Theory of Computation

Push Down Automata

Imdad ullah Khan

Push Down Automata

Models of Computation: Push Down Automata

Automata are distinguished by type/amount of working memory
A Push Down Automata has LIFO (stack) working memory

Pushdown Automaton

Models of Computation: Push Down Automata

A push down automaton (PDA) is a finite automaton with a stack
The stack can store an infinite number of symbols from a stack alphabet 「
The PDA reads an input symbol and stack top, changes state, and pushes onto the stack in one transition

Anatomy of PDA

A PDA over alphabet Σ and stack alphabet Γ is depicted as a directed graph with self-loop

\triangleright called state diagram of the PDA

Anatomy of PDA

A PDA over alphabet Σ and tape alphabet Γ is depicted as a directed graph with self-loop
\triangleright called state diagram of the PDA

transition for every state, input symbol, and stack symbol

Anatomy of PDA

A PDA over alphabet Σ and stack alphabet Γ is depicted as a directed graph with self-loop

$$
\triangleright \text { called state diagram of the PDA }
$$

transition for every state, input symbol, and stack symbol

$\$ \in \Gamma$: Initial stack symbol that is helpful to check if the stack is empty. By convention, it is pushed in the first transition in a PDA
ϵ : Empty string indicates read nothing, pop nothing or push nothing

Working of PDA

Working of PDA

stack

stack

Working of PDA

Working of PDA

Working of PDA

No transition is allowed to be followed when stack is empty (except pushing \$)

HALT

The PDA halts in q_{i} and rejects the input string

Working of PDA: Example

A string is accepted if there is a computation from start state (with non-deterministic choices) such that all input is consumed and the last state is final state

At the end of computation, we do not care about content of stack

PDA: Formal Definition

A PDA P is a 7 -tuple $\quad P=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \$, F\right)$

- Q is a finite set of states

■ Σ is a finite input alphabet

- 「 is a finite stack alphabet
- $\delta: Q \times(\Sigma \cup\{\epsilon\}) \times \Gamma \rightarrow \mathcal{P}\left(Q \times \Gamma^{*}\right)$ is the transition function
- $q_{0} \in Q$ is the initial state
- $\$ \in \Gamma$ is the initial stack symbol
- $F \subseteq Q$ is the set of final states
$\underline{\text { NPDA for } L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}}$
Consider the language $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
L is not regular, but we can design a PDA to recognize L as follows:
■ As each 0 is read, push it onto the stack
- As each 1 is read, pop a 0 from the stack
- If the input is exhausted and the stack is empty, accept

■ Otherwise, reject.

Simulating the PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Configuration of PDA: (q, u, s) denotes the PDA configuration, q is the current state, u is the remaining input, and s is the current stack contents

Consider the string $w=0011 \in L \quad$ The PDA runs as follows:

Pre-transition configuration	Transition	Post-transition configuration
$\left(q_{0}, 0011, \epsilon\right)$	$\epsilon, \epsilon \rightarrow \$$	$\left(q_{1}, 0011, \$\right)$
$\left(q_{1}, 0011, \$\right)$	$0, \epsilon \rightarrow 0$	$\left(q_{1}, 011,0 \$\right)$
$\left(q_{1}, 011,0 \$\right)$	$0, \epsilon \rightarrow 0$	$\left(q_{1}, 11,00 \$\right)$
$\left(q_{1}, 11,00 \$\right)$	$1,0 \rightarrow \epsilon$	$\left(q_{2}, 1,0 \$\right)$
$\left(q_{2}, 1,0 \$\right)$	$1,0 \rightarrow \epsilon$	$\left(q_{2}, \epsilon, \$\right)$
$\left(q_{2}, \epsilon, \$\right)$	$\epsilon, \$ \rightarrow \epsilon$	$\left(q_{3}, \epsilon, \$\right)$

The PDA accepts the string w by empty stack

Simulating the PDA for $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$

Configuration of PDA: (q, u, s) denotes the PDA configuration, q is the current state, u is the remaining input, and s is the current stack contents

Consider the string $w=0101 \notin L \quad$ The PDA runs as follows:

Pre-transition configuration	Transition	Post-transition configuration
$\left(q_{0}, 0101, \epsilon\right)$	$\epsilon, \epsilon \rightarrow \$$	$\left(q_{1}, 0101, \$\right)$
$\left(q_{1}, 0101, \$\right)$	$0, \epsilon \rightarrow 0$	$\left(q_{1}, 101,0 \$\right)$
$\left(q_{1}, 101,0 \$\right)$	$1,0 \rightarrow \epsilon$	$\left(q_{2}, 01, \$\right)$
$\left(q_{2}, 01, \$\right)$	No δ	Reject

The PDA rejects the string w because there is no transition possible from the configuration $\left(q_{2}, 01, \$\right)$

- A PDA is an extension of a DFA with an additional stack memory
- A DFA can only remember a finite amount of information, but a PDA can remember an infinite amount of information using the stack
- A DFA can recognize regular languages, which are a subset of context-free languages
- A PDA can recognize context-free languages, which are more expressive and complex than regular languages
- A DFA can be simulated by a PDA by ignoring the stack and using the same transitions as the DFA
- A PDA cannot be simulated by a DFA in general, because a DFA cannot handle the stack operations and the nondeterminism of the PDA

Deterministic PDA

Allowed Transitions

Not Allowed Transitions

Models of PDA and NPDA

- A PDA can be either deterministic (DPDA) or nondeterministic (NPDA)
- A DPDA is a PDA that has at most one possible transition for any given state, input symbol, and stack symbol
- A NPDA is a PDA that can have more than one possible transition for some state, input symbol, and stack symbol
- A NPDA can also have ϵ-transitions, which do not consume any input symbol but may change the state and the stack
- A NPDA can simulate any DPDA, but not vice versa. Therefore, NPDA is more powerful than DPDA

Examples of DPDA

The language $L_{1}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is recognized by the DPDA

Examples of DPDA

The language $L_{2}=\left\{v \# v^{R} \mid v \in\{a, b, \#\}^{*}\right\}$ is recognized by the DPDA

Examples of NPDA

The language $L_{3}=\left\{v v^{R} \mid v \in\{a, b\}^{*}\right\}$ is recognized by the NPDA We non-deterministically guess when v ends and v^{R} starts

Examples of NPDA

The language $L_{4}=\left\{0^{i} 1^{j} 2^{k} \mid i, j, k \geq 0\right.$ and $\left.i=k\right\}$ is recognized by the NPDA

Examples of NPDA

The language $L_{5}=\left\{a^{i} b^{j} c^{k} \mid i, j, k \geq 0\right.$ and $i=j$ or $\left.i=k\right\}$ is recognized by the NPDA

Limitation of PDA

- A PDA is a powerful model of computation, but it is not as powerful as a Turing machine

■ A PDA can only recognize context-free languages, which are a proper subset of recursively enumerable languages

- A PDA has a limited memory in the form of a stack, which can only be accessed from the top
- A PDA cannot perform arbitrary operations on the stack, such as random access, copying, or reversing

■ A PDA cannot handle languages that require more complex memory structures, such as queues, counters, or tapes

Pumping Lemma for Context-Free Languages

- The pumping lemma for context-free languages is a property that all context-free languages share, and it can be used to prove that some languages are not context-free
- The pumping lemma states that if a language L is context-free, then there exists some integer m (called the pumping length) such that every string w in L that has a length of m or more symbols can be written as $w=u v x y z$, where u, v, x, y, and z are substrings of w, such that:

■ $|v x y| \leq m$

- $|v y|>0$
- $u v^{k} x y^{k} z \in L$ for all $k \geq 0$
- The intuition behind the pumping lemma is that a long enough string in a context-free language must have a repeated pattern in its derivation tree, and this pattern can be pumped up or down without leaving the language

Examples of Languages that Cannot be Decided by PDA

The following languages that are not context-free, and hence cannot be decided by a PDA

- $L_{6}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$

■ $L_{7}=\left\{a^{n} b^{m} c^{n} d^{m} \mid n, m \geq 0\right\}$

- $L_{8}=\left\{a^{n^{2}} \mid n \geq 0\right\}$

