
Theory of Computation

Randomized Computation

Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms

Probability Review

Probabilistic Analysis of deterministic quick-sort Algorithm

randomized-select and randomized-quick-sort

Max-Cut

Min-Cut

max-3-sat and Derandomization

Closest Pair

Randomized Complexity Classes

Imdad ullah Khan
Imdad ullah Khan (LUMS) Randomized Computation 1 / 23

Randomized Complexity Classes

Traditional complexity classes (e.g., P, NP) primarily consider
deterministic computations

Randomized Complexity Classes introduce randomness into the
decision process offering unique insights into how algorithms perform with
an element of chance

Goals:

To understand the power and limitations of randomized algorithms
To explore the hierarchy of complexity classes and how randomness
affects computational resources
To evaluate the practical applications of such algorithms in
real-world scenarios

Imdad ullah Khan (LUMS) Randomized Computation 2 / 23

Randomized Complexity Classes

RP (Random Polynomial Time):
Problems solvable by algorithms that
may err only when answering Yes
co-RP: Complementary to RP; algorithms
may err only when answering No
ZPP (Zero-error Probabilistic Polynomial
Time): Problems with algorithms always
returning correct answer in random time
BPP (Bounded-error Probabilistic
Polynomial Time): Problems with
polynomial time algorithms returning
probably correct answer

source: Wikipedia

Imdad ullah Khan (LUMS) Randomized Computation 3 / 23

Randomized Complexity Classes

Significance in Theoretical CS and Applications

Understanding these classes sheds light on the inherent randomness
in computational processes

Influences areas like cryptography, computational biology, and
machine learning

Challenges the boundary between what is computable
deterministically and probabilistically

Imdad ullah Khan (LUMS) Randomized Computation 4 / 23

Class RP (Random Polynomial Time)

A decision problem is in RP for which there exists a polynomial-time
randomized algorithm such that:

If the correct answer is No, the algorithm always returns No
If the correct answer is Yes, the algorithm returns Yes with a
probability greater than 1/2

RP algorithms exhibit one-sided error for Yes instances

Offers a probabilistic approach to decision problems, where
determinism may not provide efficient solutions

Provides a foundation for understanding how randomness can be
harnessed to improve computational efficiency

Serves as a stepping stone to more complex randomized complexity
classes like BPP and ZPP

Imdad ullah Khan (LUMS) Randomized Computation 5 / 23

Primality Testing: An RP Example

Input: A positive integer n
Output: Yes, if n is prime, else No

Cryptography: Essential for generating keys in cryptographic
algorithms like RSA

Random Number Generation: Used in creating seeds for
pseudorandom number generators

Error Checking: Employed in algorithms for error detection and
correction

Fermat’s Little Theorem: (basis for many primality tests)
If n is a prime number, then for any integer a, an−1 ≡ 1 (mod n)

Imdad ullah Khan (LUMS) Randomized Computation 6 / 23

The Miller-Rabin Primality Test

A widely used probabilistic test that relies on modular exponentiation

Algorithm Miller-Rabin Primality Test (simplified)
procedure IsPrime(n, k)

for i ← 1 to k do
Choose a randomly in the range [2, n − 2]
if an−1 ̸≡ 1 (mod n) then

return No ▷ n is composite
return Yes ▷ n is probably prime

Yes answer might be wrong; No answer is always right

Runs k rounds of tests, each passed test reduce the error probability

Demonstrates the amplification technique in RP

Imdad ullah Khan (LUMS) Randomized Computation 7 / 23

The Relationship Between RP and P

P ⊆ RP

▷ If a problem is in P, it is also in RP (since deterministic algorithms are a
special case of randomized algorithms)

The big question: Are there problems in RP that are not in P?

This question explores the boundaries of efficiency for deterministic vs.
randomized algorithms

Imdad ullah Khan (LUMS) Randomized Computation 8 / 23

Class co-RP: The Complement of RP

A decision problem is in co-RP if its complement is in RP. That is, there
exists a polynomial-time randomized algorithm such that:

If the correct answer is Yes, the algorithm always returns Yes
If the correct answer is No, the algorithm returns No with a
probability greater than 1/2

RP algorithms exhibit one-sided error for No instances

source: Wikipedia source: Wikipedia

Imdad ullah Khan (LUMS) Randomized Computation 9 / 23

Polynomial Identity Testing: A co-RP Example

Input: Two polynomials P and Q
Output: Yes, if they are identical for all variable assignments, else No

Computer Algebra Systems (symbolic computation): Crucial for
simplifying expressions and verifying algebraic identities

Coding Theory: Used in error-detecting and error-correcting codes

Complexity Theory: Helps in proving lower bounds for arithmetic
circuits

The problem is trivial if we can read P and Q directly in poly-time;

We only have black box access, i.e., we get P(x) for given input x

Imdad ullah Khan (LUMS) Randomized Computation 10 / 23

Polynomial Identity Testing: Deterministic Algorithm

Univariate case:
Let d be the degree of P and Q and suppose we are computing in a field
F ,
=⇒ P and Q have d roots each

Pick d + 1 distinct values at random from F , if P(x)− Q(x) = 0 for all
these points, then P and Q are identical

Multivariate case:
This approach does not directly apply to the multivariate case because
there can be exponentially many roots

Can handle multivariate case by fixing n − 1 variables and applying the
result from the univariate case

Imdad ullah Khan (LUMS) Randomized Computation 11 / 23

Schwartz–Zippel Lemma for Polynomial Identity Testing

Assume that we have some subset S ∈ F with |S| ≥ 2d

Algorithm Polynomial Identity Testing using Schwartz–Zippel
procedure ArePolynomialsEqual(P, Q, n, k)

for i ← 1 to k do
Choose a random assignment r1, ..., rn ∈ Rd

if P(r1, ..., rn) ̸= Q(r1, ..., rn) then
return No ▷ Polynomials are not identical

return Yes ▷ Polynomials are probably identical

P(x) = x2 + 2x + 1 and Q(x) = (x + 1)2, with k = 5 and random choices
showing they are identical
P(x) = x3 + x and Q(x) = x3 + 2x , with k = 5 and one random choice
showing they are not identical

Pr [P(r1, ..., rn)− Q(r1, ..., rn) = 0] ≤ d/|S|

Imdad ullah Khan (LUMS) Randomized Computation 12 / 23

Relation of co-RP to RP and Other Classes

co-RP complements RP by offering probabilistic guarantees for the
opposite type of answer

Understanding both RP and co-RP is crucial for comprehensive
insights into how randomness affects computational complexity

The intersection of RP and co-RP forms the class ZPP, indicating
problems solvable with zero error probability using probabilistic
methods

Imdad ullah Khan (LUMS) Randomized Computation 13 / 23

Class ZPP: Zero-error Probabilistic Polynomial Time

A decision problem is in RP for which there exists a randomized algorithm
such that:

the algorithm always returns the correct answer
the expected runtime of the algorithm is polynomial (in input size)

Unlike RP or co-RP, ZPP algorithms never err, but their runtime is
probabilistic

ZPP algorithms guarantee absolute correctness—they either provide the
right answer or run indefinitely without producing an incorrect result

Imdad ullah Khan (LUMS) Randomized Computation 14 / 23

ZPP: Intersection of RP and co-RP

ZPP = RP ∩ co-RP
=⇒ If a problem X is in RP ∩ co-RP, then it has a Las Vegas algorithm
Let A and B be the algorithms making X in RP and co-RP, resp.

▷ Note that A and B can be completely different algorithms
Given an instance I of X ,

1 Run A on I for one step. If it returns yes, the answer must be Yes
2 else, run B on I for one step. If it returns No, the answer must be No
3 If neither of the above occurs, repeat step 1 and 2

Note only of A and B can give the wrong answer. Probability of that
algorithm giving the wrong answer during each iteration is at most 1/2

The probability of doing k rounds is at most 1/2k

Thus, the expected running time is polynomial

This shows that RP ∩ co-RP ⊆ ZPP

Imdad ullah Khan (LUMS) Randomized Computation 15 / 23

ZPP: Intersection of RP and co-RP

ZPP = RP ∩ co-RP
⇐= If a problem X has a Las Vegas algorithm, then it is in RP ∩ co-RP
Let C be a Las Vegas algorithm for X

Construct the following RP algorithm as follow: Given an instance I of X ,
1 Run C on I for ≥ double its expected runtime. Returns its answer
2 If it does not give an answer return No

By Markov’s Inequality, the probability that C yields an answer before we
stop it is ≥ 1/2

The probability we give wrong answer on a Yes instance is at most 1/2

Thus, by definition, X ∈ RP

Similar, argument proves that X ∈ co-RP

This shows that ZPP ⊆ RP ∩ co-RP

Imdad ullah Khan (LUMS) Randomized Computation 16 / 23

Finding a Nash Equilibrium: A ZPP Challenge

Input: n players each with a set of strategies
Output: A strategy configuration where no player can benefit by changing
strategies while the others remain constant ▷ Nash Equilibrium

Nash Equilibria are central to game theory and have implications in
economics, computer science, and beyond.

Economics: Predicting stable outcomes in competitive markets

Computer Science: Designing efficient and reliable algorithms for
networking, cryptography, and algorithmic game theory

Biology: Understanding evolutionary stable strategies

Imdad ullah Khan (LUMS) Randomized Computation 17 / 23

Lemke-Howson Algorithm for Nash Equilibria
Finds one Nash Equilibrium for two-player games.
It systematically explores the game’s strategy space using a pivoting method similar to
those used in linear programming.
While not strictly a ZPP algorithm, its deterministic nature and polynomial-time
performance in practice align with ZPP’s philosophy.

Algorithm Lemke-Howson Algorithm for Nash Equilibria
1: Initialize strategy profile S
2: while not converged to Nash Equilibrium do
3: Select a starting strategy for players
4: Perform best response dynamics
5: Adjust strategies based on other players’ responses
6: return S as Nash Equilibrium

For a two-player game with payoff matrices leading to a pure strategy Nash Equilibrium.
Iterations adjust strategies until convergence.
For a game where mixed strategies form a Nash Equilibrium, illustrating the algorithm’s
adjustment of probability distributions over strategies.

Imdad ullah Khan (LUMS) Randomized Computation 18 / 23

The Class BPP: Bounded-error Probabilistic Polynomial Time

A decision problem is in BPP for which there exists a polynomial-time
randomized algorithm such that:

the algorithm returns correct answer with a probability ≥ 2/3

BPP algorithms allow for a bounded-error probability

For any given instance, the probability that a BPP algorithm returns the
incorrect answer is less than or equal to nicefrac13

Amplification: By running a BPP algorithm multiple times and taking a
majority vote, the error probability can be reduced exponentially, making it
negligibly small

Imdad ullah Khan (LUMS) Randomized Computation 19 / 23

BPP Compared to RP and ZPP

RP vs. BPP: RP allows for one-sided error for Yes instances, while BPP
allows errors on both Yes and No instances but with bounded probabilities

ZPP vs. BPP: ZPP ensures zero-error but with potentially unbounded
runtime, whereas BPP has a controllable error rate with polynomial time

Practical Implications: BPP captures the class of problems for which
efficient and reliable randomized algorithms can be devised
Theoretical Interest: The exact relationship between BPP and
deterministic classes like P and NP is an open question in complexity

Cryptography: For generating and verifying cryptographic keys and
protocols under uncertainty
Quantum Computing: BPP is also considered in the context of
quantum algorithms, where probabilistic outcomes are natural
Scientific Computing: In simulations and models where exact
calculations are infeasible, BPP offers a way with bounded error

Imdad ullah Khan (LUMS) Randomized Computation 20 / 23

Estimating Volume of complex Geometric Objects

Estimate the volume of an irregular object for which the volume cannot be
calculated directly through mathematical formulas

Crucial in material science, architecture, and computational geometry to
determine material properties, construction planning, and spatial analysis

1

2 2

Ω
Ω

The bounding box represents a known volume within which the object (Ω)
is contained.

Imdad ullah Khan (LUMS) Randomized Computation 21 / 23

Monte Carlo Algorithm for Estimating Volume

Algorithm Estimate Geometric Volume
1: procedure EstimateVolume(Object Ω, N)
2: inside ← 0
3: for i ← 1 to N do
4: Generate a random point p within bounding box
5: if p is inside Ω then ▷ this step may not be simple
6: inside ← inside + 1
7: return inside/N × Volume of bounding box

The ratio of points inside Ω to the total number of points approximates
the object’s volume relative to the bounding box.

It’s a versatile method applicable to various geometrical shapes and sizes
(as long as we can verify a point being inside)

Imdad ullah Khan (LUMS) Randomized Computation 22 / 23

Monte Carlo Example: Estimating π

Problem: Estimate the value of π by simulating random points within a
unit circle enclosed in a 2× 2 square

Algorithm Estimate Pi using Monte Carlo
procedure EstimatePi(N)

inside ← 0
for i ← 1 to N do

x , y ← random numbers between −1 and 1
if x2 + y2 ≤ 1 then ▷ If point (x , y) is within the unit circle

centered at 0
inside ← inside + 1

return inside/N × 4

Imdad ullah Khan (LUMS) Randomized Computation 23 / 23

