Intractable Problems

- Clique
- Independent Set
- Vertex Cover
- Set Cover
- Set Packing
- Satisfiability Problem
- Hamiltonian Cycle and Path

- Traveling Salesman Problem
- Graph Coloring
- Circuit Satisfiability
- Knapsack
- Subset Sum
- Prime and Factor
- Partition

Imdadullah Khan

Graph Coloring

A graph (vertex) coloring is to assign a color to each vertex such that no two adjacent vertices get the same color

k-COLORING(G) problem: Is there a coloring of G with k colors?

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- Four color vertices of the dual graph of the hexagonal grid

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- Four color vertices of the dual graph of the hexagonal grid

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- Four color vertices of the dual graph of the hexagonal grid

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- Four color vertices of the dual graph of the hexagonal grid

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- Four color vertices of the dual graph of the hexagonal grid

- In cellular networks (GSM) coverage area is divided into a hexagonal grid
- Each cell (a hexagon) is served by an antenna
- Each cell uses a frequency band (one of 850, 900, 1800, 1900 MHz)
- Frequency of a cell must be different from adjacent cells (hexagons sharing a line segment)
- Four color vertices of the dual graph of the hexagonal grid

Map Coloring

- Color regions of map
- No neighboring regions can have the same color

Final Exam Scheduling

- Optimally schedule n exam with no student having > 1 parallel exam
- Make graph on courses with common students encoded as edges
- Finding minimum colors needed to color the graph

Edge Coloring

An edge coloring of a graph is to assign a color to each edge such that no two "adjacent edges" get the same color

k-EDGE-COLORING(G) problem: Is there edge-coloring of G with k colors?

NFL season scheduling

- n teams in a tournament
- Based on last year's record, each team will play some other teams
- Determine a schedule with as few rounds as possible
- Make a node for each team
- An edge for each game to be played
- Find an edge coloring with minimum number of color

Edge Coloring Applications

Open Shop Scheduling (time division multi-processing)

- n objects to be manufactured
- Manufacturing object o_i entails performing tasks t_{i1},..., t_{iji} (unordered)
- Each task requires one of non-parallel machines M_1, \ldots, M_k
- Make a (multi) bipartite graph [Objects, Machines] edges
- An edge o_i, m_j edge means object *i* has a task requiring machine m_j
- An edge coloring with minimum number of colors (time slots)