
Theory of Computation

Approximation Algorithms

Approximation Algorithms for Optimization Problems: Types
Absolute Approximation Algorithms
Inapproximability by Absolute Approximate Algorithms
Relative Approximation Algorithm
InApproximability by Relative Approximate Algorithms
Polynomial Time Approximation Schemes
Fully Polynomial Time Approximation Schemes

Imdad Ullah Khan

Imdad Ullah Khan (LUMS) Approximation Algorithms 1 / 15

What is the practical meaning of NP-Hardness?

When you prove a problem X to be NP-Hard, then as per the almost
consensus opinion of P 6= NP, it essentially means

1 There is no polynomial time
2 deterministic algorithm
3 to exactly/optimally solve the problem X
4 for all possible input instances

Imdad Ullah Khan (LUMS) Approximation Algorithms 2 / 15

How to cope with NP-Hardness? Things to consider

Do I need to solve the problem for all valid input instances?
Sometimes just need to solve a restricted version of the problem
(special cases) that includes realistic instances

Is exponential-time OK for my instances?
Exponential-time algorithms are “not slow”, they don’t scale well
If relevant instances are small, then they may be acceptable
Can bring down exponent or base of runtime (2n → 2

√
n or 2n → 1.5n)

Is non-optimality OK?
Is it OK if our algorithm outrun other algorithms (the brute force one)?

Imdad Ullah Khan (LUMS) Approximation Algorithms 3 / 15

How to cope with NP-Hardness? Sacrifice some feature

Poly-time Deterministic Exact/Opt
solution

All cases/
Parameters Algorithmic Paradigm

3 3 3 7
Special Cases Algorithms
Fixed Parameter Tractability

3 3 7 3
Approximation Algorithms
Heuristic Algorithms

7 3 3 3 Intelligent Exhaustive Search

3 7 E(3) 3
Mote Carlo
Randomized Algorithm

E(3) 7 3 3
Las Vegas
Randomized Algorithm

Special cases of input instances (based on structure of a range of parameter(s))
Approximation algorithms guarantee a bound on suboptimality
Heuristics algorithms do not have any guarantee
Randomized algorithms are generally used for problems in class P

Imdad Ullah Khan (LUMS) Approximation Algorithms 4 / 15

Approaches to tackle NP-Hard problems

1 Special Cases: Relevant structure on which the problem is easier
Exact results in poly-time only for special cases or a range of parameters

2 Intelligent Exhaustive Search: Exponential time in worst case
The base and/or exponent are usually smaller
could be efficient on typical more realistic instances
Backtracking, Brand-and-Bound

3 Nearly exact solutions: Output is ‘close’ to exact (optimal) solution
Approximation Algorithms: Solutions of guaranteed quality in poly-time
Heuristic Algorithms: Solutions hopefully good in poly-time

4 Randomized Algorithms: Use coin flips for making decisions
Typically used for approximation, also used for problems in P

Imdad Ullah Khan (LUMS) Approximation Algorithms 5 / 15

Optimization Problems

An optimization problem is characterized by three things

I: set of (valid) input instances
S(I): solution space, set of feasible solutions for an instance I ∈ I
f : S(I)→ R: function giving value to each feasible solution

Optimization Problem can be

Maximization problems: Given I ∈ I, the objective is to find a solution
s∗ ∈ S(I) such that f (s∗) is maximum, i.e.

∀s ∈ S(I), f (s∗) ≥ f (s)

Minimization problems are defined analogously

Note that optimal solution (s∗) need not be unique

Imdad Ullah Khan (LUMS) Approximation Algorithms 6 / 15

Approximation Algorithms

Relax the requirement that algorithm always outputs optimal solution

Instead look for a feasible solution s ′, whose value f (s ′) is close to
the value of an optimal solution, f (s∗)

We seek worst case closeness guarantees between f (s ′) and f (s∗)

An approximation algorithm A for an optimization problem is a
polynomial time algorithm that on input instance I ∈ I outputs a
solution s ′ ∈ S(I)

A(I): the solution output by A . s ′

opt(I): an optimal solution . s∗

such that max
I∈I

∣∣f (A(I))− f (opt(I))
∣∣ or max

I∈I

f (A(I))
f (opt(I) is small

Imdad Ullah Khan (LUMS) Approximation Algorithms 7 / 15

Quality of Approximation: Types

Absolute Approximation Algorithms

Given an optimization problem P with value function f on solution space

An algorithm A is called absolute approximation algorithm if there is a
constant k such that for any instance I∣∣f (A(I)

)
− f

(
opt(I)

)∣∣ ≤ k

For a minimization problem this means f (A(I)) ≤ f (opt(I)) + k

For a maximization problem this means f (A(I)) ≥ f (opt(I))− k

Imdad Ullah Khan (LUMS) Approximation Algorithms 8 / 15

Quality of Approximation: Types

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is
defined as the ratio ‘between’ value of output of A and value of opt

For minimization problem it is f
(

A(I)
)
/f
(

opt(I)
)

For maximization problem it is f
(

opt(I)
)
/f
(

A(I)
)

Note: approximation factor is always bigger than 1, generally

Approximation factor is defined as max
{

f
(

A(I)
)

f
(

opt(I)
) , f

(
opt(I)

)
f
(

A(I)
) }

Imdad Ullah Khan (LUMS) Approximation Algorithms 9 / 15

Quality of Approximation: Types

Relative Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called a α(n)-approximate algorithm, if for any
instance I of size n, A achieves an approximation ratio α(n)

For a minimization problem this means f
(
A(I)

)
≤ α(n) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α(n) · f

(
opt(I)

)

Imdad Ullah Khan (LUMS) Approximation Algorithms 10 / 15

Quality of Approximation: Types

Constant Factor (relative) Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called an α-approximate algorithm, if for any instance
I, A achieves an approximation ratio α

For a minimization problem1 this means f
(
A(I)

)
≤ α · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ 1/α · f

(
opt(I)

)

Imdad Ullah Khan (LUMS) Approximation Algorithms 11 / 15

Quality of Approximation: Types

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

For a minimization problem it is
f
(

A(I)
)
/f
(

opt(I)
)
− 1 = f

(
A(I)
)
−f
(

opt(I)
)
/f
(

opt(I)
)

For a maximization problem it is
f
(

opt(I)
)
/f
(

A(I)
)
− 1 = f

(
opt(I)

)
−f
(

A(I)
)
/f
(

A(I)
)

It is very useful when approximation ratio is close to 1

Imdad Ullah Khan (LUMS) Approximation Algorithms 12 / 15

Quality of Approximation: Types

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ε) is called a polynomial time approximation
scheme if for a given parameter ε, on any instance I, A(ε) achieves an
approximation error ε and runtime of A is polynomial in |I| = n

For a minimization problem this means f
(
A(I)

)
≤ (1 + ε) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1− ε) · f

(
opt(I)

)
Runtime of A could be exponential in 1/ε . e.g. O(n1/ε)

Imdad Ullah Khan (LUMS) Approximation Algorithms 13 / 15

Quality of Approximation: Types

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms A(ε) is called a fully polynomial time
approximation scheme if for a given ε, on any instance I, A(ε) achieves
an approximation error ε and runtime of A is polynomial in |I| = n and 1/ε

For a minimization problem this means f
(
A(I)

)
≤ (1 + ε) · f

(
opt(I)

)
For a maximization problem this means f

(
A(I)

)
≥ (1− ε) · f

(
opt(I)

)
Runtime of A cannot be exponential in 1/ε . e.g. O(1/ε2n3)

Constant factor decrease in ε increases runtime by a constant factor

Imdad Ullah Khan (LUMS) Approximation Algorithms 14 / 15

Quality of Approximation: Types

An absolute approximate algorithm is the most desirable, why?

What does an α-approximate algorithm mean for α = 1?

What is the error of 2-approximate algorithm?

What is the approximation factor of an algorithm with 1%
approximation error?

Absolute approximate algorithms are rare, an fptas is the next desirable

Not known for many problem, but when available they are almost as good
as an optimal algorithm

Imdad Ullah Khan (LUMS) Approximation Algorithms 15 / 15

