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Quality of Approximation: Types

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ε) is called a fully polynomial time
approximation scheme if for a given ε, on any instance I, A(ε) achieves
an approximation error ε and runtime of A is polynomial in |I| = n and 1/ε

For minimization problems this means f
(
A(I)

)
≤ (1 + ε) · f

(
opt(I)

)
For maximization problems this means f

(
A(I)

)
≥ (1− ε) · f

(
opt(I)

)
Runtime of A cannot be exponential in 1/ε . e.g. O(1/ε2n3)

Constant factor decrease in ε increases runtime by a constant factor
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Knapsack Problem

Input:
Items: U = {a1, . . . , an} . Fixed order
Weights: w : U → Z+ . (w1, . . . ,wn)
Values: v : U → R+ . (v1, . . . , vn)
Capacity: C ∈ R+

Output:
A subset S ⊂ U
Capacity constraint: ∑

ai ∈S
wi ≤ C

Objective: Maximize ∑
ai ∈S

vi
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fptas for knapsack

Recall that if for some 0 < ε < 1/2 all wi ≤ εC , then we have a
(1− ε)-approximation

One possible way:
Scale down all weights to meet above requirement
Run (1− ε)-approximate modified-greedy-by-ratio
Scale up resulting solution

Scaling up may violate capacity constraint

Develop scaling friendly solution using dynamic programming

Scaling w.r.t. desired ε, we can get a (1− ε)-approximate solution
polynomial in both n and 1

ε (fptas)
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fptas for knapsack

Recall that for the items subset {a1, · · · , ai} and capacity c

opt(i , c) = max



0 if c ≤ 0
0 if i = 0
opt(i − 1, c − wi ) + vi

opt(i − 1, c)

Optimal solution found in O(nC) time
Runtime is not polynomial unless C is represented in unary system
For above solution, the question is:
What is the maximum value achievable if capacity is c?
Now, the question is transformed to:
What is the minimum weight needed to gain a value of p?
Note that all values are integers
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Scaling Friendly Dynamic Programming

Let min capacity needed to get value v from items {a1, a2, · · · , ai}

Maximum achievable value is P =
∑n

i vi , for which opt(i , v) must be
computed ∀ 0 ≤ i ≤ n and 0 ≤ v ≤ P

opt(i , v) =


0 if v = 0
∞ if i = 0 and v > 0

opt(i − 1, v) if i ≥ 1 and 1 ≤ v < vi

min{opt(i − 1, v), opt(i − 1, p − vi) + wi} if i ≥ 1 and v ≥ vi

Solution to the instance I is the maxmimum v s.t. opt(i , v) ≤ C
Let vm be the maximum value of any item, then P ≤ nvm

Total number of sub-problems are at most O(n · nvm)
Solve recurrence using bottom-up iterative dynamic programming
procedure that computes opt(n,C) in O(n2vm) (pseudo-polynomial)

Imdad Ullah Khan (LUMS) Approximation Algorithms 6 / 10



fptas for knapsack

If vm is polynomial in n (e.g. nk), then dynamic programming
solution can be used as it is
If item values are larger (not polynomial), then above solution i not
polynomial (can not be used directly)
To get an approximate solution

scale down values so they are not too large
round values to integers

Error introduced as exact values are unknown (not used)
Bound error to ≤ ε · opt to get a (1− ε)-approximation
Let b = ε/n · opt
Let v ′

i = dvi/be i.e. v ′
i is the smallest integer s.t. vi ≤ v ′

i · b
Note: If vi ≤ vj , then v ′

i < v ′
j ∀ 1 ≤ i , j ≤ n and since opt ≥ vm

v ′
m = dvm/be =

⌈ vm
ε/n · opt

⌉
≤
⌈n · vm
ε · vm

⌉
=
⌈n
ε

⌉
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fptas for knapsack

Run scaling-friendly dynamic programming with values v ′
i

Get optimal solution S ′ w.r.t v ′
i in O(n2vm) = O(n3 · 1

ε ) time

Runtime is polynomial in n and 1
ε

What is the error?

Let S be the optimal solution using vi , i.e. opt =
∑

i∈S vi

w(S ′) < C as capacity and weights were unchanged

Let v ′(S) =
∑

i∈S v ′
i and v ′(S ′) =

∑
i∈S′ v ′

i .

Then v ′(S ′) ≥ v ′(S) since S ′ is optimal w.r.t. v ′
i

By definition, vi
b ≤ v ′

i ≤ vi
b + 1

Use above observations to compute an upper bound on OPT in
terms of v(S ′) and ε
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fptas for knapsack

opt =
∑
i∈S

v(i)

≤
∑
i∈S

b · v ′
i

≤ b ·
∑
i∈S

v ′
i

≤ b · v ′(S)
≤ b · v ′(S ′)
≤ b ·

∑
i∈S′

v ′
i

≤ b ·
∑
i∈S′

(vi
b + 1)
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fptas for knapsack

= b ·
∑
i∈S′

vi + b
b

= b · 1
b
∑
i∈S′

(vi + b)

=
∑
i∈S′

vi + b · |S ′|

≤ v(S ′) + n · b
= v(S ′) + ε · opt

v(S ′) ≥ (1− ε) · opt =⇒ S ′ is (1− ε)-approximate.

The value of opt (used in b) is unknown
Use lower bound opt ≥ vm for b = ε

n · vm

Above analysis results in opt ≤ v(S ′) + ε · vm ≤ v(S ′) + ε · opt
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