Theory of Computation

Approximation Algorithms

- Approximation Algorithms for Optimization Problems: Types
- Absolute Approximation Algorithms
- Inapproximability by Absolute Approximate Algorithms
- Relative Approximation Algorithm

■ InApproximability by Relative Approximate Algorithms

- Polynomial Time Approximation Schemes

■ Fully Polynomial Time Approximation Schemes

Imdad Ullah Khan

Quality of Approximation: Types

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space
The approximation ratio or approximation factor of an algorithm A is defined as the ratio 'between' value of output of A and value of OPT

- For minimization problem it is $f(A(I)) / f(\operatorname{OPT}(I))$
- For maximization problem it is $f(\operatorname{OPT}(I)) / f(A(I))$

■ Note: approximation factor is always bigger than 1, generally

- Approximation factor is defined as $\max \left\{\frac{f(A(I))}{f(\operatorname{OPT}(I))}, \frac{f(\operatorname{opt}(I))}{f(A(I))}\right\}$

Quality of Approximation: Types

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

- For minimization problem it is

$$
f(A(I)) / f(\mathrm{OPT}(I))-1=f(A(I))-f(\operatorname{OPT}(I)) / f(\operatorname{OPT}(I))
$$

■ For maximization problem it is

$$
f(\operatorname{opt}(I)) / f(A(I))-1=f(\operatorname{opt}(I))-f(A(I)) / f(A(I))
$$

■ Useful when approximation ratio is close to 1

- Also called relative approximation error

Quality of Approximation: Types

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms $A(\epsilon)$ is called a polynomial time approximation scheme if for a given parameter ϵ, on any instance $I, A(\epsilon)$ achieves an approximation error ϵ and runtime of A is polynomial in $|I|=n$

- For minimization problems this means $f(A(I)) \leq(1+\epsilon) \cdot f($ OPT $(I))$
- For maximization problems this means $f(A(I)) \geq(1-\epsilon) \cdot f(\mathrm{OPT}(I))$
- Runtime of A could be exponential in $1 / \epsilon$
\triangleright e.g. $O\left(n^{1 / \epsilon}\right)$

Knapsack Problem

Input:

■ Items: $U=\left\{a_{1}, \ldots, a_{n}\right\}$
■ Weights: $w: U \rightarrow \mathbb{Z}^{+}$
■ Values: $v: U \rightarrow \mathbb{R}^{+}$
■ Capacity: $C \in \mathbb{R}^{+}$

Output:

- A subset $S \subset U$

■ Capacity constraint:

$$
\sum_{a_{i} \in S} w_{i} \leq C
$$

■ Objective: Maximize

$$
\sum_{a_{i} \in S} v_{i}
$$

Knapsack Problem

Input:

- Items: $U=\left\{a_{1}, \ldots, a_{n}\right\}$ (fixed order)
- Weights: $w: U \rightarrow \mathbb{Z}^{+}: w_{1}, \ldots, w_{n}$

■ Values: $v: U \rightarrow \mathbb{R}^{+}: v_{1}, \ldots, v_{n}$

- Capacity: $C \in \mathbb{R}^{+}$

Output:

$C=11$

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_{i} \in S} w_{i} \leq C$
- Objective: Maximize $\sum_{a_{i} \in S} v_{i}$

ID	weight	value
1	1	1
2	2	6
3	5	18
4	6	22
5	7	28
6	98	99
$=11$		

- $\{1,2\}$ weight 3 , value 7
- $\{1,2,4\}$ weight 9 , value 29
- $\{3,4\}$ weight 11 , value 40
- $\{4,5\}$ weight 13 , value 50

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U=\left\{a_{1}, \ldots, a_{n}\right\}$ (fixed order)
- Weights: $w: U \rightarrow \mathbb{Z}^{+}: w_{1}, \ldots, w_{n}$

■ Values: $v: U \rightarrow \mathbb{R}^{+}: v_{1}, \ldots, v_{n}$
■ Capacity: $C \in \mathbb{R}^{+}$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_{i} \in S} w_{i} \leq C$
- Objective: Maximize $\sum_{a_{i} \in S} v_{i}$

Greedy by Value

- Select the most profitable item
- Check if its fits remaining capacity
- Repeat

ID	weight	value
1	51	51
2	50	50
3	50	50

$C=100$
$\{1\}$ weight 51, value 51
Optimal $\{2,3\}$ weight 100 , value 100

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U=\left\{a_{1}, \ldots, a_{n}\right\}$ (fixed order)
- Weights: $w: U \rightarrow \mathbb{Z}^{+}: w_{1}, \ldots, w_{n}$

■ Values: $v: U \rightarrow \mathbb{R}^{+}: v_{1}, \ldots, v_{n}$

- Capacity: $C \in \mathbb{R}^{+}$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_{i} \in S} w_{i} \leq C$
- Objective: Maximize $\sum_{a_{i} \in S} v_{i}$

Greedy by weight

- Select the least weighted item
- Check if its fits remaining capacity
- Repeat

ID	weight	value
1	1	1
2	50	50
3	50	50

$C=100$
$\{1,2\}$ weight 51 , value 51
Optimal $\{2,3\}$ weight 100 , value 100

Knapsack Problem: Greedy Algorithms

Input:

- Items: $U=\left\{a_{1}, \ldots, a_{n}\right\}$ (fixed order)

■ Weights: $w: U \rightarrow \mathbb{Z}^{+}: w_{1}, \ldots, w_{n}$

- Values: $v: U \rightarrow \mathbb{R}^{+}: v_{1}, \ldots, v_{n}$
- Capacity: $C \in \mathbb{R}^{+}$

Output:

- A subset $S \subset U$
- Capacity constraint: $\sum_{a_{i} \in S} w_{i} \leq C$
- Objective: Maximize $\sum_{a_{i} \in S} v_{i}$

GREEDY-BY-RATIO

- Select item with highest v_{i} / w_{i}
- Check if its fits capacity
- Repeat

ID	weight	value	ratio
1	1	1	1
2	2	6	3
3	5	18	3.6
4	6	22	3.67
5	7	28	4
6	98	99	1.01

$C=11$
$\{5,2,1\}$ weight 10 , value 35
Optimal $\{3,4\}$ weight 11 , value 40

Knapsack Problem: GREEDY-BY-RATIO

- The GREEDY-BY-RATIO algorithm is suboptimal but worth exploring

Algorithm GREEDY-BY-RATIO

if $\sum_{i=1}^{n} w_{i} \leq C$ then $\quad \triangleright$ If all items fit in the sack, then take all return U

SORT items by v_{i} / w_{i}
weight $\leftarrow 0$
value $\leftarrow 0$
$S \leftarrow \emptyset$
for $i=1 \rightarrow n$ do
if weight $+w_{i}<C$ then
$S \leftarrow S \cup\left\{a_{i}\right\}$
value \leftarrow value $+v_{i}$
weight \leftarrow weight $+w_{i}$

Knapsack Problem: GREEDY-BY-RATIO

- We saw example where GREEDY-BY-RATIO algorithm was suboptimal
- The following example show that it could be arbitrarily bad
- The ratio v_{i} / w_{i} is called the density of item a_{i}
- Density is not necessarily a good measure of profitability

GREEDY-BY-RATIO		
ID	weight	value
1	1	2
2	C	C

C : is the capacity
Ouput: $\{1\}$ weight 1 , value 2
Optimal: $\{2\}$ weight C, value C

Knapsack Problem: mODIFIED-GREEDY-BY-RATIO

■ Can improve GREEDY-BY-RATIO with a simple trick
■ Run another algorithm in parallel- chooses the first item this one skips

- Return the best of the above two algorithms

```
Algorithm MODIFIED-GREEDY-BY-RATIO
    SORT items by \(v_{i} / w_{i}\)
    weight \(\leftarrow 0\)
    value \(\leftarrow 0\)
    \(S \leftarrow \emptyset \quad \triangleright\) initially the knapsack is empty
    for \(i=1 \rightarrow n\) do
        if weight \(+w_{i}<C\) then
            - \(S \leftarrow S \cup\left\{a_{i}\right\} \quad\) • value \(\leftarrow\) value \(+v_{i} \quad\) - weight \(\leftarrow\) weight \(+w_{i}\)
    \(k \leftarrow\) index of first item skipped above
    if value \(\geq v_{k}\) then return \(S\)
    else return \(\left\{a_{k}\right\}\)
```


Knapsack Problem: MODIFIED-GREEDY-BY-RATIO

MODIFIED-GREEDY-BY-RATIO algorithm is 2-approximate

- Let S be the output of $\mathcal{A}=$ MODIFIED-GREEDY-BY-RATIO
- Let k be the index of first item skipped by \mathcal{A}
- $v_{1}+v_{2}+\ldots+v_{k-1} \leq$ OPT why?
- $v_{1}+v_{2}+\ldots+v_{k-1}+v_{k} \geq$ OPT
- Actually, $v_{1}+v_{2}+\ldots+v_{k-1}+c \cdot v_{k} \geq$ OPT $\quad \triangleright c=\frac{c-\left(w_{1}+w_{2}+\ldots+w_{k-1}\right)}{w_{k}}$
- numerator is remaining capacity after packing the first $k-1$ items
- c-fraction of a_{k} can be packed (if fractional packing is allowed)
- suppose we packed $\left\{a_{1}, \ldots, a_{k-1}\right\}$ and c-fraction of a_{k}
- we consumed whole C it is optimal as we took largest density
- The two red statements implies that either

$$
v_{1}+v_{2}+\ldots+v_{k-1} \geq \mathrm{OPT} / 2 \quad \text { OR } \quad v_{k} \geq \mathrm{OPT} / 2
$$

- $f(S)=\max \left\{v_{1}+v_{2}+\ldots+v_{k-1}, v_{k}\right\}$

Knapsack Problem: mODIFIED-GREEDY-BY-RATIO

MODIFIED-GREEDY-BY-RATIO algorithm is 2-approximate

- We show that this analysis is tight

■ Let S be the output of $\mathcal{A}=$ mODIFIED-GREEDY-BY-RATIO

- $U=\left\{a_{1}, a_{2}, a_{3}\right\}$
- $v_{1}=1+\epsilon / 2, v_{2}=v_{3}=1$
$S=\left\{a_{1}\right\}$
Consider the instance

$$
\begin{array}{ll}
\text { - } w_{1}=1+\epsilon / 3, w_{2}=w_{3}=1 \quad \text { OPT }=\left\{a_{2}, a_{3}\right\} \\
\text { - } C=2
\end{array}
$$

- Approximation ratio achieved is arbitrarily close to 2
- Runtime of \mathcal{A} is $O(n \log n)$ (pseudo-polynomial)
- each density computation takes $\log \left(C \cdot \sum_{i=1}^{n} v_{i}\right)$
- Recall runtime of dynamic programming algorithm is $O(n \cdot C)$

A pseudo-polynomial time algorithm for KnAPSACK

- MODIFIED-GREEDY-BY-RATIO algorithm for KNAPSACK is
- pseudo polynomial in runtime
- 2-approximate

■ We identify cases where its output is better
■ We prove the following two lemmas
Lemma 1: If for some $0<\epsilon<1 / 2$, all $w_{i} \leq \epsilon C$, then MODIFIED-GREEDY-BY-RATIO is $(1-\epsilon)$-approximate

Lemma 2: If for some $0<\epsilon<1 / 2$, all $v_{i} \leq \epsilon$ OPT, then MODIFIED-GREEDY-BY-RATIO is $(1-\epsilon)$-approximate

- We will use these lemmas to obtain a ptas for Knapsack

ptas for the Knapsack Problem

Lemma 1: If for some $0<\epsilon<1 / 2$, all $w_{i} \leq \epsilon C$, then MODIFIED-GREEDY-BY-RATIO is $(1-\epsilon)$-approximate

- Items sorted by v. $/ w . \Longrightarrow \forall 1 \leq i \leq k, \frac{v_{i}}{w_{i}} \geq \frac{v_{k}}{w_{k}} \Longrightarrow v_{i} \geq w_{i} \frac{v_{k}}{w_{k}}$
- Adding up all these inequalities:

$$
\begin{aligned}
& v_{1}+v_{2}+\ldots+v_{k} \geq\left(w_{1}+w_{2}+\ldots+w_{k}\right) \frac{v_{k}}{w_{k}} \\
\Longrightarrow & w_{k} \cdot \frac{v_{1}+v_{2}+\ldots+v_{k}}{w_{1}+w_{2}+\ldots+w_{k}} \geq v_{k}
\end{aligned}
$$

- Recall a_{k} is the first item skipped by A
- Plugging $w_{1}+w_{2}+\ldots+w_{k}>C$ in above inequality:

$$
v_{k} \leq \frac{w_{k}}{C} \cdot v_{1}+v_{2}+\ldots+v_{k}
$$

ptas for the Knapsack Problem

- Since all $w_{i} \leq \epsilon C$, plugging $w_{k} \leq \epsilon C$ in above inequality:

$$
\begin{aligned}
v_{k} & \leq \epsilon \cdot\left(v_{1}+v_{2}+\ldots+v_{k}\right) \\
& \leq \epsilon \cdot\left(v_{1}+v_{2}+\ldots+v_{k-1}\right) /(1-\epsilon)
\end{aligned}
$$

- If $\left(v_{1}+v_{2}+\ldots+v_{k-1}\right) \geq(1-\epsilon)$ OPT, then we have $(1-\epsilon)$-approximation
- If $\left(v_{1}+v_{2}+\ldots+v_{k-1}\right)<(1-\epsilon)$ OPT, then $v_{k} \leq \epsilon$ OPT

Combining these two:

$$
v_{1}+v_{2}+\ldots+v_{k-1}+v_{k}<(1-\epsilon) \mathrm{OPT}+\epsilon \mathrm{OPT}<\mathrm{OPT}
$$

which contradicts the fact that a_{k-1} is the last item chosen

- Thus either $\left(v_{1}+v_{2}+\ldots+v_{k-1}\right) \geq(1-\epsilon)$ OPT or $v_{k} \geq(1-\epsilon)$ OPT, giving a $(1-\epsilon)$-approximation

ptas for the Knapsack Problem

Lemma 2: If for some $0<\epsilon<1 / 2$, all $v_{i} \leq \epsilon$ OPT, then MODIFIED-GREEDY-BY-RATIO is $(1-\epsilon)$-approximate

- Since a_{k} is the first item skipped by A

$$
\left(v_{1}+v_{2}+\ldots+v_{k}\right) \geq \mathrm{OPT}
$$

■ Since $v_{k} \leq \epsilon$ OPT, then

$$
\left(v_{1}+v_{2}+\ldots+v_{k-1}\right) \geq(1-\epsilon) \mathrm{OPT}
$$

- This gives a ($1-\epsilon$)-approximation

In any optimal solution with total value OPT and any $0<\epsilon<1$, there are at most $\lceil 1 / \epsilon\rceil$ items with values at least ϵ OPT

- We use this fact to design a Ptas for Knapsack Problem

■ First, try to guess 'heavier' items i.e. values $>\epsilon$ OPT
■ Use MODIFIED-GREEDY-BY-RATIO for remaining items

- Problem: how to guess the heavier items
- not defined as OPT is unknown, only a bound on their number is known
- Try all $n^{\lceil 1 / \epsilon\rceil+1}$ subsets of U of sizes at most $\lceil 1 / \epsilon\rceil$

ptas for the Knapsack Problem

For a set $S \subseteq U, w(S)=\sum_{i \in S} w_{i}$ and $v(S)=\sum_{i \in S} v_{i}$

Algorithm : Knapsack-PTAS

$$
\begin{aligned}
& h \leftarrow\lceil 1 / \epsilon\rceil \\
& \text { CRNTMAXVAL } \leftarrow 0 \\
& \text { MAXSET } \leftarrow \emptyset \\
& \text { for each } H \subseteq U \text {, such that }|H| \leq h \text { do } \\
& \quad v_{m} \leftarrow \operatorname{argmin}_{i \in H}\left(v_{i}\right) \\
& H^{\prime} \leftarrow\left\{\{U \backslash H\} \mid v_{i}>v_{m} \forall i \in\{U \backslash H\}\right\} \\
& S \leftarrow \text { MODIFIED-GREEDY-BY-RATIO }\left(\left(U \backslash\left\{H \cup H^{\prime}\right\}, C-w(H)\right)\right. \\
& \text { if } \operatorname{CRNTMAXVAL}<v(H)+v(S) \text { then } \\
& \quad \text { CRNTMAXVAL } \leftarrow v(H)+v(S) \\
& \quad \text { MAXSET } \leftarrow H \cup S
\end{aligned}
$$

- For each of the $O\left(n^{[1 / \epsilon\rceil+1}\right)$ subsets, linear work is done

Runtime: before calling MODIFIED-GREEDY-BY-RATIO

- Sorting done only once but dominated by loop
- Polynomial in n and exponential in $1 / \epsilon$

Approximation Ratio:
■ Consider the iteration where the set H which is part of optimal solution (since all subsets of size at most h are iterated)

- Known that H can not have more than h items of value $>\epsilon$. OPT

■ Let $U^{\prime}=U \backslash\left\{H \cup H^{\prime}\right\}$ and OPT^{\prime} be the optimal value for U^{\prime}

- Then, OPT $=v(H)+$ OPT $^{\prime}$
- Since $\forall i \in U^{\prime}, v_{i} \leq \epsilon$. OPT, solution for U^{\prime} has value $\geq(1-\epsilon) \mathrm{OPT}^{\prime}$
\square Value of PTAS solution is $v(H)+(1-\epsilon) \mathrm{OPT}^{\prime} \geq(1-\epsilon) \mathrm{OPT}$
- $v(H)$ may be 0 , i.e. optimal solution may not include a heavy item

