Theory of Computation

Approximation Algorithms

- Approximation Algorithms for Optimization Problems: Types
- Absolute Approximation Algorithms
- Inapproximability by Absolute Approximate Algorithms
- Relative Approximation Algorithm

■ InApproximability by Relative Approximate Algorithms

- Polynomial Time Approximation Schemes
- Fully Polynomial Time Approximation Schemes

Imdad Ullah Khan

Quality of Approximation: Types

Absolute Approximation Algorithms

Given an optimization problem P with value function f on solution space

An algorithm A is called absolute approximation algorithm if there is a constant k such that for any instance $/$

$$
|f(A(I))-f(\operatorname{OPT}(I))| \leq k
$$

- For a minimization problem this means $f(A(I)) \leq f(\mathrm{OPT}(I))+k$

■ For a maximization problem this means $f(A(I)) \geq f(\mathrm{OPT}(I))-k$

How to Design an Approximation Algorithm?

Any approximation algorithm involves 2 main steps:
1 Design a good algorithm A

- For approximation guarantee on $A(I)$ we need the value of the optimal solution $f($ OPT(I))

■ How to find it? almost equally difficult (version of the problem)
2 Find a good lower or upper bound on $f(\operatorname{OPT}(I))$

- Compare $f(A(I))$ with the bound on $f(\mathrm{OPT}(I))$

Graph Coloring

A graph (vertex) coloring is to assign a color to each vertex such that no two adjacent vertices get the same color

A graph G on 8 vertices

A coloring with 8 colors

A coloring with 6 colors

A coloring with (optimal) 3 colors
[Coloring (G) problem:] Color G with minimum number of colors, $\chi(G)$

Graph Coloring (Optimization) Problem

The graph coloring problem

- I: Graphs

■ $S(G)$: An assignment of colors to vertices of input graph, such that no two adjacent vertices have the same color (feasibility)

■ $f: S(G) \rightarrow \mathbb{Z}^{+}$

- For $s \in S(G), f(s)$ is number of colors used in the coloring s
- $\chi(G)$: the minimum number of colors needed to color G
- $\chi(G)=f(\operatorname{OPT}(G))$

Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

Just because in a drawing of G edges are crossing doesn't mean G is not planar

Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

To prove planarity, move the vertices around, redraw the edges without crossing (sometimes in a very indirect faction)

Planar Graphs

Planar Graphs

A graph is planar if it can be drawn in the plane without any edge crossing

To prove planarity, move the vertices around, redraw the edges without crossing (sometimes in a very indirect faction)

Even harder to prove non-planarity

K_{5}

$K_{3,3}$

Planar Graphs: A characterization

A plane drawing of a planar graphs divides plane into regions or faces, one of them the outer face

A region (or face) is a part of the plane disconnected from other parts by the edges

Planar Graphs: A characterization

Euler's Formula: The number of faces of a connected planar graph is invariant of its drawing and is given by

$$
f=e-v+2 \quad f=\mid \text { faces }|, \quad e=|E|, \quad v=|V|
$$

Verify it for the following planar graphs

Planar Graphs: A characterization

From Euler's formula and the Face-Edge Handshaking Lemma we get

If G is a connected planar graph with $v \geq 3$, then

$$
e \leq 3 v-6
$$

An immediate corollary from this using the Handshaking Lemma is

Every planar graph has a vertex with degree at most 5

Coloring Planar Graphs

The Planar-Graph-Coloring(G) problems: Given a planar graph G, color it with minimum colors

6-Coloring Planar Graphs

Every planar graph has a vertex with degree at most 5
■ Using the lemma we give a recursive 6-coloring algorithm
■ Can apply the algorithm to components of disconnected graphs
Algorithm 6-COLOR(G, $\left.C=\left\{c_{1}, \ldots, c_{6}\right\}\right)$
Let $v \in V$ such that $\operatorname{deg}(v) \leq 5$
$6-\operatorname{Color}\left(G-v, C=\left\{c_{1}, \ldots, c_{6}\right\}\right)$
Let $C^{\prime} \subset C$ be the set of colors used for $N(v)$ $\triangleright\left|C^{\prime}\right| \leq 5$
Color v with a color in $C \backslash C^{\prime}$

6-Coloring Planar Graphs

Every planar graph has a vertex with degree at most 5

- Using the lemma we give a recursive 6-coloring algorithm

■ Can apply the algorithm to components of disconnected graphs
■ Can be implemented with no recursion or modification to adjacency list

- Order vertices so no vertex has more than 5 neighbors preceding it

■ Greedily color vertices from left to right using the scheme in figure
■ Clearly polynomial time

3-absolute approximation for Planar Graph Coloring

Theorem: The decision problem of planar graph 3-Coloring is NP-Complete

Use the fact that: If G is bipartite, then it is 2-colorable
Algorithm APPROX-PLANAR-COLOR(G)
if G is bipartite then
\triangleright Easy to check with a BFS
Color G with the obvious 2-coloring
else
$6-\operatorname{Color}\left(G, C=\left\{c_{1}, \ldots, c_{6}\right\}\right)$

APPROX-PLANAR-COLOR is a 3-absolute approximate algorithm

- Non-bipartite graphs require ≥ 3 colors $(f(\operatorname{OPT}(G)) \geq 3) \quad \triangleright(L B)$

■ We use at most 6 colors $(f(\operatorname{APPROX}-\operatorname{PLANAR-COLOR}(G)) \leq 6)$

- The statement follows

2 and 1-absolute approximation for Planar Graph Coloring

A slightly complicated Kempe algorithm colors planar graphs with 5 colors \triangleright A 2-absolute approximate algorithm

A much more complicated proof that planar graphs can be colored with 4 colors, yields a 1-absolute approximate algorithm

- The proof is due to Appel and Haken (1976), is very complicated and involves a huge number of cases tested with a computer program

■ After significant simplifications it still is very involved

SUFFICE

Figure: UIUC stamp in honor of the 4-Color theorem

