Algorithms

Intractable Problems

- Clique
- Independent Set

■ Vertex Cover
■ Set Cover

- Set Packing
- Satisfiability Problem

■ Hamiltonian Cycle and Path

- Traveling Salesman Problem

■ Graph Coloring

- Circuit Satisfiability

■ Knapsack

- Subset Sum
- Prime and Factor
- Partition

The Satisfiability Problem : sat

- Given n Boolean variables x_{1}, \ldots, x_{n}
- A literal is a variable appearing in some formula as x_{i} or $\overline{x_{i}}$
- A clause is an OR of one or more literals
- A CNF formula (conjunctive normal form) is a Boolean expression that is AND of one or more clauses
- A formula is satisfiable if there is an assignment of $0 / 1$ values to the variables such that the formula evaluates to 1 (or true)
$1 f_{1}=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(x_{2} \vee \bar{x}_{3}\right)$
- f_{1} is satisfiable (the assignment is $x_{1}=1, x_{2}=1, x_{3}=1$)
- $x_{1}=1, x_{2}=0, x_{3}=0$ is also a satisfying assignment
$2 f_{2}=\left(x_{1} \vee \overline{x_{2}}\right) \wedge\left(x_{1} \vee x_{2}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{2}}\right) \wedge\left(\overline{x_{1}} \vee x_{2}\right)$ is not satisfiable
The $\operatorname{SAT}(f)$ problem: Is there a satisfying assignment for the formula f ?

The Satisfiability Problem : 3-SAT

- Given n Boolean variables x_{1}, \ldots, x_{n}
- Each can take a value of $0 / 1$ (true/false)
- A literal is a variable appearing in some formula as x_{i} or \bar{x}_{i}
- A clause of size 3 is an OR of three literals
- A 3-CNF formula is AND of one or more clauses of size ≤ 3
- A formula is satisfiable if there is an assignment of $0 / 1$ values to the variables such that the formula evaluates to 1 (or true)

The 3 -SAT (f) problem: Is there a satisfying assignment for f ?

The Satisfiability Problem :Applications

- Many applications in hardware/software verification

■ Also in planning, partitioning, scheduling
■ Model all kind of constrained satisfaction problem

- Many hard problems can be stated in terms of SAT
- Consider the following constraints:
- John can only meet either on Monday, Wednesday or Thursday
- Catherine cannot meet on Wednesday
- Anne cannot meet on Friday
- Peter cannot meet neither on Tuesday nor on Thursday
- Question: When can the meeting take place if at all?

Encode them into the following Boolean formula:

$$
(\text { Mon } \vee \text { Wed } \vee \text { Thu }) \wedge(\neg \text { Wed }) \wedge(\neg \text { Fri }) \wedge(\neg \text { Tue } \vee \neg \text { Thu })
$$

The meeting must take place on Monday

Circuit Satisfiability Problem

- A combinatorial circuit is a general purpose gate (general logic gate)
- It take n Boolean inputs and outputs one Boolean output
- Implemented with basic of AND, OR, and NOT logic gates

A combinatorial circuit C is satisfiable if there exits an input of 0 's and 1 's on which C outputs 1

This circuit is not satisfiable
Figures adapted from CLRS Figure 34.8

This circuit is satisfied with $\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0)$

The CIRCUIT-SAT (C) problem: Is there an input satisfying C ?

Computation of Combinatorial Circuit

Encoding of combinatorial circuits

- Encoded as a directed acyclic graph (DAG)

■ nodes correspond to gates, input wires and output wire

- (nodes corresponding to) NOT gates have indegree 1
- AND gates and OR gates have indegree 2
- input wires with constant inputs have indegree 0 (labeled with input values)
- input wires with unknown inputs have indegree 0 (labeled with variable names)
- output wire has outdegree 0 (it is a sink)

Computation of Combinatorial Circuit

Evaluation of a combinatorial circuit (DAG)

- Given an $0 / 1$ values to the input variables
- Process vertices of DAG in topologically sorted order
- Compute value of a node using Boolean logic (e.g. $\mathbf{0}$ or $\mathbf{1}=\mathbf{1}$)

■ Value of the circuit is value at the sink node

Verify that on $\left(x_{1}, x_{2}, x_{3}\right)=(1,1,0)$ the output value is $\mathbf{1}$

CIRCUIT-SAT Applications

Computer-Aided Circuit (Hardware) Optimization:

- If a digital circuit or one of its sub-circuits is not satisfiable, then replace it with a constant output

Complexity Theory:

- A fundamental construct in complexity theory
- All problems listed above can be phrased in terms of CIRCUIT-SAT(C) for appropriately defined circuit C

