Approximation Algorithms

- Approximation Algorithms for Optimization Problems: Types
- Absolute Approximation Algorithms
- Inapproximability by Absolute Approximate Algorithms
- Relative Approximation Algorithm
- InApproximability by Relative Approximate Algorithms
- Polynomial Time Approximation Schemes
- Fully Polynomial Time Approximation Schemes

Imdad Ullah Khan

What is the practical meaning of NP-HARDNESS?

When you prove a problem X to be NP-HARD, then as per the almost consensus opinion of $P \neq NP$, it essentially means

- 1 There is no polynomial time
- 2 deterministic algorithm
- 3 to exactly/optimally solve the problem X
- 4 for all possible input instances

How to cope with $\operatorname{NP-HARDNESS}?$ Things to consider

- Do I need to solve the problem for all valid input instances?
 - Sometimes just need to solve a restricted version of the problem (special cases) that includes realistic instances

Is exponential-time OK for my instances?

- Exponential-time algorithms are "not slow", they don't scale well
- If relevant instances are small, then they may be acceptable
- Can bring down exponent or base of runtime $(2^n \rightarrow 2^{\sqrt{n}} \text{ or } 2^n \rightarrow 1.5^n)$

Is non-optimality OK?

Is it OK if our algorithm outrun other algorithms (the brute force one)?

I can't find an efficient algorithm, but neither can all these famous people."

How to cope with $\operatorname{NP-Hardness}$? Sacrifice some feature

Poly-time	Deterministic	Exact/Opt solution	All cases/ Parameters	Algorithmic Paradigm
1	1	1	×	Special Cases Algorithms Fixed Parameter Tractability
1	1	×	1	Approximation Algorithms Heuristic Algorithms
×	1	1	1	Intelligent Exhaustive Search
1	×	$\mathbb{E}(\checkmark)$	✓	Mote Carlo Randomized Algorithm
$\mathbb{E}(\checkmark)$	×	1	1	Las Vegas Randomized Algorithm

- Special cases of input instances (based on structure of a range of parameter(s))
- Approximation algorithms guarantee a bound on suboptimality
- Heuristics algorithms do not have any guarantee
- \blacksquare Randomized algorithms are generally used for problems in class ${\rm P}$

IMDAD ULLAH KHAN (LUMS)

Approximation Algorithms

Approaches to tackle NP-HARD problems

- **1** Special Cases: Relevant structure on which the problem is easier
 - Exact results in poly-time only for special cases or a range of parameters
- 2 Intelligent Exhaustive Search: Exponential time in worst case
 - The base and/or exponent are usually smaller
 - could be efficient on typical more realistic instances
 - Backtracking, Brand-and-Bound
- **3** Nearly exact solutions: Output is 'close' to exact (optimal) solution
 - Approximation Algorithms: Solutions of guaranteed quality in poly-time
 - Heuristic Algorithms: Solutions hopefully good in poly-time
- 4 Randomized Algorithms: Use coin flips for making decisions
 - $\hfill Typically used for approximation, also used for problems in <math display="inline">{\rm P}$

An optimization problem is characterized by three things

- \mathcal{I} : set of (valid) input instances
- **S**(*I*): solution space, set of feasible solutions for an instance $I \in \mathcal{I}$
- $f: S(I) \to \mathbb{R}$: function giving value to each feasible solution

Optimization Problem can be

Maximization problems: Given $l \in \mathcal{I}$, the objective is to find a solution $s^* \in S(l)$ such that $f(s^*)$ is maximum, i.e.

$$\forall s \in S(I), f(s^*) \geq f(s)$$

Minimization problems are defined analogously

Note that optimal solution (s^*) need not be unique

Relax the requirement that algorithm always outputs optimal solution

- Instead look for a feasible solution s', whose value f(s') is close to the value of an optimal solution, f(s*)
- We seek worst case closeness guarantees between f(s') and $f(s^*)$

An approximation algorithm A for an optimization problem is a **polynomial time** algorithm that on input instance $I \in \mathcal{I}$ outputs a solution $s' \in S(I)$

- A(I): the solution output by A
- OPT(I): an optimal solution

such that $\max_{I \in \mathcal{I}} |f(A(I)) - f(OPT(I))|$ or $\max_{I \in \mathcal{I}} \frac{f(A(I))}{f(OPT(I))}$ is small

⊳ *s*′

 $\triangleright s^*$

Absolute Approximation Algorithms

Given an optimization problem P with value function f on solution space

An algorithm A is called **absolute approximation** algorithm if there is a constant k such that for any instance I

 $|f(A(I)) - f(OPT(I))| \leq k$

• For a minimization problem this means $f(A(l)) \leq f(OPT(l)) + k$

For a maximization problem this means $f(A(I)) \ge f(OPT(I)) - k$

Approximation Factor/Ratio

Given an optimization problem P with value function f on solution space

The approximation ratio or approximation factor of an algorithm A is defined as the ratio *'between'* value of output of A and value of OPT

- For minimization problem it is f(A(I))/f(OPT(I))
- For maximization problem it is f(OPT(I))/f(A(I))

Note: approximation factor is always bigger than 1, generally

Approximation factor is defined as
$$max\left\{\frac{f(A(I))}{f(OPT(I))}, \frac{f(OPT(I))}{f(A(I))}\right\}$$

Relative Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called a $\alpha(n)$ -**approximate** algorithm, if for any instance I of size n, A achieves an approximation ratio $\alpha(n)$

For a minimization problem this means $f(A(I)) \leq \alpha(n) \cdot f(OPT(I))$

• For a maximization problem this means $f(A(I)) \geq 1/\alpha(n) \cdot f(OPT(I))$

Constant Factor (relative) Approximation Algorithm

Given an optimization problem P with value function f on solution space

An algorithm A is called an α -approximate algorithm, if for any instance I, A achieves an approximation ratio α

• For a minimization problem1 this means $f(A(I)) \leq \alpha \cdot f(OPT(I))$

• For a maximization problem this means $f(A(I)) \geq 1/\alpha \cdot f(OPT(I))$

Approximation Error

Given an optimization problem P with value function f on solution space

The approximation error of A is its approximation factor minus 1

• For a minimization problem it is f(A(I))/f(OPT(I)) - 1 = f(A(I)) - f(OPT(I))/f(OPT(I))

For a maximization problem it is f(OPT(I))/f(A(I)) - 1 = f(OPT(I)) - f(A(I))/f(A(I))

It is very useful when approximation ratio is close to $\boldsymbol{1}$

Polynomial Time Approximation Scheme (PTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms $A(\epsilon)$ is called a **polynomial time approximation** scheme if for a given parameter ϵ , on any instance I, $A(\epsilon)$ achieves an approximation error ϵ and runtime of A is polynomial in |I| = n

• For a minimization problem this means $f(A(l)) \leq (1 + \epsilon) \cdot f(OPT(l))$

For a maximization problem this means $f(A(I)) \ge (1 - \epsilon) \cdot f(OPT(I))$

Runtime of A could be exponential in $1/\epsilon$ \triangleright e.g. $O(n^{1/\epsilon})$

Fully Polynomial Time Approximation Scheme (FPTAS)

Given an optimization problem P with value function f on solution space

A family of algorithms $A(\epsilon)$ is called a **fully polynomial time approximation scheme** if for a given ϵ , on any instance I, $A(\epsilon)$ achieves an approximation error ϵ and runtime of A is polynomial in |I| = n and $1/\epsilon$

- For a minimization problem this means $f(A(I)) \leq (1 + \epsilon) \cdot f(OPT(I))$
- For a maximization problem this means $f(A(I)) \ge (1 \epsilon) \cdot f(OPT(I))$

Runtime of A cannot be exponential in $1/\epsilon$ \triangleright e.g. $O(1/\epsilon^2 n^3)$

Constant factor decrease in ϵ increases runtime by a constant factor

Quality of Approximation: Types

- An absolute approximate algorithm is the most desirable, why?
- What does an α -approximate algorithm mean for $\alpha = 1$?
- What is the error of 2-approximate algorithm?
- What is the approximation factor of an algorithm with 1% approximation error?

Absolute approximate algorithms are rare, an FPTAS is the next desirable

Not known for many problem, but when available they are almost as good as an optimal algorithm