Theory of Computation

Approximation Algorithms

- Approximation Algorithms for Optimization Problems: Types
- Absolute Approximation Algorithms
- Inapproximability by Absolute Approximate Algorithms
- Relative Approximation Algorithm
- InApproximability by Relative Approximate Algorithms
- Polynomial Time Approximation Schemes

■ Fully Polynomial Time Approximation Schemes

Imdad Ullah Khan

Relative Approximation Algorithms

For algorithm A for an optimization problem with value function $f(>0)$,
Approximation Ratio of A is $\max \{f(A(I)) / f(\mathbf{o p t}(I)), f(\operatorname{opt}(I)) / f(A(I))\}$
\triangleright For minimization problem it is $f(A(I)) / f(\operatorname{OPT}(I))$
\triangleright For maximization problem it is $f(\operatorname{OPT}(I)) / f(A(I))$
A is called an α-approximate algorithm
if for any instance I of size n, A achieves an approximation ratio α
\triangleright For minimization problems this means $f(A(I)) \leq \alpha \cdot f(\mathrm{OPT}(I))$
\triangleright For maximization problems this means $f(A(I)) \geq 1 / \alpha \cdot f(\operatorname{OPT}(I))$
When α does not depend on n, A is called constant factor (relative) approximation algorithm

- Given U of n elements
- A collection \mathcal{S} of m subsets of $U, \quad S_{1}, S_{2}, \ldots, S_{m}$

■ A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$
$U=\{1,2,3,4,5,6\}$
Sets: $\{1,2,3\},\{3,4\},\{1,3,4,5\},\{2,4,6\},\{1,3,5,6\},\{1,2,4,5,6\}$
Cover $\{1,2,3\}, \quad\{1,3,4,5\},\{2,4,6\}$
Cover $\{1,2,3\}$,
$\{1,2,4,5,6\}$
Cover
$\{1,3,4,5\}$,
$\{1,2,4,5,6\}$

The first cover has size 3, the latter two have size 2 each

- Given U of n elements

■ A collection \mathcal{S} of m subsets of $U, \quad S_{1}, S_{2}, \ldots, S_{m}$

- A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$

- Given U of n elements

■ A collection \mathcal{S} of m subsets of $U, \quad S_{1}, S_{2}, \ldots, S_{m}$
■ A Set Cover is a subcollection $I \subset\{1,2, \ldots, m\}$ with $\bigcup_{i \in I} S_{i}=U$

The min-SET-COVER (U, \mathcal{S}) problem: Find a cover of minimum size?

In the more general version, each set in \mathcal{S} has a weight/cost and the goal is to find a cover with minimum total weight

SET-COVER: Greedy Approximation Algorithm

While there is an uncovered element in U, choose a set S_{i} from \mathcal{S} that covers the most number of (yet) uncovered elements

Algorithm GREEDY-SET-COVER (U, \mathcal{S})

$X \leftarrow U$	\triangleright Yet uncovered elements
$C \leftarrow \emptyset$	
while $X \neq \emptyset$ do	
Select an $S_{i} \in \mathcal{S}$ that maximizes $\left\|S_{i} \cap X\right\|$	\triangleright Covers most elements
$C \leftarrow C \cup S_{i}$	
$X \leftarrow X \backslash S_{i}$	
return C	

- $U=\{1,2,3,4,5\}, \mathcal{S}=\{\{1,2\},\{1\},\{1,4\},\{4\},\{1,2,3,5\},\{4,5\}\}$

■ First pick $\{1,2,3,5\}$ as it covers 4 elements
■ Next pick $\{1,4\},\{4\}$ or $\{4,5\}$ to cover all elements of U

SET-COVER: Greedy Approximation Algorithm

Algorithm Greedy-SET-Cover (U, \mathcal{S})

```
    \(X \leftarrow U\)
                \(\triangleright\) Yet uncovered elements
    \(C \leftarrow \emptyset\)
    while \(X \neq \emptyset\) do
        Select an \(S_{i} \in \mathcal{S}\) that maximizes \(\left|S_{i} \cap X\right|\)
                            \(\triangleright\) Covers most elements
        \(C \leftarrow C \cup S_{i}\)
        \(X \leftarrow X \backslash S_{i}\)
    return \(C\)
```


- The algorithm will select S_{1}, S_{2}, and S_{3}. While optimal is S_{2} and S_{3}

■ Let k be the size of an optimal set cover
■ By pigeon-hole principle some set $S \in \mathcal{S}$ covers at least n / k elements
■ Let n_{i} be the number of uncovered elements after ith iteration $\triangleright|X|$

- There is a set $S \notin C$ covering at least n_{i} / k elements
- Actually there will be a set covering at least $n_{i} / k-i$ elements
- We get $n_{i} \leq(1-1 / k) n_{i-1} \leq(1-1 / k)^{2} n_{i-2} \leq \ldots \leq(1-1 / k)^{i} n$

■ The algorithm stops after t iterations when $n_{t} \leq(1-1 / k)^{t} n<1$

- This happens when $t=k \ln n$
- Approximation ratio of this algorithm is $O(\log n)$

SET-COVER: Greedy Approximation Algorithm

■ GREEDY-SET-COVER selects $C_{t}, C_{t-1}, \ldots, C_{1}$

- The optimal solution is R_{1} and R_{2}

■ On this example, the algorithm approximation factor is $O(\log n)$
■ Unless $\mathrm{P}=\mathrm{NP}$, this is the best approximation guarantee

An vertex cover in a graph is subset C of vertices such that each edge has at least one endpoint in C

A graph on 11 vertices

A vertex cover of size 6

A vertex cover of size 5

A vertex cover of size 3

The min-vertex-cover (G) problem: Find a min vertex cover in G ?

vertex-cover: Greedy Algorithm

■ The greedy idea is to keep adding vertices that cover maximum edges

Algorithm GREEDY-VERTEX-COVER(G)

$C \leftarrow \emptyset$
while $E(G) \neq \emptyset$ do
Select v that has maximum degree
$C \leftarrow C \cup\{v\}$
$G \leftarrow G-v$
return C

- Essentially graph version of Greedy-Set-Cover (U, \mathcal{S}) algorithm

■ Clearly returns a vertex cover and is $O(\log n)$-approximate algorithm

■ The greedy idea is to keep adding vertices that cover maximum edges
Algorithm greedy-vertex-cover (G)
$C \leftarrow$ emptyset
while $E(G) \neq \emptyset$ do
Select v that has maximum degree

$$
C \leftarrow C \cup\{v\} \quad G \leftarrow G-v
$$

return C

- Depending on tie-breaking, the algorithm could select the
- the 2 green vertices, 3 blue vertices, then 6 red vertices $\quad \triangleright|C|=11$
- While minimum vertex cover is of size 6 (red vertices)

■ The greedy idea is to keep adding vertices that cover maximum edges

- Another view of the above example

OPT-Cover : Top Vertices: 3!
Greedy Cover: Bottom Vertices: $3!\left(\frac{1}{3}+\frac{1}{2}+\frac{1}{1}\right)$

vertex-cover: Greedy Algorithm

■ The greedy idea is to keep adding vertices that cover maximum edges
■ A tight example for the greedy algorithm

vertex-cover: Constant Factor Approximation

■ VERTEX-COVER is a special case, we exploit it's special structure
■ Note: for every edge $(x, y), x$ or y or both have to be in optimal cover

Algorithm vertex-cover(G)

$C \leftarrow \emptyset$
while $E \neq \emptyset$ do
pick any $\{u, v\} \in E$, select arbitrarily u or v (call it s)
$C \leftarrow C \cup\{s\}$
Remove all edges incident to s
return C
VERTEX-COVER (G) clearly produces a cover
Output could be very arbitrarily bad
Optimal cover is $\left\{v_{0}\right\}$
Output could be all other vertices

vertex-cover: Constant Factor Approximation

- Note: for every edge $(x, y), x$ or y or both have to be in optimal cover
- A better approximation uses the seemingly wasteful idea

Algorithm VERTEX-COVER(G)

$C \leftarrow \emptyset$
while $E \neq \emptyset$ do
pick any $\{u, v\} \in E$
$C \leftarrow C \cup\{u, v\}$
Remove all edges incident to either u or v
return C

VERTEX-COVER (G) clearly produces a cover, how good is it?

```
    \(C \leftarrow \emptyset\)
    while \(E \neq \emptyset\) do
        pick any \(\{u, v\} \in E\)
        \(C \leftarrow C \cup\{u, v\}\)
        Remove all edges incident to either \(u\) or \(v\)
    return \(C\)
```

Algorithm vertex-cover(G)

VERTEX-COVER(G) clearly produces a cover How good is it?

$\operatorname{VERTEX}-\operatorname{COVER}(G)$ is 2-approximate

- For each edge $e=(u, v)$, OPT must include either u or v
- At worst VERTEX-COVER (G) picks both u and $v \quad \triangleright f(C) \leq 2 f($ OPT $)$

- An optimal cover is $\{a, d\}$
- We may choose $\{a, b, c, d\}$

■ Best known guarantee for vertex cover is $2-O(\log \log n / \log n)$

- The best known lower bound is $4 / 3$
\triangleright Open problem: close the gap

Scheduling on Identical Parallel Machines

- This is a general problem of load balancing
- An instance of the scheduling problem consists of

■ P : Set of n jobs (processes) $\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$

- Each job p_{i} has a processing time t_{i}
- M : Set of k identical machines $\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$

■ A schedule, $S: P \rightarrow M$ is an assignment of jobs to machines
■ Let $A(j)$ be set of jobs assigned to m_{j} (preimages of m_{j})
■ Load L_{j} of machine m_{j} is the total time of processes assigned to it

$$
L_{j}=\sum_{p_{i} \in A(j)} t_{i}
$$

- MAKESPAN of a schedule is the maximum load of any machine
- $\operatorname{MaKeSpan}(S)=\max _{m_{j}} L_{j}$

Scheduling on Identical Parallel Machines

Instance: $[P, M]$
■ P : Set of n jobs $\quad\left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$ each with time t_{i}

- M : Set of k identical machines $\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$
- A schedule, $S: P \rightarrow M$ is an assignment of jobs to machines
- Let $A(j)$ be set of jobs assigned to m_{j}
- Load L_{j} of m_{j} is the total time of processes assigned to it $L_{j}=\sum_{p_{i} \in A(j)} t_{i}$
- MAKESPAN of a schedule is the max load of a machine $\operatorname{MAKESPAN}(S)=\max _{m_{j}} L_{j}$

min-makespan (P, M) problem: Find a schedule S with min makespan (S)
The decision version min-makespan (P, M, t) is NP-Complete

MIN-MAKESPAN: List Scheduling Algorithm

- List scheduling [Graham (1966)] is a simple greedy algorithm
- Go through jobs one by one in some fixed order

■ Assign p_{i} to a machine that currently has the lowest load

Algorithm List Scheduling Algorithm

$$
\text { for } j=1: k \text { do }
$$

$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$
for $i=1 \rightarrow n$ do
m_{j} : machine with minimum load at this time: $m_{j}=\arg \min _{j} L_{j}$
$A_{j} \leftarrow A_{j} \cup p_{i}$
$L_{j} \leftarrow L_{j}+t_{i}$

- The first approximation algorithm (with proper worst case analysis)

Minimizing Makespan: List Scheduling Algorithm

```
Algorithm List Scheduling Algorithm
    for \(j=1: k\) do
        \(A_{j} \leftarrow \emptyset\)
        \(L_{j} \leftarrow 0\)
    for \(i=1 \rightarrow n\) do
        \(m_{j}\) : machine with minimum load at this time: \(m_{j}=\arg \min L_{j}\)
        \(A_{j} \leftarrow A_{j} \cup p_{i}\)
        \(L_{j} \leftarrow L_{j}+t_{i}\)
```


Minimizing Makespan: List Scheduling Algorithm

Algorithm List Scheduling Algorithm

```
    for \(j=1: k\) do
        \(A_{j} \leftarrow \emptyset\)
        \(L_{j} \leftarrow 0\)
```

 for \(i=1 \rightarrow n\) do
 Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
 \(A_{j} \leftarrow A_{j} \cup p_{i}\)
 \(L_{j} \leftarrow L_{j}+t_{i}\)

order $2,3,4,6,2,2$

Minimizing Makespan: List Scheduling Algorithm

Algorithm List Scheduling Algorithm

```
    for \(j=1: k\) do
        \(A_{j} \leftarrow \emptyset\)
        \(L_{j} \leftarrow 0\)
```

 for \(i=1 \rightarrow n\) do
 Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
 \(A_{j} \leftarrow A_{j} \cup p_{i}\)
 \(L_{j} \leftarrow L_{j}+t_{i}\)

order $2,3,4,6,2,2$

Minimizing Makespan: List Scheduling Algorithm

Algorithm List Scheduling Algorithm

```
    for \(j=1: k\) do
        \(A_{j} \leftarrow \emptyset\)
        \(L_{j} \leftarrow 0\)
```

 for \(i=1 \rightarrow n\) do
 Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
 \(A_{j} \leftarrow A_{j} \cup p_{i}\)
 $L_{j} \leftarrow L_{j}+t_{i}$
$p_{1} \quad 2$
$p_{2} \quad 3$
$p_{3} \quad 4$
$p_{4} \quad 6$
$p_{5} \quad 2$
p_{6}
2

order $2,3,4,6,2,2$

Minimizing Makespan: List Scheduling Algorithm

Algorithm List Scheduling Algorithm

```
    for \(j=1: k\) do
        \(A_{j} \leftarrow \emptyset\)
        \(L_{j} \leftarrow 0\)
```

 for \(i=1 \rightarrow n\) do
 Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
 \(A_{j} \leftarrow A_{j} \cup p_{i}\)
 $L_{j} \leftarrow L_{j}+t_{i}$

order $2,3,4,6,2,2$

Minimizing Makespan: List Scheduling Algorithm

Algorithm List Scheduling Algorithm

```
    for \(j=1: k\) do
        \(A_{j} \leftarrow \emptyset\)
        \(L_{j} \leftarrow 0\)
```

 for \(i=1 \rightarrow n\) do
 Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min _{j} L_{j}\)
 \(A_{j} \leftarrow A_{j} \cup p_{i}\)
 \(L_{j} \leftarrow L_{j}+t_{i}\)

order $2,3,4,6,2,2$

Minimizing Makespan: List Scheduling Algorithm

Algorithm List Scheduling Algorithm

```
for \(j=1: k\) do
        \(A_{j} \leftarrow \emptyset\)
        \(L_{j} \leftarrow 0\)
```

 for \(i=1 \rightarrow n\) do
 Let \(m_{j}\) be a machine with minimum load at this time: \(m_{j}=\arg \min L_{j}\)
 \(A_{j} \leftarrow A_{j} \cup p_{i}\)
 \(L_{j} \leftarrow L_{j}+t_{i}\)

order $2,3,4,6,2,2$

■ If the order of jobs is $2,3,4,6,2,2$

Minimizing Makespan: List Scheduling Algorithm

Algorithm List Scheduling Algorithm

$$
\begin{aligned}
& \text { for } j=1: k \text { do } \\
& A_{j} \leftarrow \emptyset \\
& L_{j} \leftarrow 0 \\
& \text { for } i=1 \rightarrow n \text { do } \\
& \quad \text { Let } m_{j} \text { be a mad } \\
& A_{j} \leftarrow A_{j} \cup p_{i} \\
& L_{j} \leftarrow L_{j}+t_{i}
\end{aligned}
$$

$$
\text { Let } m_{j} \text { be a machine with minimum load at this time: } m_{j}=\arg \min _{j} L_{j}
$$

order $2,3,4,6,2,2$

order $6,4,3,2,2,2$

- If the order of jobs is $2,3,4,6,2,2$
- If the order of jobs is $6,4,3,2,2,2$
$\triangleright L_{1}=8$
$\triangleright L_{3}=7$ (optimal)
- Notice that order is very critical

Minimizing Makespan: List Scheduling Algorithm

Let $I=[P, M]$ be an instance
We get the following lower bounds

$$
\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\max }
$$

$\triangleright \because$ the machine getting the longest process will have load at least $t_{\text {max }}$

$$
\operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}
$$

\triangleright By PHP one of the k machines must do at least $\frac{1}{k} \sum_{i} t_{i}$ total work

Minimizing Makespan: List Scheduling Algorithm

$$
\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\max } \quad \text { and } \quad \operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}
$$

- WLOG say m_{1} has max load and let p_{i} be the last job placed at m_{1}
- At the time p_{i} (iteration i) was assigned to m_{1}, load of m_{1} was lowest

■ Let L_{1}^{\prime} be the load of m_{1} at the time of assigning p_{i}

- p_{i} is the last job placed at $m_{1} \Longrightarrow L_{1}^{\prime}=L_{1}-t_{i}$
- m_{1} was least loaded at time i, so for all other machines $L_{j} \geq L_{1}-t_{i}$
- $\sum_{m_{j} \in M} L_{j}=\sum_{p_{i} \in P} t_{i} \geq k\left(L_{1}-t_{i}\right)+t_{i}$
- $\operatorname{OPT}(I) \geq \frac{1}{k} \sum_{p_{i} \in P} t_{i} \geq \frac{1}{k}\left(k\left(L_{1}-t_{i}\right)+t_{i}\right)=L_{1}-(1-1 / k) t_{i}$
- $\operatorname{OPT}(I) \geq L_{1}-(1-1 / k) \operatorname{OPT}(I) \quad \triangleright$ First Lower bound
$\square \operatorname{makespan}(A(I))=L_{1} \leq(2-1 / k) \operatorname{OPT}(I)$

Minimizing Makespan: List Scheduling Algorithm

The List Scheduling Algorithm is ($2-1 / k$)-approximate

- This analysis is tight

■ $k(k-1)+1$ jobs. Time of first $k(k-1)$ jobs is 1 . Time of last is k

- $k(k-1)$ jobs of time 1 scheduled on each machine in round-robin fashion
- Then the last job will be scheduled on any one machine

- OPT: First $k(k-1)$ jobs uniformly on $k-1$ machines, last job to M_{k}

■ The achieved approximation factor is $2 k-1 / k=2-1 / k$

Minimizing Makespan: List Scheduling Algorithm with LPT

- The example show that we should not delay assigning long processes

■ Graham (1969): Longest Processing Time First (LPT rule)

- Go through jobs one by one in some fixed decreasing order

■ Assign p_{i} to a machine that currently has the lowest load
Algorithm List Scheduling Algorithm with LPT (P, M)
$\operatorname{SORT}(P)$ so that $t_{1} \geq t_{2} \ldots \geq t_{n}$
for $j=1: k$ do
$A_{j} \leftarrow \emptyset$
$L_{j} \leftarrow 0$
for $i=1 \rightarrow n$ do
m_{j} : machine with minimum load at this time: $m_{j}=\arg \min _{j} L_{j}$
$A_{j} \leftarrow A_{j} \cup p_{i}$
$L_{j} \leftarrow L_{j}+t_{i}$

Minimizing Makespan: List Scheduling Algorithm with LPT

- [LB-1] $\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\text {max }}$

■ [LB-2] $\operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}$

- If $n \leq k$, then list scheduling gives optimal solution

Assume $n>k$, then with LPT, a tighter lower bound is:

- [LB-3] $\operatorname{OPT}(I) \geq 2 t_{k+1}$

■ Since $t_{1} \geq t_{k-1} \geq t_{k} \geq t_{k+1}$
■ Some machine must get at least two jobs among the first $k+1$ jobs, its load will be $\geq 2 t_{k+1}$

Minimizing Makespan: List Scheduling Algorithm with LPT

- [LB-1] $\operatorname{OPT}(I) \geq \max _{p_{i} \in P} t_{i}=t_{\text {max }}$
- [LB-2] $\operatorname{OPT}(I) \geq \frac{1}{k} \sum_{i} t_{i}$
- [LB-3] $\operatorname{OPT}(I) \geq 2 t_{k+1}$
\triangleright Assuming $n>k$
- WLOG say m_{1} has max load and let p_{i} be the last job placed at m_{1}
- At the time p_{i} (iteration i) was assigned to m_{1}, load of m_{1} was lowest
- Let L_{1}^{\prime} be the load of m_{1} at time $i, L_{1}^{\prime}=L_{1}-t_{i}$

■ For all $j, L_{j} \geq L-t_{i}, \therefore \sum_{m_{j} \in M} L_{j}=\sum_{p_{i} \in P} t_{i} \geq k\left(L_{1}-t_{i}\right)+t_{i}$

- $\operatorname{OPT}(I) \geq 1 / k \sum_{p_{i} \in P} t_{i} \geq 1 / k\left(k\left(L_{1}-t_{i}\right)+t_{i}\right)=L_{1}-(1-1 / k) t_{i}$
- $\operatorname{OPT}(I) \geq L_{1}-(1-1 / k) 1 / 2 \operatorname{OPT}(I)$
\triangleright [LB-3]
■ $\operatorname{makespan}(A(I))=L_{1} \leq(3 / 2-1 / 2 k) \operatorname{OPT}(I)$

Minimizing Makespan: List Scheduling Algorithm with LPT

The List Scheduling Algorithm with LPT is ($3 / 2-1 / 2 k$)-approximate

- This analysis is not tight - A more sophisticated analysis yields

The List Scheduling Algorithm with LPT is ($4 / 3-1 / 3 k$)-approximate
■ This analysis is tight, consider $2 k+1$ jobs
■ 3 of duration $k \quad$ and $\quad 2$ each of $k+i, \quad 1 \leq i \leq k-1$

- The algorithm gives all but one machine 2 jobs with total load $3 m-1$
- The remaining machine gets 3 jobs and load $4 m$ - 1

■ OPT: 3 length k jobs on a machine and remaining loads are $3 k$

- The achieved approximation factor is $4 k-1 / 3 k=4 / 3-1 / 3 k$

Optimal Schedule

