Algorithms

Intractable Problems

- Clique
- Independent Set

■ Vertex Cover
■ Set Cover

- Set Packing
- Satisfiability Problem

■ Hamiltonian Cycle and Path

- Traveling Salesman Problem

■ Graph Coloring

- Circuit Satisfiability

■ Knapsack

- Subset Sum
- Prime and Factor
- Partition

Independent Set in Graph

An independent set in G is subset of vertices no two of which are adjacent

A graph on 12 vertices

An independent set of size 3

An independent set of size 4

An independent set of size 5 (max)

The $\operatorname{IND}-\operatorname{SET}(G, k)$ problem: Is there an independent set of size k in G ?

Independent Set Applications

Sites Selection Problem

- Suppose n potential sites are identified for opening up restaurants
- Some pairs of places shouldn't have the franchises at both of them
- too close to each other, competitions, or operational constraints

■ Make a graph G with vertices as sites and edges as pairwise conflicts
■ Selecting k sites becomes finding a k-independent set in G

Independent Set Applications

The SNP (Single Nucleotide Polymorphism) Assembly Problem
■ In computational biology (biochemistry) given a set of sequences we want to resolve inter-sequential conflicts by excluding some sequences

- Conflict between two sequences is due to their biochemical properties
- The goal is to select a large number of conflict free sequences

■ Make a graph with vertices representing sequences and edges representing conflicts

■ Find a large independent set in this graph

Independent Set Applications

Diversifying Investment Portfolio

- Different stocks in a market
- $P_{i}(t)$ is price for stock i at time t
- $R_{i}(t)=\log \frac{P_{i}(t)}{P_{i}(t-1)}$, return or trading volume of stock i at time t

■ Make each stock a node and two stocks have edges if correlation of their returns is $\geq \theta$ for threshold $-1 \leq \theta \leq 1$

■ θ is set depending on potential risk (degree of diversification)
■ Two adjacent vertices in $G_{\theta=.9}$ represent high risk investment pair

Set $\theta<-0.5$: an independent set in G_{θ} represents a portfolio with "small" risk (diverse set of investments)

Independent Set Applications

Shannon Capacity of a graph
■ Sending a message from an alphabet through a noisy channel

- Because of noise some characters can be confused

■ How many 1 length strings can be sent without confusion?
■ Make each letter a node and make edges iff the corresponding letters can be confused (depends on the SNR of channel)
■ Max number of messages is the size of max independent set
■ How many k-length strings can be sent on this channel?

- Size of max independent set in G^{k} (strong product of graphs)

Cliques in Graphs

A clique in G is a subset of vertices every two of which are adjacent

A graph on 12 vertices

A clique of size 3

A clique of size 3

A clique of size 4 (max)

The Clique (G, k) problem: Is there a clique of size k in G ?

Clique Applications

Cliques in Market Graphs
■ Different stocks in a market

- $P_{i}(t)$ is price for stock i at time t

■ $R_{i}(t)=\log \frac{P_{i}(t)}{P_{i}(t-1)}$, return or trading volume of stock i at time t

- Each stock is a node and two stocks have edges if correlation of their returns is $\geq \theta$ for threshold $-1 \leq \theta \leq 1$
- θ is set depending on potential risk (degree of diversification)

■ Two adjacent vertices in $G_{\theta=.9}$ represent high risk investment pair

Set $\theta>0.5$: a clique in G_{θ} represents a portfolio with "large" risk
Can also be of interest to a regulatory body to determine collusion

Clique Applications

Organized Tax Fraud Detection by IRS
■ Clustering similar objects is widely used in many applications
■ Ideal clusters are cliques in a graph (community, highest internal degrees, lowest internal distances, largest internal densities etc.)

■ Groups of phony tax returns are submitted to get undeserved returns
■ IRS constructed graph, where each returned form is a vertex
■ Edges between two vertices means 'similarity between the two forms is above a certain threshold

■ A large clique in this graph points to a potential fraud

Location Covering Using Clique Partition
Protein Docking Problem

