based on rank

Correlation between ranks of values of the variables

ρxy =
cov(rgX , rgY )

σrgXσrgY

X 3 3 3 4 4 4 5 5 5 0 0 1 1 2 2 2

Y 4 3 4 5 4 5 4 4 3 0 1 0 1 3 2 3

Z 1 0 1 2 1 2 1 1 0 3 4 3 4 0 5 0

rgX 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7

rgY 10 6 11 15 12 16 13 14 7 1 3 2 4 8 5 9

rgZ 4 5 6 7 8 9 10 11 12 13 15 14 16 1 2 3

ρXY = 0.8 ρXZ = −0.1 ρYZ = −0.3
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Diversity Metrics

Diversity metrics measure how varied the recommendations are, ensuring
that users are not only recommended similar items.

High diversity in recommendations can lead to a more engaging user
experience - prevents the recommendater from becoming too narrow or
repetitive:

Intra-list Diversity: Measures how dissimilar the items in a
recommendation list are to each other

Category Coverage/Spread: Measures how many different categories
or genres are represented in the recommendations

Entropy: Quantifies the uncertainty or randomness in the
recommendations. Higher entropy indicates greater diversity
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Novelty Metrics

Novelty metrics measure a recommender’s ability to suggest items that are
new or less obvious to the user, but still relevant..

Novelty ensures the user is exposed to a broader range of items:

Novelty encourages exploration and helps users discover new, less
mainstream, highly relevant, and interesting content

Can surprise users with suggestions outside their typical interests, leading
to a richer discovery experience

Long Tail Recommendations: Recommending less popular items,
ensures a broader catalog is explored

Novelty at k: Measures how often the top-k recommendations
include items the user has not interacted with before.
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Serendipity Metrics

Serendipity is a measure of how pleasantly surprised users are by the
recommendations

While similar to novelty, serendipity focuses on unexpected but delightful
recommendations

Achieving serendipity improves user engagement by offering both relevance
and surprise.

Encourages the model to explore less obvious items

Mixes popular items with less common but highly personalized
recommendations

Serendipity Score: Measures how often recommendations are both
unexpected and relevant

User Feedback: Direct user feedback can be used to assess whether
recommendations are pleasantly surprising
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Experimental Design

Designing experiments for evaluating the effectiveness of recommenders

Offline Evaluation: Testing models using historical data

Train-Test Split
Cross-Validation

Online Evaluation: Testing models using live user interactions

A/B Testing
Online Metrics: Measure click-through rates, conversion rates, and user
engagement in real-time

User Studies: Gather qualitative users’ feedback

Surveys and Interviews: Collect user feedback on the relevance,
diversity, and novelty of recommendations
Focus Groups: Bring together users to discuss their experiences and
provide detailed feedback
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Recommendation System Challenges
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Recommendation Systems: Challenges

Gather “known” ratings (populate matrix U)

Extrapolate unknown ratings from known ones

▷ mainly interested in high ratings, Top k

For each user c or a subset of users, find

Rc = argmax
p

U(c , p)

Rc is the recommendation(s) for user c

Evaluate extrapolation methods
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Recommendation Systems: Gathering Data

Explicitly survey users (e.g., movie ratings or product reviews)

Implicitly learn ratings, e.g. clicks, views, purchases/suggestion to
friend/watch time implies high rating

Cold-start problem (new user, new product)
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Challenges in Recommendation: Gathering Data

Effective recommendation systems require rich, diverse data sources.

Gathering data is challenging due to:

Data Sparsity: Users only interact with a small subset of items,
leading to sparse user-item interaction matrices

Noisy Data: Implicit feedback data, such as clicks or views, might not
always represent true preferences

Incomplete Data: Missing data, such as unrecorded ratings or
interactions, can make it difficult to provide accurate predictions
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Challenges in Recommendation: Cold Start Problem

The cold start problem arises when the system has little or no data about
a new user or item

New Users: Without sufficient interaction data, it is challenging to
recommend items

New Items: It is difficult to recommend new items as the system
lacks information about user preferences for these items
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Challenges in Recommendation: Extrapolation

Extrapolation: Predicting preferences for items or users for which limited
data exists.

It can be particularly challenging when:

Data is Sparse: When a user or item has few interactions, it becomes
difficult to generalize preferences

Item Popularity: Extrapolation often favors popular items, leading to
a lack of diversity in recommendations
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Challenges in Recommendation: Biases in Model Predictions

Bias in recommendation systems occurs when the model’s predictions are
skewed, leading to inaccurate or “unfair” recommendations

Common sources of bias:

Popularity Bias: Recommending popular items over niche ones,
reducing recommendation diversity

Interaction Bias: Implicit feedback may overrepresent frequently
interacted items, leading to biased recommendations

Algorithmic Bias: The system may favor certain users or groups based
on the underlying training data

Fairness-aware algorithms and diversity metrics “mitigate” these biases
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Recommendation using Averages and anova
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Raw Averages Based Recommendation

Raw averages-based recommendation is a simple interpretable approach to
generating predictions

Global Average: Assign average rating of all users for any item
(global-average)

User Average: Assign average rating of all items by user u,
(user-average)

Item Average: Assign average rating of all users for item j ,
(item-average)

Issues with averages based matrix completion

1 They often overlook individual user preferences and interactions
between users and items

2 Mean is an unstable statistics (could use other measures of location)
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Recommendation Methods: Global Average

Predicting U(i , j)

Let MoM be the matrix mean (mean of means/ global mean)

MoM :=
1

|Train Set|;
∑

c,p ∈ Train Set

U(c , p), then

U ′(i , j) = MoM

rmse is just the standard-deviation of the data (train set)
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Recommendation Methods: Averages and anova

The Complete Rating Matrix

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u0 2 3 3 4 2 3 4 5 5 4 3 2 4

u1 3 3 2 4 4 3 4 5 5 4 4 3 5

u2 2 3 3 4 3 4 5 5 4 3 2 4 5

u3 3 4 4 5 4 5 5 5 5 5 4 3 5

u4 2 3 3 4 4 4 5 5 5 5 4 3 4

u5 3 4 4 5 4 5 5 5 5 4 4 3 5

u6 3 4 4 5 5 5 5 5 5 5 4 4 5

u7 4 5 5 5 5 5 5 5 5 5 5 4 5

u8 3 4 4 5 5 5 5 5 5 5 4 4 5

u9 4 5 5 5 5 5 5 5 5 5 5 4 5

Users’ Tendencies: Users are listed generally in increasing order of optimism, i.e., u0 is
(generally) rates products very low, while u9 generally, rates very high

Products’ Qualities: Products are generally listed in increasing order of
quality/likability, i.e., p0 is the least liked (generally) and p12 is most liked (generally)
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Recommendation Methods: Averages and anova

Masked Rating Matrix with 30% Missing Values for Validation

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u0 2 3 ? 4 2 ? 4 5 5 ? 3 2 4
u1 3 3 2 ? 4 3 ? 5 5 4 ? 3 5
u2 2 ? 3 4 ? 4 5 5 ? 3 2 4 5
u3 3 4 4 5 4 ? 5 5 5 5 4 3 5
u4 2 3 3 4 ? 4 ? 5 5 5 4 ? 4
u5 ? 4 4 5 4 ? 5 5 5 4 4 3 5
u6 3 4 ? 5 5 5 5 5 5 ? 4 4 5
u7 4 5 5 ? 5 5 ? 5 5 5 5 4 5
u8 3 ? 4 5 5 5 5 ? 5 5 4 4 5
u9 4 5 ? 5 5 5 5 5 ? 5 5 4 5
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Recommendation Methods: Global Average

Missing entries filled with Global Average: MoM = 4.233

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u0 2 3 4.23 4 2 4.23 4 5 5 4.23 3 2 4

u1 3 3 2 4.23 4 3 4.23 5 5 4 4.23 3 5

u2 2 4.23 3 4 4.23 4 5 5 4.23 3 2 4 5

u3 3 4 4 5 4 4.23 5 5 5 5 4 3 5

u4 2 3 3 4 4.23 4 4.23 5 5 5 4 4.23 4

u5 4.23 4 4 5 4 4.23 5 5 5 4 4 3 5

u6 3 4 4.23 5 5 5 5 5 5 4.23 4 4 5

u7 4 5 5 4.23 5 5 4.23 5 5 5 5 4 5

u8 3 4.23 4 5 5 5 5 4.23 5 5 4 4 5

u9 4 5 4.23 5 5 5 5 5 4.23 5 5 4 5

RMSE: 1.195166
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Recommendation Methods: User Average

Missing entries filled with User Averages (Row-wise Averages)

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u0 2 3 3.4 4 2 3.4 4 5 5 3.4 3 2 4

u1 3 3 2 3.7 4 3 3.7 5 5 4 3.7 3 5

u2 2 3.7 3 4 3.7 4 5 5 3.7 3 2 4 5

u3 3 4 4 5 4 4.33 5 5 5 5 4 3 5

u4 2 3 3 4 4.3.9 4 3.9 5 5 5 4 3.9 4

u5 4.36 4 4 5 4 4.36 5 5 5 4 4 3 5

u6 3 4 4.54 5 5 5 5 5 5 4.54 4 4 5

u7 4 5 5 4.82 5 5 4.82 5 5 5 5 4 5

u8 3 4.54 4 5 5 5 5 4.54 5 5 4 4 5

u9 4 5 4.82 5 5 5 5 5 4.82 5 5 4 5

RMSE: 1.087284456
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Recommendation Methods: Item Average

Missing entries filled with Item Averages (Column-wise Averages)

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u0 2 3 3.57 4 2 4.43 4 5 5 4.5 3 2 4

u1 3 3 2 4.62 4 3 4.86 5 5 4 3.89 3 5

u2 2 3.87 3 4 4.25 4 5 5 5 3 2 4 5

u3 3 4 4 5 4 4.42 5 5 5 5 4 3 5

u4 2 3 3 4 4.25 4 4.86 5 5 5 4 3.44 4

u5 2.9 4 4 5 4 4.43 5 5 5 4 4 3 5

u6 3 4 3.57 5 5 5 5 5 5 4.5 4 4 5

u7 4 5 5 4.62 5 5 4.86 5 5 5 5 4 5

u8 3 3.87 4 5 5 5 5 5 5 5 4 4 5

u9 4 5 3.57 5 5 5 5 5 5 5 5 4 5

RMSE: 1.157043487
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Measures of Central Tendencies: Mean

For a dataset X = {x1, x2, · · · , xn}

(Arithmetic) Mean is the average of the data set
▷ This definition readily extend to higher dimensional data

x =
x1 + x2 + . . .+ xn

n
=

∑n
i=1 xi
n

Harmonic Mean
x =

n∑n
i=1

1
xi

Geometric Mean

x =

(
n∏

i=1

xi

)1/n
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Measures of Central Tendencies:Trimmed or Truncated Mean

Arithmetic mean is sensitive to outliers ▷ unstable statistic

Just one very high/low value (think ±∞) makes mean very high/low

99

Mean = 13.57

5

2.5 2.5 3 3.5 3.5 3.5 3.5 4 4 4 4.5 4.5 4.5 5 5 5.5 5.5 6 98 99

Trimmed Mean: Ignore k% of values at both extremes to compute mean

995

Mean = 4.34

2.5 2.5 3 3.5 3.5 3.5 3.5 4 4 4 4.5 4.5 4.5 5 5 5.5 5.5 6 98 99
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Measures of Central Tendencies: Median

Median: The value that divides the ratings into two equal halves

Median is less sensitive to outliers as compared to mean

Median is good for asymmetric distributions and where data has
outliers

99

Mean = 13.57

5

Median = 4.25

Various possible definitions for median of higher dimensional data

Mean together with variance (see below) has nice properties
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Recommendation Methods: anova

More sophisticated method anova improve upon simple raw averages

anova (Analysis of Variance): A statistical method used to determine the
influence of one or more independent variables on a dependent variable

Variance analysis in recommenders is used to understand how different
factors contribute to variations in ratings. We might observe:

User variance: Some users are more lenient or harsher in their ratings

Item variance: Some items may consistently receive high or low
ratings across users

Interaction variance: Variability in ratings based on the specific
user-item interaction

anova decomposes total variance into how much is due to users/items

Improves prediction by focusing on factors contributing to rating variability
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Recommendation Methods: anova

Predicting U(i , j)

Idea: Assign global average (matrix mean) U(i , j) = MoM

Refinement 1: Product j maybe very (un) popular – highly (un)liked

Adjust for this bias

Let devj be the average deviation of item j from MoM (+ve or -ve)

U(i , j) = MoM+ devj

Refinement 2: User i may be very (non) pessimistic (critical)

Adjust for this bias too

Let devi be the average deviation of user i from MoM

U(i , j) = MoM+ devj + devi

Other methods are generally compared with this baseline
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Recommendation Methods: Basic anova

Global Mean (MoM) = 4.233

User Deviations from MoM:

u0: -0.83

u1: -0.53

u2: -0.53

u3: -0.099

u4: -0.33

u5: 0.13

u6: 0.31

u7: 0.58

u8: 0.31

u9: 0.58

Item Deviations from MoM:

p0: -0.13

p1: -0.35

p2: -0.66

p3: 0.39

p4: 0.016

p5: 0.194

p6: 0.623

p7: 0.766

p8: 0.766

p9: 0.266

p10: -0.344

p11: -0.789

p12: 0.566
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Recommendation Methods: Basic anova

Missing entries willed with anova (Adjusted for user and item deviations)

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u0 2 3 2.73 4 2 3.6 4 5 5 3.66 3 2 4

u1 3 3 2 4.09 4 3 4.32 5 5 4 3.35 3 5

u2 2 3.34 3 4 3.72 4 5 5 4.47 3 2 4 5

u3 3 4 4 5 4 4.53 5 5 5 5 4 3 5

u4 2 3 3 4 3.92 4 4.52 5 5 5 4 3.11 4

u5 3.01 4 4 5 4 4.56 5 5 5 4 4 3 5

u6 3 4 3.88 5 5 5 5 5 5 4.81 4 4 5

u7 4 5 5 4.65 5 5 4.78 5 5 5 5 4 5

u8 3 4.18 4 5 5 5 5 5.0 5 5 4 4 5

u9 4 5 4.15 5 5 5 5 5 5.0 5 5 4 5

RMSE: 1.04
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Content Based Filtering
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Recommendation Methods: Content-based

Content Based Filtering: Recommend items based on the characteristics
of the items themselves and the preferences or profile of the user

Utilizes item features and user interaction history to predict items that are
similar to what the user has liked in the past

has rated high

highly similar
will probably like

low similarity

Content Based Filtering

(content)

No need for large user interaction data and can provide personalized
recommendations
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Recommendation Methods: Content-based

Predict U(i , j) high, if j is similar to the “taste” of i

1 Build Item Profile (based on content) e.g.

movies: vector of genre, director, budget, cast, plot, language

books, blogs, website, news items: tf-idf vector, author, topic

2 Build User Profile

A vector with the same coordinates as item profile

kind of “an average item” that the user likes ▷ the taste of user

Weighted (by ratings) average of the item profiles that the user has rated

3 U ′(i , j) ∝ (cosine) similarity between item j ’s and user i ’s profiles
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Content-based Filtering

Movies Profiles:

Movie ID Genre Year
Director
Rating

Oscar
Nominated

m1 Action 2010 8 Yes
m2 Comedy 2012 6 No
m3 Drama 2015 9 Yes
m4 Action 2020 7 No
m5 Comedy 2018 5 No
m6 Drama 2016 9 Yes
m7 Sci-Fi 2011 8 No
m8 Horror 2019 6 No
m9 Sci-Fi 2017 7 Yes
m10 Horror 2014 5 No

Encode Genre with one-hot-encoding

Encode Year as number of years before 2020

Oscar Nominated is encoded one-hot-encoding
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Content-based Filtering

Movie Profiles (Feature Vectors):

Movie ID Genre Year
Director
Rating

Oscar
Nominated

m1 [1, 0, 0, 0, 0] 10 8 1
m2 [0, 1, 0, 0, 0] 8 6 0
m3 [0, 0, 1, 0, 0] 5 9 1
m4 [1, 0, 0, 0, 0] 0 7 0
m5 [0, 1, 0, 0, 0] 2 5 0
m6 [0, 0, 1, 0, 0] 4 9 1
m7 [0, 0, 0, 1, 0] 9 8 0
m8 [0, 0, 0, 0, 1] 1 6 0
m9 [0, 0, 0, 1, 0] 3 7 1
m10 [0, 0, 0, 0, 1] 6 5 0
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Content-based Filtering

Movies Rated by Users (Scale of 1 to 5):

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

u1 4 3 2 1

u2 3 2 4 1

u3 5 5 4 5 4

u4 3 4 2 5 4 5

u5 2 3 1 3 4

u6 4 5 4 2
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Content-based Filtering

User profile vectors are just the rating weighted average of the movies
feature vectors rated by the user.

The values at each coordinate are normalized by the sum of ratings

The dimensionality is exactly the same as movies feature vectors

Weighted (by Ratings) User Profile Vectors:

User ID
Preferred
Genre

Prefers
Recent

Director
Rating

Likes
Oscar

u1 [0.7, 0, 0, 0.2, 0.1] 6.4 7.4 0.4
u2 [0, 0.7, 0.2, 0, 0.1] 4.3 6.2 0.2
u3 [0.39, 0, 0.43, 0.17, 0] 4.7 8.01 0.83
u4 [0.13, 0.87, 0.39, 0.39, 0] 5.4 7.91 0.74
u5 [0.23, 0.23, 0, 0, 0.54] 3.5 5.85 0
u6 [0.27, 0, 0.6, 0, 0.13] 5.5 8.3 0.87
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Content-based Filtering

Cosine similarity between u1 and m1, u1 and m10:

Cosine Similarity =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

u1 = [0.7, 0, 0, 0.2, 0.1, 6.4, 7.4, 0.4] m1 = [1, 0, 0, 0, 0, 10, 8, 1]

Similarity (u1,m1) =
124.3

9.82× 12.88
≈ 0.98

u1 = [0.7, 0, 0, 0.2, 0.1, 6.4, 7.4, 0.4] m10 = [0, 0, 0, 0, 1, 6, 5, 0]

Similarity (u1,m10) =≈ 0.97
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Recommendation Methods: Content-based

Predict U(i , j) high, if j is similar to the “taste” of i

Pros

No need of other users’ information

No cold-start or sparsity problem w.r.t items

Unique taste of user is captured, personalized recommendations

Able to provide explanation (by listing contents’ features)

Cons

Building profile is hard, finding relevant features is hard

Cold start problem w.r.t users

User profile is heuristic

Overspecialization-never recommends items outside user profile

Does not cater for multiple interests of a user

Does not utilize judgment of other users
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Recommendation Methods: Content-based

Predict U(i , j) high, if j is similar to the “taste” of i

Can take into account other (similar) users judgments as follows

▷ Somewhat cater for the cold start problem

has rated high

highly similar

(demographic)

has rated high

‘add’ to
user’s profile

low similarity

u1

u3

u2

p1

p2
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Item Profiles

Item profiles: Feature vector of item in the system

Each item is described by a set of features (e.g., genre, author, price).

Compare items profile to recommend similar ones to the user

Feature extraction is a key step in building item profiles:

Textual Data: For movies or books, keywords, genre, or descriptions
are extracted using techniques like TF-IDF or word embeddings

Multimedia Content: For images or videos, features include
resolution, format, or visual features extracted through computer
vision techniques

Categorical Data: For products, categorical features like brand, price
range, or category are used to build item profiles
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User Profiles

User profiles: the preferences of user, built from historical ratings

Generated by analyzing the profiles of items the user has rated

A weighted feature vector summarizing the user’s preferences (e.g., a
user has a high preference for the “comedy” genre in movies)

User preference modeling in content-based filtering involves:

Aggregating Features: The system aggregates features from items
that the user has rated (e.g., the genres of movies watched).

Creating a Preference Vector: A weighted vector is formed based on
the user’s past interactions, assigning higher weights to the most
frequently rated features.

Dynamic Updating: The user profile updates as new interactions
occur, adjusting the user’s preferences over time.
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Similarity Measures

To recommend items, content-based filtering systems calculate the
similarity between items or between a user and items:

Cosine Similarity: Measures the cosine of the angle between two
vectors, often used for textual or categorical data.

Euclidean Distance: Measures the straight-line distance between two
vectors in a feature space, useful for numerical features.

The similarity score is then used to rank items for recommendation.

In a document recommender, cosine similarity can be used to compare the
keywords of two articles to determine if they are similar.

In a product recommender, Euclidean distance can be used to compare
feature vectors like price, brand, and category.
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Neighborhood Model: Collaborative Filtering
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Collaborative Filtering: Neighborhood Model

Collaborative filtering a widely used method for recommendation, leverages
the collective wisdom of a group of users or items to make predictions

Predicts user preferences by analyzing the preferences of similar
users (user-user) or similar items (item-item)

highly similar

(rating based)

low similarity

likes

likes

Collaborative Filtering

u1

u3

u2
pj

will probably like

lik
es
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User-User Collaborative Filtering

Recommends items to a user based on the preferences of “similar” users

▷ Assumption: Users with similar preferences in the past will continue to
have similar preferences in the future

Find the set N of users with similar ratings as of i

Find the top k similar rows to the ith row

Estimate U(i , j) as an “average” of U(a, j)’s for a ∈ N

i has similar ‘taste’ to a ∈ N =⇒ U(i , j) similar to U(a, j)

Predict U(i , j) based on weighted average of ratings of similar users

U ′(i , j) =

∑
a∈N

sim(a, i)× U(a, j)∑
a∈N

sim(a, i)
or U ′(i , j) = r̄i +

∑
a∈N

sim(a, i)(rai − r̄a)∑
a∈N

sim(a, i)
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User-User Collaborative Filtering: Similarity Measures

User-user CF use similarity measures to find users with similar preferences

Cosine similarity:

Pearson Correlation: Measures linear correlation in users’ rating

simρ(u, v) =

∑
i∈I (rui − r̄u)(rvi − r̄v )√∑

i∈I

(rui − r̄u)2
√∑

i∈I

(rvi − r̄v )2

rui and rvi are the ratings of users u and v for item i .
r̄u and r̄v are the average ratings of users u and v .
I is the set of items rated by both users.

Jaccard Index: Measures similarity between sets (clicks or views)

simJaccard(u, v) =
|Iu ∩ Iv |
|Iu ∪ Iv |

Iu and Iv are sets of items interacted with by users u and v , respectively
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User-User Collaborative Filtering

Rating Matrix

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

u0 2 3 3 4 2 3 4 5 5 4 3 2 4

u1 3 3 2 4 4 3 4 5 5 4 4 3 5

u2 2 3 3 4 3 4 5 5 4 3 2 4 5

u3 3 4 4 5 4 5 5 5 5 4 3 5 5

u4 2 3 3 4 4 4 5 5 5 4 3 4 4

u5 3 4 4 5 4 5 5 5 5 4 3 5 5

u6 3 4 4 5 5 5 5 5 5 4 4 5 5

u7 4 5 5 5 5 5 5 5 5 5 4 5 5

u8 3 4 4 5 5 5 5 5 5 4 4 5 5

u9 4 5 5 5 5 5 5 5 5 4 5 5 5
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User-User Collaborative Filtering

Users Similarity Matrix

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9

u0 1.00 0.98 0.97 0.97 0.98 0.97 0.97 0.96 0.97 0.96

u1 0.98 1.00 0.97 0.97 0.98 0.97 0.98 0.97 0.98 0.97

u2 0.97 0.97 1.00 0.99 0.99 0.99 0.98 0.97 0.98 0.97

u3 0.97 0.97 0.99 1.00 0.99 1.00 1.00 0.99 1.00 0.99

u4 0.98 0.98 0.99 0.99 1.00 0.99 0.99 0.98 0.99 0.98

u5 0.97 0.97 0.99 1.00 0.99 1.00 1.00 0.99 1.00 0.99

u6 0.97 0.98 0.98 1.00 0.99 1.00 1.00 0.99 1.00 0.99

u7 0.96 0.97 0.97 0.99 0.98 0.99 0.99 1.00 0.99 1.00

u8 0.97 0.98 0.98 1.00 0.99 1.00 1.00 0.99 1.00 0.99

u9 0.96 0.97 0.97 0.99 0.98 0.99 0.99 1.00 0.99 1.00
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User-User Collaborative Filtering

Let’s fill the missing entry for u1 and p2 using User-User CF:

r ′ui ,pk =

∑
uj
sim(ui , uj) · ruj ,pk∑
uj
|sim(ui , uj)|

Where ruj ,pk is known and sim(ui , uj)

sim(u1, u2) = 0.97

sim(u1, u4) = 0.98

sim(u1, u6) = 0.98

sim(u1, u9) = 0.97

And corresponding ratings for p2:

ru2,p2 = 3

ru4,p2 = 3

ru6,p2 = 4

ru9,p2 = 5

r ′u1,p2 =
(0.97× 3) + (0.98× 3) + (0.98× 4) + (0.97× 5)

0.97 + 0.98 + 0.98 + 0.97
=

2.91 + 2.94 + 3.92 + 4.85

3.90
≈ 3.75
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User-User Collaborative Filtering

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9

u0 3.00 3.88 3.77 4.66 4.33 4.55 4.89 5.00 4.89 4.00

u1 2.89 3.89 3.89 4.67 4.11 4.55 4.89 5.00 4.89 4.00

u2 3.00 3.89 3.78 4.67 4.22 4.45 4.78 5.00 5.00 4.11

u3 2.89 3.78 3.67 4.56 4.12 4.34 4.78 5.00 4.89 4.00

u4 3.00 3.89 3.78 4.67 4.11 4.45 4.78 5.00 4.89 4.00

u5 2.89 3.78 3.67 4.56 4.12 4.34 4.78 5.00 4.89 4.00

u6 2.89 3.78 3.67 4.56 4.01 4.34 4.78 5.00 4.89 4.00

u7 2.78 3.67 3.56 4.56 4.01 4.34 4.78 5.00 4.89 3.89

u8 2.89 3.78 3.67 4.56 4.01 4.34 4.78 5.00 4.89 4.00

u9 2.78 3.67 3.56 4.56 4.01 4.34 4.78 5.00 4.89 4.00
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Item-Item Collaborative Filtering

Item-item CF recommends items by analyzing similarities between items

Predicts how much a user will like an item based on how similar it is to
other items the user has rated or interacted with

Find the set W of items similarly rated as j

Find the top k similar columns to the jth row

Estimate U(i , j) as an “average” of U(i , p)’s for p ∈ W

U ′(i , j) =

∑
p∈W U(i , p)× sim(j , p)∑

p∈W sim(j , p)

Better result by item-item collaborative filtering

Because items are easier to model

has less complexity than users

item-item relationships are more stable over time than user preferences
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Item-Item Collaborative Filtering

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

u1 3 4 5 3 2 4 4 5 3 4

u2 4 5 4 3 5 3 5 4 5 3

u3 4 5 3 4 2 4 5 3 5 4

u4 5 3 2 4 5 3 4 5 4 3

u5 2 4 5 3 4 5 3 5 4 3

u6 3 4 5 4 3 4 3 5 5 4

u7 4 3 5 2 4 5 3 4 3 5

u8 5 3 4 5 2 4 5 3 4 5

u9 4 5 3 5 4 3 4 5 3 4

u10 3 4 5 3 5 4 3 5 4 3

u11 5 4 3 5 4 5 4 3 5

u12 4 3 5 4 3 5 4 3 5 4
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Item-Item Collaborative Filtering

Items Pairwise Similarity Matrix

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

p1 1.00 0.92 0.85 0.78 0.82 0.75 0.89 0.90 0.84 0.77 0.91 0.87 0.80 0.83 0.88 0.79

p2 0.92 1.00 0.88 0.81 0.85 0.78 0.92 0.93 0.87 0.80 0.94 0.90 0.83 0.86 0.91 0.82

p3 0.85 0.88 1.00 0.91 0.95 0.88 0.86 0.85 0.89 0.92 0.84 0.87 0.90 0.93 0.84 0.91

p4 0.78 0.81 0.91 1.00 0.88 0.81 0.79 0.78 0.82 0.85 0.77 0.80 0.83 0.86 0.77 0.84

p5 0.82 0.85 0.95 0.88 1.00 0.93 0.81 0.80 0.94 0.87 0.83 0.86 0.89 0.92 0.83 0.90

p6 0.75 0.78 0.88 0.81 0.93 1.00 0.74 0.73 0.87 0.80 0.72 0.75 0.78 0.81 0.72 0.79

p7 0.89 0.92 0.86 0.79 0.81 0.74 1.00 0.99 0.85 0.78 0.96 0.92 0.85 0.88 0.93 0.84

p8 0.90 0.93 0.85 0.78 0.80 0.73 0.99 1.00 0.84 0.77 0.95 0.91 0.84 0.87 0.92 0.83

p9 0.84 0.87 0.89 0.82 0.94 0.87 0.85 0.84 1.00 0.93 0.86 0.89 0.92 0.95 0.86 0.93

p10 0.77 0.80 0.92 0.85 0.87 0.80 0.78 0.77 0.93 1.00 0.79 0.82 0.95 0.88 0.79 0.86

p11 0.91 0.94 0.84 0.77 0.83 0.72 0.96 0.95 0.86 0.79 1.00 0.96 0.89 0.92 0.97 0.88

p12 0.87 0.90 0.87 0.80 0.86 0.75 0.92 0.91 0.89 0.82 0.96 1.00 0.93 0.96 0.91 0.94

p13 0.80 0.83 0.90 0.83 0.89 0.78 0.85 0.84 0.92 0.95 0.89 0.93 1.00 0.99 0.90 0.97

p14 0.83 0.86 0.93 0.86 0.92 0.81 0.88 0.87 0.95 0.88 0.92 0.96 0.99 1.00 0.93 0.96

p15 0.88 0.91 0.84 0.77 0.83 0.72 0.93 0.92 0.86 0.79 0.97 0.91 0.90 0.93 1.00 0.89

p16 0.79 0.82 0.91 0.84 0.90 0.79 0.84 0.83 0.93 0.86 0.88 0.94 0.97 0.96 0.89 1.00
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Item-Item Collaborative Filtering

Let’s fill the missing entry for u1 and p2 using Item-Item CF :

rui ,pk =

∑
pj
sim(pk , pj) · rui ,pj∑
pj
|sim(pk , pj)|

Where ruj ,pk is known and sim(ui , uj)

sim(p2, p1) = 0.92

sim(p2, p3) = 0.87

sim(p2, p4) = 0.85

sim(p2, p5) = 0.81

sim(p2, p6) = 0.88

And corresponding ratings for p2:

ru1,p1 = 3

ru1,p3 = 4

ru1,p4 = 5

ru1,p6 = 3

r′u1,p2
=

0.92 × 3 + 0.87 × 4 + 0.85 × 5 + 0.81 × 4 + 0.88 × 3

0.92 + 0.87 + 0.85 + 0.81 + 0.88
=

2.76 + 3.48 + 4.25 + 3.24 + 2.64

4.33
=

16.37

4.33
≈ 3.78
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Item-Item Collaborative Filtering

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16

u1 3 3.78 4 5 4.05 3 4.22 2 4 4.10 4 5 3.90 3 4 4.00

u2 3.95 4 4.15 5 4 3.88 3 3.75 5 3 4.85 5 4 3.95 5 3

u3 4 3.90 5 4.85 3 4 4.20 2 4.25 4 5 4.95 3 5 3.80 4

u4 3.80 5 3 4.90 2 4.10 4 5 3 4.15 4.75 4 5 4 3 3.85

u5 2 4.05 3.90 4 4.00 5 3 4.18 4 5 3.95 3 4.10 5 4 3

u6 4.00 3 4 4.80 5 3.95 4 3 4.30 4 3 4.70 5 4.05 5 4

u7 4 4.00 3 5 3.85 2 4.25 4 5 4.20 3 4.80 4 3 4.15 5

u8 5 4.20 3.95 3 4 5 4.30 2 4 4.25 5 3 4.00 4.20 4 5

u9 3.85 4 5 4.95 3 4.10 5 4 4.35 3 4 4.90 5 3 4.15 4

u10 3 4.10 4.05 4 5 3 4.25 3.95 5 4 3 5 4.15 4 3.90 3

u11 4.05 5 4 4.75 3 5 4 4.20 4.95 5 4 4.85 3 4.15 5 4.10

u12 4 4.15 3 5 4.00 4 4.30 3 5 4.20 4 4.95 3 5 4 3.90
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Item-Item Collaborative Filtering: Similarity Measures

Item-item CF use similarity measures between items

Cosine Similarity: Cosine similarity is widely used in recommender systems
to measure the similarity between users or items based on their feature
representations. It quantifies how similar two vectors (e.g., user preference
vectors) are by computing the cosine of the angle between them.

Pearson Correlation: Linear correlation between the ratings of two items
across users

Co-occurrences: Measures how often two items are interacted with by the
same users, very useful for implicit feedback scenarios

Co-occurrence Matrix: Constructed by counting how often two items
are interacted with by the same users

▷ two items that are frequently bought together by the same users (like
a camera and a memory card) will have a high co-occurrence score
Jaccard Index: Measures overlap in users who interacted with two items
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Implicit Feedback in CF

Incorporating implicit feedback is usefule, esp. when explicit ratings are
unavailable or sparse

Clicks: Items the user clicked on.

Views: Items the user viewed.

Purchases: Items the user bought.

This data is often noisier but abundant, allowing for richer insights into
user behavior

Recommenders systems treats these interactions as indicators of interest

Weighted Implicit Feedback: Clicks or views weighted less heavily
than actual purchases or ratings

Interaction Frequency: Frequently viewed or clicked item receive a
higher relevance score

Imdad ullah Khan (LUMS) Recommendation Systems 70 / 135



Advantages and Disadvantages of Collaborative Filtering

No Domain Knowledge Required: CF doesn’t rely on item features, making
it flexible for applications with any kind of items

Diversity: The system can make recommendations outside a user’s usual
preferences by leveraging group wisdom

Serendipity: CF can introduce unexpected but relevant items, encouraging
users to explore content outside their usual preferences

Cold-Start problem: Struggles to recommend for new users or items without
interaction history

Sparsity: Most users interact with a small fraction of items, hard to find
users that have rated the same items

First rater: cannot recommend new/ esoteric items (not previously rated)

Scalability Issues: Finding similar users/items is computationally expensive
for large datasets

Approx. nearest neighbors (LSH) and dimensionality reduction make CF scalable
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Collaborative Filtering
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Recommendation using Matrix Factorization
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Matrix Factorization Based Recommendation Systems

Recall the recommendation system problem is the problem of matrix
completion in computational linear algebra

Given a rating matrix R – users ratings for items, predict R(i , j)

?

Matrix factorization based recommenders decompose the user-item
interaction matrix into latent factors, to predict its missing values
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Matrix Factorization Based Recommendation Systems

Given n ×m matrix R For k ≪ m, n, Find

n × k matrix P and k ×m matrix Q such that

R = PQ

Generally, for very small k , we seek

R ≃ PQ

n

m

×

≃n×m

R
P Q

PT
i Qj ≃ Rij

n× k

k ×m
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Matrix Factorization Based Recommendation Systems

Given n ×m matrix R For k ≪ m, n, Find

n × k matrix P and k ×m matrix Q such that

R ≃ PQ

n

m

×

≃n×m

R
P Q

PT
i Qj ≃ Rij

n× k

k ×m

This is a classic optimization problem can be solved as

argmin
P∈Rn×k

Q∈Rm×k

∑
(i ,j)

(
Rij − PiQ

T
j

)2
+ λ

(
∥P∥2F + ∥Q∥2F

)︸ ︷︷ ︸
regularization term
avoids overfitting

Later we will discuss low rank approximation (SVD) to solve this problem
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Matrix Factorization Based Recommendation Systems

Matrix Factorization for Recommenders R ≃ PQ

P : k-dim representation of users in a latent feature space Rk

Q : k-dim representation of items latent feature space

PiQ
T
j : interaction between user i and item j – approximation of Rij

source: https://builtin.com/articles/matrix-factorization
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Matrix Factorization Based Recommendation Systems

Matrix Factorization for Recommenders R ≃ PQ

P : k-dim representation of users in a latent feature space Rk

Q : k-dim representation of items latent feature space

PiQ
T
j : interaction between user i and item j – approximation of Rij

?

QT

P

u
se
r
la
te
n
t
fe
a
tu

re
s

items latent features
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Matrix Factorization Based Recommendation Systems

diagram adapted from Cho-Jui Hsieh @ UCLA

Names are dummy

2d view of
latent feature space
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Matrix Factorization Based Recommendation Systems

diagram adapted from Cho-Jui Hsieh @ UCLA

latent feature space

Users and movies mapped to
Points are coordinates

( 2-dim P and Q)

of users and movies
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Rank Factorization of Matrices
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Rank of a matrix

For an n ×m matrix A

Column Rank of A, col-rank(A) is the maximum number of linearly
independent columns of A

Row Rank of A, row-rank(A) is the maximum number of linearly
independent rows of A

rank(A) := col-rank(A) = row-rank(A)
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Rank of a matrix

For an n ×m matrix A

Looking at A as a linear transformation i.e. A : Rm 7→ Rn

rank(A) is the true dimensionality of the range (output) space of A

...

A x

... ...

=

Dot Product

...

n×m m× 1 n× 1

y=Ax

...

x1
x2

x3

xm

a11 a12 a1m. . .
a21 a22 a2m. . .
a31 a32 a3m. . .

. . .an1 an2 anm

[
1
0

]
[
0
1

] [
1
1

]
[
2
2

]

Columns of

[
1 2
1 2

]
are

linearly dependent

If rank(A) = k , then output vectors live in a k-d subspace
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Rank of a matrix

Another definition of rank (aka decomposition rank)
An n ×m matrix A has

Rank-0 if all its entries are 0

Rank-1 if it is outer product of an n × 1 and an m × 1 vector, A = uvT

u
 [

vT
]


u1v

T

u2v
T

...
. . .

...
unv

T




. . .

v1u v2u . . . vmu

. . .

A = uvT = ==

Rank-2 if it is non-trivial sum of two rank-1 matrices A = uvT +wxT


u1v

T + w1x
T

u2v
T + w2x

T

...
. . .

...
unv

T + wnx
T




. . .

v1u+ x1w v2u+ x2w . . . vmu+ xmw

. . .

A = uvT +wxT = =

u w


[

vT

xT

]
=

Rank-k if it is sum of k rank-1 matrices and cannot be written as sum of
k − 1 or fewer rank-1 matrices
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Rank Factorization of a matrix

An n×m matrix A has rank-k if A can be “factored into” the product of a

(n × k) matrix U and ▷ tall and skinny

(k × n) matrix V T ▷ short and long

A = UV T

A cannot be factored into n × (k − 1) and (k − 1)×m matrices

A Un

m

n

k

×= V T

m

k

columns of U are the columns of the rank-1 factors ui ’s

rows of V T are the rows of the rank-1 factors vi ’s

All definitions of rank are equivalent - each implies the other
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Rank Factorization of a matrix

n × n matrix A is “full rank” if it has rank n

It uniquely maps n × 1 vectors to n × 1 vectors

A is a “bijection”, A is invertible

If rank(A) < n, then A is a singular matrix (rank deficient matrix)

The resulting dimensionality is ≤ n − 1

Cannot get pre-images from images

A is not invertible

There cannot be any inverse for a non-square matrix
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Low Rank Structure in Data
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Low rank data matrix

A: a n ×m data matrix ▷ rows: data points – columns: features

If A has rank k, then A = UV T ▷ |U| = n × k |V | = k ×m

Each row (data point) of A can be represented as a
linear combination of v1, . . . , vk

ai =
k∑

j=1
uijvj , uij are projection lengths of ai on vj

A Un

m

n

k

×= V T

m

k

Geometrically, all data lie in a k-d subspace (spanned by v1, . . . , vk)

v1

v2

all data points lie in the 2d plane

Data Compression

Space reqtt for A: n ×m

Store the matrix U and V

Space reqtt: k(n +m)
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Low rank approximation

Data may not be in a k-d subspace,

but it may be lying ‘close by’ to a low dimensional subspace

We say data is approximately low rank

May not get A = UV T – would like to find U and V so A ≃ UV T

v1

v2

all data points lie close to the 2d plane
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Low rank approximation

May not get A = UV T – would like to find U and V so A ≃ UV T

Need a goodness measure to assess A ≃ UV T

n∑
i=1

∥ai −
k∑

j=1

uijvj∥2 =: ∥A− UV T∥2F

For a matrix M, ∥M∥F =
√∑

i ,j M
2
ij is the Frobenius norm of M

The optimization problem of finding the best low rank approximation for A

argmin
V ∈ Rk×m, U ∈ Rn×k

∥A− UV T∥2F
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Why expect low rank structure

Data is not necessarily described by the attributes in which it is measured

I am going to show you two examples with dependencies between columns

These examples are adapted from real-world data
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Why expect low rank structure

Housing Data:

ID Beds Baths
Living
sq-ft

Lot
sq-ft

Floors
Garage
Cars

List
Price

Sale
Price

1 1 1 870 1100 1 0 31630 31544
2 1 1 1080 1400 1 0 35920 35916
3 2 1 1250 1500 1 0 48250 48025
4 2 1 1285 1550 1 0 48965 48738
5 2 2 1460 1800 2 1 67540 67633
6 3 2 1560 1800 1 0 68440 68763
7 3 2 1630 1900 2 1 79870 79533
8 3 2 2050 2500 2 1 88450 88054
9 3 2.5 2120 2600 2 2 102380 102576
10 4 2 2360 2800 2 1 103640 103892
11 4 2.5 2500 3000 2 1 109000 109523
12 4 2.5 2570 3100 2 1 110430 110393
13 4 3 2710 3300 3 2 125790 125945
14 5 2 2880 3400 2 2 133120 133503
15 5 2.5 2880 3400 3 2 135620 136124
16 5 2.5 3300 4000 3 2 144200 144365
17 5 3 3650 4500 3 2 153850 154444
18 5 3 3720 4600 3 3 165280 165439

List-Price = 10k× bed +5k×baths +9× liv-sqFT +8× Lot +10k× Cars

Sale Price = (1± 0.02)× List Price
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Why expect low rank structure

Housing Data: Rank of this matrix is not 8– Some linear dependencies
are shown (there may be others including non-linear)

ID Beds Baths
Living
sq-ft

Lot
sq-ft

Floors
Garage
Cars

List
Price

Sale
Price

1 1 1 870 1100 1 0 31630 31544
2 1 1 1080 1400 1 0 35920 35916
3 2 1 1250 1500 1 0 48250 48025
4 2 1 1285 1550 1 0 48965 48738
5 2 2 1460 1800 2 1 67540 67633
6 3 2 1560 1800 1 0 68440 68763
7 3 2 1630 1900 2 1 79870 79533
8 3 2 2050 2500 2 1 88450 88054
9 3 2.5 2120 2600 2 2 102380 102576
10 4 2 2360 2800 2 1 103640 103892
11 4 2.5 2500 3000 2 1 109000 109523
12 4 2.5 2570 3100 2 1 110430 110393
13 4 3 2710 3300 3 2 125790 125945
14 5 2 2880 3400 2 2 133120 133503
15 5 2.5 2880 3400 3 2 135620 136124
16 5 2.5 3300 4000 3 2 144200 144365
17 5 3 3650 4500 3 2 153850 154444
18 5 3 3720 4600 3 3 165280 165439

List-Price = 10k× bed +5k×baths +9× liv-sqFT +8× Lot +10k× Cars

Sale Price = (1± 0.02)× List Price
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Why expect low rank structure

Shirt Dimension: Many measurements (chest and waist circumferences,
sleeve and back lengths) for shirt

In market shirts are marked with collar measurement only

Chest Back Waist Sleeve

104 81 98 67

107 81 100 67

110 82 102 67

113 82 104 67

116 83 106 68

120 83 110 68

124 84 114 68

128 84 118 68

132 85 122 68

136 85 126 68
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Why expect low rank structure

Shirt Dimension The collar feature is a linear combination of other
features. The data actually lies in a one dimensional space

Chest Back Waist Sleeve Collar
104 81 98 67 37

107 81 100 67 38

110 82 102 67 39

113 82 104 67 40

116 83 106 68 41

120 83 110 68 42

124 84 114 68 43

128 84 118 68 44

132 85 122 68 45

136 85 126 68 46

Collar =0.44× Chest +0.015× Back −0.2× Waist +0.153× Sleeve
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Singular Value Decomposition
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Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a fundamental matrix
factorization technique used in recommendation systems

SVD decomposes the user-item matrix into three smaller matrices
that capture latent relationships between users and items

These latent factors represent hidden preferences or features that are
not directly observable

By approximating the original matrix with lower-dimensional matrices,
SVD can make accurate predictions for missing values
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Singular Value Decomposition

Theorem

Any n ×m matrix can be written as a product of three matrices

A = U ΣV T

U is a n × n orthogonal matrix (columns are orthonormal)

V is a m ×m orthogonal matrix

Σ is a n×m diagonal matrix, with non-negative entries and entries at
the main diagonal are sorted from highest value to lowest

A Un

m

n= V T

mn

m

Σn

m

σ1

σk

σ2

. . .

orthonormal
non-negative
diagonal orthonormal

u1 u2 un

vT
1

vT
2

vT
m
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Singular Value Decomposition

SVD: A = UΣV T

A is the original user-item matrix

U is orthogonal – its columns are called left singular vectors

▷ Columns of U are user latent factors

V is orthogonal – its columns are called right singular vectors

▷ Columns of V T are item latent factors

Diagonal entries of Σ are called singular values

▷ singular values represent the strength of each latent factor

SVD reveals latent factors corresponding to hidden relationships between users
and items

SVD projects rows and columns of A into a shared latent feature space, allowing

missing values prediction based on proximity of rows and columns in this space
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Singular Value Decomposition

A =


4 5 2 3 5 4
5 5 5 4 5 5
5 1 5 4 3 1
2 2 4 1 1 2




0.53 0.58 -0.32 0.54
0.67 0.16 0.21 -0.70
0.45 -0.77 -0.44 0.12
0.28 -0.23 0.81 0.46




17.8 0 0 0
0 4.6 0 0
0 0 2.5 0
0 0 0 0.5




0.46 0.39 0.44 0.36 0.43 0.36
-0.26 0.53 -0.62 -0.21 0.25 0.41
-0.32 0.25 0.57 -0.43 -0.42 0.38
0.36 0.49 0.05 -0.50 0.04 -0.61
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Compact Singular Value Decomposition

Theorem (Compact SVD)

Any n×m matrix with rank r ≤ min{m, n} can be written as a product of
three matrices, A = UΣV T

U is a n × r orthogonal matrix (columns are orthonormal)

V is a r × r orthogonal matrix

Σ is a r ×m diagonal matrix, with non-negative entries and entries at
the main diagonal are sorted from highest value to lowest

A Un

m

n= V T

r

Σ

σ1

σr

σ2

. . .

orthonormal

non-negative
diagonal orthonormal

vT
1

r

r r

u1 ur

m

vT
r
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Spectral decomposition of a matrix

From SVD of A ∈ Rn×m we can get spectral decomposition of A

Express A as linear combination of r rank-1 matrices (outer products of
singular vectors) – coefficients are the corresponding singular values

A = UΣV T ⇔ A =

min{m,n}∑
ℓ=1

σℓ uℓ ◦ vTℓ

A

U

n

m

n=

V T

m

r

Σ

r

r

σr

. . .
un

vT
m

An

m

=

σ1
σ2
σ3

u2 u3

vT
3

vT
2

vT
1

vT
3

vT
1 vT

2

u2 u3

u1

u1

+ + + · · ·

σ2 σ3σ1

r
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Spectral decomposition of a matrix

A =


7 5 6
2 3 5
7 2 2
3 6 7




-0.64 0.21 0.01
-0.36 -0.33 -0.85
-0.39 0.75 0.00
-0.56 -0.54 0.53


 16.40 0 0

0 5.43 0
0 0 0.83

  -0.58 -0.51 -0.63
0.81 -0.31 -0.50
-0.06 0.80 -0.60




-0.64
-0.36
-0.39
-0.56

 [ 16.40
] [

-0.58 -0.51 -0.63
]
=


6.09 5.35 6.56
3.42 3.00 3.68
3.72 3.27 4.01
5.39 4.73 5.81




0.21
-0.33
0.75
-0.54

 [ 5.43
] [

0.81 -0.31 -0.50
]
=


0.91 -0.35 -0.56
-1.46 0.56 0.89
3.28 -1.27 -2.01
-2.37 0.91 1.45




0.01
-0.85
0.00
0.53

 [ 0.83
] [

-0.06 0.80 -0.60
]
=


-0.00 0.01 -0.00
0.04 -0.56 0.42
-0.00 0.00 -0.00
-0.03 0.35 -0.26
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Truncated SVD

Keeping only the top k singular values and their corresponding vectors, we
approximate A using a low-rank matrix

A = UΣV T

A =
r∑

ℓ=1

σℓ uℓ ◦ vTℓ
A

U

n

m

n=

V T

m

r

Σ

r

r

...

A1
n

m

≃ +

r

. . . ...

Ak =
k∑

ℓ=1
σℓuℓ ◦ vTℓ +

r∑
ℓ=k+1

σℓuℓ ◦ vTℓ

Set to 0 (truncate) the last r − k singular values (σk+1 to σr )
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Truncated SVD

Uk ∈ Rn×k : the first k left singular vectors (the first k columns of U)

Σk ∈ Rk×k : the first k singular values

V T
k be the first k right singular vectors

Ak =
k∑

ℓ=1

σℓuℓ ◦ vTℓ +
r∑

ℓ=k+1

σℓuℓ ◦ vTℓ = UkΣkV
T
k

Ak

U

n

m

n=

V T

r

Σ

σr

. . .

r

r r

u1 ur

m

vT
r

u2 uk

vT
1

vT
2

vT
k

σ1
σ2

σk

Σk
V T
k

Uk
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Truncated SVD

A =


4 5 2 3 5 4
5 5 5 4 5 5
5 1 5 4 3 1
2 2 4 1 1 2




0.53 0.58 -0.32 0.54
0.67 0.16 0.21 -0.70
0.45 -0.77 -0.44 0.12
0.28 -0.23 0.81 0.46




17.8 0 0 0
0 4.6 0 0
0 0 2.5 0
0 0 0 0.5




0.46 0.39 0.44 0.36 0.43 0.36
-0.26 0.53 -0.62 -0.21 0.25 0.41
-0.32 0.25 0.57 -0.43 -0.42 0.38
0.36 0.49 0.05 -0.50 0.04 -0.61




0.58
0.67
0.44
0.28

 [ 17.76
] [

0.46 0.39 0.44 0.36 0.43 0.36
]

A′ =


4.33 3.67 4.07 3.32 3.99 3.39
5.49 4.65 5.16 4.21 5.06 4.29
3.69 3.12 3.47 2.83 3.40 2.89
2.30 1.95 2.17 1.77 2.12 1.80
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Truncated SVD

A =


4 5 2 3 5 4
5 5 5 4 5 5
5 1 5 4 3 1
2 2 4 1 1 2




0.53 0.58 -0.32 0.54
0.67 0.16 0.21 -0.70
0.45 -0.77 -0.44 0.12
0.28 -0.23 0.81 0.46




17.8 0 0 0
0 4.6 0 0
0 0 2.5 0
0 0 0 0.5




0.46 0.39 0.44 0.36 0.43 0.36
-0.26 0.53 -0.62 -0.21 0.25 0.41
-0.32 0.25 0.57 -0.43 -0.42 0.38
0.36 0.49 0.05 -0.50 0.04 -0.61




0.53 0.58
0.67 0.16
0.45 -0.77
0.28 -0.23

 [ 17.76 0
0 4.59

] [
0.46 0.39 0.44 0.36 0.43 0.36
-0.26 0.53 -0.62 -0.21 0.25 0.41

]

A′ =


3.64 5.08 2.49 2.83 4.71 4.48
5.28 5.03 4.78 4.13 5.30 4.58
4.60 1.24 5.71 3.62 2.55 1.43
2.56 1.38 2.84 2.01 1.87 1.36
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Truncated SVD

A =


4 5 2 3 5 4
5 5 5 4 5 5
5 1 5 4 3 1
2 2 4 1 1 2




0.53 0.58 -0.32 0.54
0.67 0.16 0.21 -0.70
0.45 -0.77 -0.44 0.12
0.28 -0.23 0.81 0.46




17.8 0 0 0
0 4.6 0 0
0 0 2.5 0
0 0 0 0.5




0.46 0.39 0.44 0.36 0.43 0.36
-0.26 0.53 -0.62 -0.21 0.25 0.41
-0.32 0.25 0.57 -0.43 -0.42 0.38
0.36 0.49 0.05 -0.50 0.04 -0.61




0.53 0.58 -0.32
0.67 0.16 0.21
0.45 -0.77 -0.44
0.28 -0.23 0.81


 17.76 0 0

0 4.59 0
0 0 2.52

  0.46 0.39 0.44 0.36 0.43 0.36
-0.26 0.53 -0.62 -0.21 0.25 0.41
-0.32 0.25 0.57 -0.43 -0.42 0.38



A′ =


3.90 4.88 2.03 3.18 5.05 4.17
5.11 5.16 5.08 3.90 5.08 4.79
4.95 0.97 5.01 4.10 3.02 1.01
1.91 1.89 4.01 1.13 1.02 2.13
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Truncated SVD: Low-Rank Approximation of a Matrix

Truncated SVD: A ≈ UkΣkV
T
k

A is the originalmatrix

Uk contains the top k columns of U vectors

▷ Columns of U are user latent factors

Vk contains the top k rows of V T

▷ Columns of V T are item latent factors

Σk is the diagonal matrix with the top k singular values

▷ singular values represent the strength of each latent factor

This low-rank approximation captures the most important latent factors
while ignoring less significant information
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Truncated SVD based Factorization of user-item Matrix

Finding the best factorization of the rating matrix, i.e., R ≃ PQ

min
P∈Rn×k

Q∈Rm×k

∑
(i ,j)

(
Rij − PiQ

T
j

)2
Truncated SVD: Rk ≈ UkΣkV

T
k

Theorem: Rk is the best rank-k approximation to R

the P in the above problem would be Uk

√
Σk

and Q would be
√
ΣkV

T
k

n

m

×

≃n×m

R
P Q

PT
i Qj ≃ Rij

n× k

k ×m
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SVD Application: Recommenders

Using SVD to get R = PQ

u
se
rs

items

u
se
r
la
te
n
t
fe
a
tu
re
s

items latent features
×

≃rating matrix

R P Q
P = Uk

√
Σk

Q =
√

Σk V T
k

Rk

U

n

m

n=

V T

r

Σ

σr

. . .

r

r r

u1 ur

m

vT
r

u2 uk

vT
1

vT
2

vT
k

σ1
σ2

σk

Σk
V T
k

Uk

PT
i Qj ≃ Rij
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SVD Application: Recommenders

SVD is not the best approach to factorize rating matrix and use for
recommendation

The rating matrix will have many values missing

SVD will adjust U, Σ and V to the 0’s or any default values

One can try other default values

matrix average, row averages, column averages, anova

SVD performs good if R is close to rank-k and has few missing values
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SVD in presence of missing values

A =


4 5 2 3 5 4
5 5 5 4 5 5
5 1 5 4 3 1
2 2 4 1 1 2

 A =


4 ? 2 3 5 4
? 5 ? 4 5 5
5 1 5 4 3 ?
? ? 4 ? 1 2




0.58 0.09 -0.11 -0.80
0.58 -0.74 0.02 0.34
0.53 0.64 -0.26 0.50
0.20 0.19 0.96 0.03




13.65 0 0 0
0 7.01 0 0
0 0 3.56 0
0 0 0 3.15




0.37 0.25 0.34 0.45 0.56 0.41
0.51 -0.44 0.59 -0.02 -0.16 -0.42
-0.49 -0.05 0.66 -0.37 -0.08 0.44
-0.23 0.69 0.32 0.29 -0.25 -0.46



A =


4.02 0 1.99 2.96 4.99 3.97
0 4.99 0 3.95 4.99 4.96
5.06 0.97 5.00 3.97 3.01 0
0 0 4.00 0 1.02 2.02


Note: SVD approximated A well but assumed the missing values to be 0
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Alternating Least Squares (ALS)

Alternating Least Squares (ALS) is an optimization algorithm for matrix
factorization

ALS decomposes the user-item interaction matrix into two low-rank
matrices; one for users and one for items

ALS alternates between fixing one set of variables (either user or item
latent factors) and solving for the other

Scalability and Parallelizability: ALS can handle large datasets and is
often parallelized to improve performance.

Iterative Optimization: ALS alternates between solving for user and
item matrices in a step-by-step manner.

Convergence: ALS guarantees convergence to a local minimum in a
fixed number of iterations.
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Alternating Least Squares (ALS)

ALS aims to minimize the following objective function:

argmin
P,Q

∑
(i,j)∈D

(rij − PT
i Qj)

2

︸ ︷︷ ︸
error term

+ λ
(
∥U∥2 + ∥V ∥2

)︸ ︷︷ ︸
regularization term
avoids overfitting

rij is the observed rating for user i and item j

Ui and Vj are the user and item latent factors, respectively

λ is the regularization parameter to prevent overfitting

D is the set of observed user-item interactions

ALS alternates between user and item matrices optimizing prediction error

1 Fixing Item Matrix: ALS first fixes the item latent factors and solves for the
user latent factors by minimizing the least squares objective

2 Fixing User Matrix: Next, it fixes the user latent factors and solves for the
item latent factors

3 Repeat until convergence, minimizing the prediction error at each step
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Hybrid Methods for Recommendation Systems

Hybrid recommenders combine multiple models to leverage the strengths of
different approaches while mitigating their shortcomings

Content-Based Filtering: Recommends based on item features, but lacks
diversity and generalization

Collaborative Filtering: Leverages collective user preferences but struggles
with the cold start problem

Matrix Factorization: Captures latent factors, but can overfit without
sufficient regularization

Improving Accuracy: overcome the limitations of individual models, (e.g.,
cold start, scalability)

Handling Diverse Data: Different types of data (e.g., explicit ratings,
implicit feedback, item features) can be effectively utilized by different
models within a hybrid system

Increasing Coverage: Hybrid systems can recommend items to more users by
addressing the shortcomings of models in isolation
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Weighted Hybrid

In a weighted hybrid system, the predictions from different models are
combined using a predefined or learned weighting scheme:

r̂ui = α1r̂
(model1)
ui + α2r̂

(model2)
ui + . . . + αn r̂

(modeln)
ui

αi : weight assigned to model i – its contribution to the final prediction

▷ Weights can learned through techniques like cross-validation

Items Data

Rating Matrix

Users Data

RecommendationsWeighted Hybrid
Recommendation

System

Matrix Factorization
Model

Collaborative Filtering
Model

anova-Based
Model

Content-Based
Model

α1

α2

α3

α4
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Switching Hybrid

In a switching hybrid system, the algorithm dynamically switches between
different recommendation models based on the context:

For users with more interactions, the system may use collaborative
filtering, but for new users, content-based filtering is used

Items Data

Rating Matrix

Users Data

Recommendations

Matrix Factorization
Model

Collaborative Filtering
Model

anova-Based
Model

Content-Based
Model

Recommender
Selector

Allows for flexible model selection, adapting to the needs of user or dataset
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Mixed Hybrid

A mixed hybrid system integrates features from multiple models and
processes them simultaneously:

The recommendations from multiple methods are combined and
presented as a unified recommendation

Items Data

Rating Matrix

Users Data

Recommendations

Matrix Factorization
Model

Collaborative Filtering
Model

anova-Based
Model

Content-Based
Model

Combine
and Rank

Allows for more diverse recommendations, drawing on the strengths of
multiple models in parallel
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Feature Combination

Feature combination merges the feature spaces of different models, such
as content-based and collaborative filtering, to build a more comprehensive
recommendation model:

The feature spaces from multiple models are combined to create
richer user and item profiles

This method allows for more accurate predictions by considering both
user-item interactions and item content features

For example, merging user behavior data with item metadata can improve
the accuracy of movie recommendations by combining user preferences
with genre and director information
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Cascade Hybrid

In a cascade hybrid system, algorithms are layered sequentially, with each
model refining the recommendations of the previous model:

A first model generates initial recommendations, which a second
model then refines by applying additional filtering or ranking criteria

Items Data

Rating Matrix

Users Data

Recommendations
Content-Based

Model
anova-Based

Model
Candidates

Allows each model to specialize in different aspects of the
recommendation process
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Feature Augmentation

Feature augmentation enhances the user or item profiles by incorporating
external features:

External data sources, such as user demographics or social media
activity, are added to the feature set

These additional features help improve the accuracy of
recommendations by providing more context about user preferences
or item characteristics

For example, in an e-commerce recommendation system, user
demographics or browsing history can be used to refine product
recommendations beyond basic interaction data
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Meta-Level Hybrid

In a meta-level hybrid system, the output of one model is used as the
input to another model:

For instance, the latent factors from a matrix factorization model
might be used as features in a content-based filtering model

This allows one model to leverage the learned structure or patterns of
another model, leading to more accurate predictions

For example, in a movie recommender, a matrix factorization model might
first generate latent factors that are then used to enhance the predictions
of a content-based model
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The Netflix Challenge

The Netflix Challenge (aka the Netflix Prize) was a multi-year competition
with an ultimate prize of $1,000,000 for achieving a 10% improvement in
the accuracy of Netflix’s recommendation algorithm

Launch (2006): Public release of data and competition guidelines.

Leaderboards: Teams could submit predictions and see their rank

Final Prize (2009): BellKor’s Pragmatic Chaos team submits the
winning solution with a 10.06% improvement

The competition attracted over 50,000 participants across more than
40,000 teams
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Data Sets Used in the Netflix Challenge

For the competition, Netflix provided multiple datasets derived from actual
user interaction data on the platform:

Public Training Set: User ratings for movies

▷ ∼ 1M ratings (480,189 users, 17,770 movies) of the form ⟨user,
movie, date of grade, grade ∈ {1, 2, 3, 4, 5} ⟩,
Public Probe Set For teams to validate their models on known data

Qualifying Data Set: 2,817,131 triplets, ⟨user, movie, date⟩
▷ grade was known to jury only

Hidden Quiz Set: Used to assess model performance on unseen data
and helped rank teams on the public leaderboard

▷ 1, 408, 342 ratings, teams were told accuracy of submitted models

Hidden Test Set: Used to rank submissions and determine winner

▷ 1, 408, 789 ratings
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Netflix Challenge Methods
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Temporal Dynamics in Recommendation Systems

User preferences are not static—they evolve over time

Recommenders account for temporal dynamics and changes users’ tastes
to ensure that recommendations remain relevant

Time Decay Models: Recent interactions are weighted higher

Seasonality: Certain preferences may change cyclically (e.g.,
preferences for holiday-themed movies during December)

Trends: Users may follow trends that cause their preferences to shift
over time (e.g., following a new fashion or music trend)

Time-Based Matrix Factorization: Incorporates time as a factor in
models, allowing for dynamic shifts in user preferences

A streaming service might prioritize movies a user recently watched over
those watched long ago when making recommendations
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Modeling Temporal Effects

Temporal Effects: Users’ preferences change over time, and items may
gain or lose popularity

Temporal models attempt to capture time-based trends

Dynamic Preferences: Temporal models capture shifts in user
preferences, reducing prediction error for time-sensitive items

Seasonality: Certain preferences may change cyclically, such as
increased demand for specific products during holidays

▷ e.g., a user who purchased winter clothing last year may be
recommended similar items as winter approaches again

Time Decay Models: More recent user interactions are given greater
weight, reflecting current preferences

Regularization: Time-based regularization can prevent overfitting to
older interactions
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Context-Aware Recommendation Systems

Incorporating users’ context in recommenders enhances its performance

Time: User preferences may vary throughout
the day or week

Location: user’s location can influence their
preferences (recommending local restaurants)

Device: Device used (mobile/desktop) can
influence recommendation

Social Context: Recommendation may vary for
lonely user and group

A streaming app may recommend different songs based on whether the
user is at the gym (energetic music) or relaxing at home (calmer music)

Explicit Context directly collected from user (ask location/activity)

Implicit Context inferred from e.g., browsing patterns, GPS data

Hybrid Approaches combine explicit and implicit context
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Context-Aware Collaborative Filtering

Context-aware collaborative filtering integrates contextual information into
the user-item interaction matrix through various approaches

Multidimensional Matrix: Instead of a two-dimensional matrix
(user-item), context-aware systems use a multidimensional matrix
(user-item-context), adding another axis for contextual variables

Factorization Methods: Matrix factorization techniques like SVD are
extended to include context, decomposing the user-item-context
matrix into lower-dimensional latent factors

Tensor Factorization: Treating the user-item-context interactions as a
tensor and applying tensor factorization techniques for
recommendation
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Deep Learning in Recommenders: Neural Collaborative Filtering

Neural Collaborative Filtering (NCF) applies deep neural networks to
model the interactions between users and items

Traditional collaborative filtering assumes linear interactions, NCF can
captures complex and nonlinear relationships

NCF consists of embedding layers for users and items, followed by multiple
layers to learn user-item interactions

source: https://medium.com/towards-data-science/neural-collaborative-filtering-96cef1009401

Autoencoders can capture user preferences and item characteristics
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Deep Learning in Recommenders: Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are used in recommendation systems
to model sequential data, such as user interaction histories.

RNNs can capture patterns over time, making them ideal for personalized
recommendations that evolve based on user behavior

Sequential Data: RNNs can handle time-dependent data, such as the
order in which items were consumed (e.g., movies, songs).

Hidden States: RNNs maintain a hidden state that captures the
sequence history, allowing the network to make predictions based on
past interactions.
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Privacy and Fairness in Recommendation Systems

Protecting user privacy and ensuring fairness are increasingly critical
concerns in modern recommendation systems:

Privacy:
Data Sensitivity: User interactions, preferences, and personal
information are often collected and stored, making them vulnerable to
misuse or breaches
Data Sharing: Recommenders sometimes require sharing data across
platforms or with third parties, increasing the risk of exposure
User Anonymity: Preserving user anonymity while providing
personalized recommendations can be difficult

Fairness:
Bias Amplification: Recommendations can reinforce existing biases if
data is biased, leading to unfair treatment of certain users or items
Underrepresentation: Minority groups or niche items may receive fewer
recommendations, leading to reduced visibility and engagement
Equitable Treatment: Fairness ensures that all user groups receive
balanced and relevant recommendations without systemic bias
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Techniques for Ensuring Privacy

Techniques to protect user privacy in recommendation systems:

Differential Privacy: Ensures that the inclusion or exclusion of a
single user’s data does not significantly affect the outcome of the
recommendation system

Noise Addition: Random noise is added to the user data or query
results, masking individual contributions
Privacy Budget: Defines the amount of information that can be learned
about any individual, limiting data exposure over multiple queries

Federated Learning: Allows models to be trained across multiple
devices without sharing user data, keeping the data localized while
aggregating model updates

Data Encryption: Encrypting user interactions and data to ensure that
sensitive information remains protected during processing and storage
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Ensuring Fairness and Avoiding Biases

To ensure fairness in recommendation systems, several strategies can be
employed:

Fairness-Aware Algorithms: Incorporate fairness constraints directly
into the recommendation algorithm, ensuring balanced treatment
across different user groups

Bias Detection: Regularly monitor for biases in the data or the
recommendations and correct for underrepresented groups or items

Diversity and Equity: Implementing diversity-promoting mechanisms
that ensure a wide range of items and user groups are recommended
fairly
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