Algorithms

Intractable Problems

- Clique
- Independent Set

■ Vertex Cover
■ Set Cover

- Set Packing
- Satisfiability Problem

■ Hamiltonian Cycle and Path

■ Traveling Salesman Problem
■ Graph Coloring

- Circuit Satisfiability

■ Knapsack

- Subset Sum
- Prime and Factor
- Partition

Vertex Cover

An vertex cover in a graph is subset C of vertices such that each edge has at least one endpoint in C

The vertex- $\operatorname{Cover}(G, k)$ problem: Is there a cover of size k in G ?

Vertex Cover Application

Network Security: Rout Based Filtering

- Identify a small set of routers/AS

■ So as all packets can be monitored at those routers/switches

- check if the source/destination addresses are valid given the routing table and network topology

■ Route-based distributed packet filtering
■ Prevents distributed denial of service attacks

Set Cover

■ Given a set U of n elements

- A collection \mathcal{S} of m subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq U$
- A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$
$U:=\{1,2,3,4,5,6\}$
$\mathcal{S}:=\{\{1,2,3\},\{3,4\},\{1,3,4,5\},\{2,4,6\},\{1,3,5,6\},\{1,2,4,5,6\}\}$
Cover-1: $\{1,2,3\}, \quad\{1,3,4,5\},\{2,4,6\}$
Cover-2: $\{1,2,3\}$,
Cover-3:
$\{1,3,4,5\}$,
$\{1,2,4,5,6\}$
$\{1,2,4,5,6\}$

Cover-1 has size 3, the latter two have size 2 each

Set Cover

■ Given a set U of n elements
■ A collection \mathcal{S} of m subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq U$

- A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$

The $\operatorname{set}-\operatorname{Cover}(U, \mathcal{S}, k)$ problem: Is there a cover of size k for U ?

Set cover applications

System Integration

- U is the set of capabilities we want our system to have

■ \mathcal{S} : Available softwares each providing a subset of capabilities
■ Select a (small) subset of softwares to provide all functionalities

Set cover applications

IBM antivirus tool
■ U is the set of (500) known viruses

- They found a set of about 9000 strings of 20 bytes or more that occur in the binaries of viruses but not in "clean" codes
$■ \mathcal{S}$: For each string the subset of viruses containing it
■ Select a (small) subset of strings that should be searched in codes to detect any virus

Set Packing

■ Given a set U of n elements
■ A collection \mathcal{S} of m subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq U$
■ A subcollection $I \subset\{1,2, \ldots, m\}$ pack together if for all $i \neq j \in I$ $S_{i} \cap S_{j}=\emptyset$
$U:=\{1,2,3,4,5,6\}$
$\mathcal{S}:=\{\{1,2,3\},\{4,5\},\{4,6\},\{2,3\},\{1,6\},\{4,5,6\}\}$
Pack-1: $\{1,2,3\},\{4,5\}$
Pack-2: $\quad\{4,5\}, \quad\{2,3\},\{1,6\}$
Pack-3: $\{1,2,3\}$,
$\{4,5,6\}$

Pack-1 and Pack-3 have size 2 each, Pack-3 has size 3

Set Packing

- Given a set U of n elements

■ A collection \mathcal{S} of m subsets $S_{1}, S_{2}, \ldots, S_{m} \subseteq U$

- A subcollection $I \subset\{1,2, \ldots, m\}$ pack together if for all $i \neq j \in I$ $S_{i} \cap S_{j}=\emptyset$

The $\operatorname{set}-\operatorname{PaCking}(U, \mathcal{S}, k)$ problem: Is there a packing of size k ?

Set packing Applications

Resource Sharing
■ U is a set of non sharable resources
■ \mathcal{S} : Processes each requesting a subset of resources
■ Select a (large) subset of processes to allocate resources to

Set packing Applications

Airline Crew Scheduling

- U is the set of crew staff

■ \mathcal{S} : teams of members willing to work with each other
■ Select (many) teams to service a set of flights

