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What is the practical meaning of NP-Hardness?

When you prove a problem X to be NP-Hard, then as per the almost
consensus opinion of P 6= NP, it essentially means

1 There is no polynomial time
2 deterministic algorithm
3 to exactly/optimally solve the problem X
4 for all possible input instances
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How to cope with NP-Hardness? Things to consider

Do I need to solve the problem for all valid input instances?
Sometimes just need to solve a restricted version of the problem
(special cases) that includes realistic instances

Is exponential-time OK for my instances?
Exponential-time algorithms are “not slow”, they don’t scale well
If relevant instances are small, then they may be acceptable
Can bring down exponent or base of runtime (2n → 2

√
n or 2n → 1.5n)

Is non-optimality OK?
Is it OK if our algorithm outrun other algorithms (the brute force one)?

Imdad Ullah Khan (LUMS) Approximation Algorithms 3 / 15



How to cope with NP-Hardness? Sacrifice some feature

Poly-time Deterministic Exact/Opt
solution

All cases/
Parameters Algorithmic Paradigm

3 3 3 7
Special Cases Algorithms
Fixed Parameter Tractability

3 3 7 3
Approximation Algorithms
Heuristic Algorithms

7 3 3 3 Intelligent Exhaustive Search

3 7 E(3) 3
Mote Carlo
Randomized Algorithm

E(3) 7 3 3
Las Vegas
Randomized Algorithm

Special cases of input instances (based on structure of a range of parameter(s))
Approximation algorithms guarantee a bound on suboptimality
Heuristics algorithms do not have any guarantee
Randomized algorithms are generally used for problems in class P
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Approaches to tackle NP-Hard problems

1 Special Cases: Relevant structure on which the problem is easier
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic Algorithms: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for problems in P
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Optimization Problems

An optimization problem is characterized by three things

I: set of (valid) input instances
S(I): solution space, set of feasible solutions for an instance I ∈ I
f : S(I)→ R: function giving value to each feasible solution

Optimization Problem can be

Maximization problems: Given I ∈ I, the objective is to find a solution
s∗ ∈ S(I) such that f (s∗) is maximum, i.e.

∀s ∈ S(I), f (s∗) ≥ f (s)

Minimization problems are defined analogously

Note that optimal solution (s∗) need not be unique
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Approximation Algorithms

Relax the requirement that algorithm always outputs optimal solution

Instead look for a feasible solution s ′, whose value f (s ′) is close to
the value of an optimal solution, f (s∗)

We seek worst case closeness guarantees between f (s ′) and f (s∗)

An approximation algorithm A for an optimization problem is a
polynomial time algorithm that on input instance I ∈ I outputs a
solution s ′ ∈ S(I)

A(I): the solution output by A . s ′

opt(I): an optimal solution . s∗

such that max
I∈I

∣∣f (A(I))− f (opt(I))
∣∣ or max

I∈I

f (A(I))
f (opt(I) is small
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Quality of Approximation: Types

Absolute Approximation Algorithms

Given an optimization problem P with value function f on solution space

An algorithm A is called absolute approximation algorithm if there is a
constant k such that for any instance I∣∣f (A(I)

)
− f

(
opt(I)

)∣∣ ≤ k

For a minimization problem this means f (A(I)) ≤ f (opt(I)) + k

For a maximization problem this means f (A(I)) ≥ f (opt(I))− k
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Quality of Approximation: Types

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is
defined as the ratio ‘between’ value of output of A and value of opt

For minimization problem it is f
(

A(I)
)
/f
(

opt(I)
)

For maximization problem it is f
(

opt(I)
)
/f
(

A(I)
)

Note: approximation factor is always bigger than 1, generally

Approximation factor is defined as max
{

f
(

A(I)
)

f
(

opt(I)
) , f

(
opt(I)

)
f
(

A(I)
) }
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Quality of Approximation: Types

Relative Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called a α(n)-approximate algorithm, if for any
instance I of size n, A achieves an approximation ratio α(n)

For a minimization problem this means f
(
A(I)

)
≤ α(n) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α(n) · f

(
opt(I)

)
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Quality of Approximation: Types

Constant Factor (relative) Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called an α-approximate algorithm, if for any instance
I, A achieves an approximation ratio α

For a minimization problem1 this means f
(
A(I)

)
≤ α · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α · f

(
opt(I)

)
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Quality of Approximation: Types

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

For a minimization problem it is
f
(

A(I)
)
/f
(

opt(I)
)
− 1 = f

(
A(I)
)
−f
(

opt(I)
)
/f
(

opt(I)
)

For a maximization problem it is
f
(

opt(I)
)
/f
(

A(I)
)
− 1 = f

(
opt(I)

)
−f
(

A(I)
)
/f
(

A(I)
)

It is very useful when approximation ratio is close to 1
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Quality of Approximation: Types

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ε) is called a polynomial time approximation
scheme if for a given parameter ε, on any instance I, A(ε) achieves an
approximation error ε and runtime of A is polynomial in |I| = n

For a minimization problem this means f
(
A(I)

)
≤ (1 + ε) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1− ε) · f

(
opt(I)

)
Runtime of A could be exponential in 1/ε . e.g. O(n1/ε)
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Quality of Approximation: Types

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ε) is called a fully polynomial time
approximation scheme if for a given ε, on any instance I, A(ε) achieves
an approximation error ε and runtime of A is polynomial in |I| = n and 1/ε

For a minimization problem this means f
(
A(I)

)
≤ (1 + ε) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1− ε) · f

(
opt(I)

)
Runtime of A cannot be exponential in 1/ε . e.g. O(1/ε2n3)

Constant factor decrease in ε increases runtime by a constant factor
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Quality of Approximation: Types

An absolute approximate algorithm is the most desirable, why?

What does an α-approximate algorithm mean for α = 1?

What is the error of 2-approximate algorithm?

What is the approximation factor of an algorithm with 1%
approximation error?

Absolute approximate algorithms are rare, an fptas is the next desirable

Not known for many problem, but when available they are almost as good
as an optimal algorithm
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