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Models of Computation: Push Down Automata

Automata are distinguished by type/amount of working memory

A Push Down Automata has LIFO (stack) working memory
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Models of Computation: Push Down Automata

A push down automaton (PDA) is a finite automaton with a stack

The stack can store an infinite number of symbols from a stack alphabet Γ

The PDA reads an input symbol and stack top, changes state, and pushes
onto the stack in one transition
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Anatomy of PDA

A PDA over alphabet Σ and stack alphabet Γ is depicted as a directed
graph with self-loop

▷ called state diagram of the PDA

q0 q1 q2
ϵ, ϵ → $

ϵ, $ → ϵ

0, ϵ → 0 1, 0 → ϵ

1, 0 → ϵ

accepting states

states

initial state

transition for every state, input symbol, and stack symbol

qi qj
a, b → c

input

stack top

symbol

stack push

symbol symbol
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Anatomy of PDA

A PDA over alphabet Σ and stack alphabet Γ is depicted as a directed
graph with self-loop

▷ called state diagram of the PDA

q0 q1 q2
ϵ, ϵ → $

ϵ, $ → ϵ

0, ϵ → 0 1, 0 → ϵ

1, 0 → ϵ

accepting states

states

initial state

transition for every state, input symbol, and stack symbol

qi qj
a, b → c

input

stack pop

symbol

stack push

symbol symbol

$ ∈ Γ: Initial stack symbol that is helpful to check if the stack is empty.
By convention, it is pushed in the first transition in a PDA

ϵ: Empty string indicates read nothing, pop nothing or push nothing
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Working of PDA
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Working of PDA
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Working of PDA

No transition is allowed to be followed when stack is empty (except
pushing $)

a · · ·

input

stack

· · ·

top

qi qj
a, b → c

HALT

a, ϵ → c

The PDA halts in qi and rejects the input string
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Non-Deterministic PDA

transition on ϵ

no symbol consumed

a, b→
c

a,
b→

c

multiple
transitions

ϵ, b → c
ϵ, ϵ → c
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Working of PDA: Example

q0 q1 q2
ϵ, ϵ → $ ϵ, $ → $

0, ϵ → 0 1, 0 → ϵ

1, 0 → ϵ
q3

A string is accepted if there is a computation from start state (with
non-deterministic choices) such that all input is consumed and the last
state is final state

At the end of computation, we do not care about content of stack
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PDA: Formal Definition

A PDA P is a 7-tuple P = (Q,Σ, Γ, δ, q0, $,F )

Q is a finite set of states

Σ is a finite input alphabet

Γ is a finite stack alphabet

δ : Q × (Σ ∪ {ϵ})× Γ → P(Q × Γ∗) is the transition function

q0 ∈ Q is the initial state

$ ∈ Γ is the initial stack symbol

F ⊆ Q is the set of final states

Imdad ullah Khan (LUMS) Push Down Automata 15 / 29



NPDA for L = {0n1n|n ≥ 0}

Consider the language L = {0n1n|n ≥ 0}

L is not regular, but we can design a PDA to recognize L as follows:

As each 0 is read, push it onto the stack

As each 1 is read, pop a 0 from the stack

If the input is exhausted and the stack is empty, accept

Otherwise, reject.

q0 q1 q2
ϵ, ϵ → $ ϵ, $ → $

0, ϵ → 0 1, 0 → ϵ

1, 0 → ϵ
q3
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Simulating the PDA for L = {0n1n|n ≥ 0}

Configuration of PDA: (q, u, s) denotes the PDA configuration, q is the
current state, u is the remaining input, and s is the current stack contents

q0 q1 q2
ϵ, ϵ → $ ϵ, $ → $

0, ϵ → 0 1, 0 → ϵ

1, 0 → ϵ
q3

Consider the string w = 0011 ∈ L The PDA runs as follows:

Pre-transition configuration Transition Post-transition configuration

(q0, 0011, ϵ) ϵ, ϵ → $ (q1, 0011, $)

(q1, 0011, $) 0, ϵ → 0 (q1, 011, 0$)

(q1, 011, 0$) 0, ϵ → 0 (q1, 11, 00$)

(q1, 11, 00$) 1, 0 → ϵ (q2, 1, 0$)

(q2, 1, 0$) 1, 0 → ϵ (q2, ϵ, $)

(q2, ϵ, $) ϵ, $ → ϵ (q3, ϵ, $)

The PDA accepts the string w by empty stack

Imdad ullah Khan (LUMS) Push Down Automata 17 / 29



Simulating the PDA for L = {0n1n|n ≥ 0}

Configuration of PDA: (q, u, s) denotes the PDA configuration, q is the
current state, u is the remaining input, and s is the current stack contents

q0 q1 q2
ϵ, ϵ → $ ϵ, $ → $

0, ϵ → 0 1, 0 → ϵ

1, 0 → ϵ
q3

Consider the string w = 0101 /∈ L The PDA runs as follows:

Pre-transition configuration Transition Post-transition configuration

(q0, 0101, ϵ) ϵ, ϵ → $ (q1, 0101, $)

(q1, 0101, $) 0, ϵ → 0 (q1, 101, 0$)

(q1, 101, 0$) 1, 0 → ϵ (q2, 01, $)

(q2, 01, $) No δ Reject

The PDA rejects the string w because there is no transition possible from
the configuration (q2, 01, $)
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PDA vs DFA

A PDA is an extension of a DFA with an additional stack memory

A DFA can only remember a finite amount of information, but a PDA
can remember an infinite amount of information using the stack

A DFA can recognize regular languages, which are a subset of
context-free languages

A PDA can recognize context-free languages, which are more
expressive and complex than regular languages

A DFA can be simulated by a PDA by ignoring the stack and using
the same transitions as the DFA

A PDA cannot be simulated by a DFA in general, because a DFA
cannot handle the stack operations and the nondeterminism of the
PDA
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Deterministic PDA

Allowed Transitions

ϵ, b→
e

ϵ,
b→

d

a, b→
e

a,
b→

d

a, c→
d

a,
b→

d

ϵ, c→
d

ϵ,
b→

d

Not Allowed Transitions
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Models of PDA and NPDA

A PDA can be either deterministic (DPDA) or nondeterministic
(NPDA)

A DPDA is a PDA that has at most one possible transition for any
given state, input symbol, and stack symbol

A NPDA is a PDA that can have more than one possible transition
for some state, input symbol, and stack symbol

A NPDA can also have ϵ-transitions, which do not consume any input
symbol but may change the state and the stack

A NPDA can simulate any DPDA, but not vice versa. Therefore,
NPDA is more powerful than DPDA

Imdad ullah Khan (LUMS) Push Down Automata 21 / 29



Examples of DPDA

The language L1 = {0n1n|n ≥ 0} is recognized by the DPDA

q0 q1 q2
ϵ, ϵ → $ ϵ, $ → $

0, ϵ → 0 1, 0 → ϵ

1, 0 → ϵ
q3
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Examples of DPDA

The language L2 = {v#vR |v ∈ {a, b,#}∗} is recognized by the DPDA

q0 q1 q2
#, ϵ → ϵ ϵ, $ → $

a, ϵ → a
b, ϵ → b

a, a → ϵ
b, b → ϵ
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Examples of NPDA

The language L3 = {vvR |v ∈ {a, b}∗} is recognized by the NPDA

We non-deterministically guess when v ends and vR starts

q0 q1 q2
ϵ, ϵ → ϵ ϵ, $ → $

a, ϵ → a
b, ϵ → b

a, a → ϵ
b, b → ϵ
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Examples of NPDA

The language L4 = {0i1j2k |i , j , k ≥ 0 and i = k} is recognized by the
NPDA

q0 q1 q2
ϵ, $ → ϵ

1, ϵ → ϵ 2, 0 → ϵ

2, 0 → ϵ
q3

0, ϵ → 0

ϵ, ϵ → ϵ

ϵ, $ → ϵ

ϵ, $ → ϵ
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Examples of NPDA

The language L5 = {aibjck |i , j , k ≥ 0 and i = j or i = k} is recognized by
the NPDA

q0start q1 q2

q3q4

q5

ϵ, ϵ → $

a, ϵ → a

ϵ, ϵ → ϵ

ϵ, ϵ → ϵ

ϵ, $ → $

b, a → ϵ

c, $ → $

ϵ, $ → $

ϵ, $ → $
b, ϵ → ϵ

c, a → ϵ

c, a → ϵ

ϵ, $ → $
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Limitation of PDA

A PDA is a powerful model of computation, but it is not as powerful
as a Turing machine

A PDA can only recognize context-free languages, which are a proper
subset of recursively enumerable languages

A PDA has a limited memory in the form of a stack, which can only
be accessed from the top

A PDA cannot perform arbitrary operations on the stack, such as
random access, copying, or reversing

A PDA cannot handle languages that require more complex memory
structures, such as queues, counters, or tapes
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Pumping Lemma for Context-Free Languages

The pumping lemma for context-free languages is a property that all
context-free languages share, and it can be used to prove that some
languages are not context-free

The pumping lemma states that if a language L is context-free, then
there exists some integer m (called the pumping length) such that
every string w in L that has a length of m or more symbols can be
written as w = uvxyz , where u, v , x , y , and z are substrings of w ,
such that:

|vxy | ≤ m
|vy | > 0
uvkxykz ∈ L for all k ≥ 0

The intuition behind the pumping lemma is that a long enough string
in a context-free language must have a repeated pattern in its
derivation tree, and this pattern can be pumped up or down without
leaving the language
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Examples of Languages that Cannot be Decided by PDA

The following languages that are not context-free, and hence cannot be
decided by a PDA

L6 = {anbncn|n ≥ 0}

L7 = {anbmcndm|n,m ≥ 0}

L8 = {an2 |n ≥ 0}
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