Randomized Computation

- Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest Pair
- Randomized Complexity Classes

Imdad ullah Khan

Closest Pair of Points Problem

Given n points in a plane, find a pair of points with minimum Euclidean distance between them

For
$$p_i = (x_i, y_i)$$
 and $p_j = (x_j, y_j)$
 $d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

can be computed in O(1)

Applications: Computer graphics, computer vision, geographic information systems, molecular modeling, air traffic control

Brute force Algorithm:

FINDMIN among all $\binom{n}{2}$ pairwise distances

 $\triangleright O(n^2)$ comparisons

Closest Pair of Points Problem

Input: $P = \{p_1, p_2, ..., p_n\}$: a set of *n* distinct points in \mathbb{R}^2 **Output:** A pair of distinct points in *P* that minimizes the d(p, q)

1-dimensional space:

1 Sort points $\triangleright O(n \log n)$ **2** Find closest adjacent points $\triangleright O(n)$

2-dimensional space:

Divide and Conquer Algorithm

 $\triangleright O(n \log n)$

Randomized Algorithm for Closest Pair

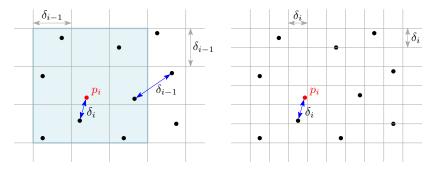
Input: $P = \{p_1, p_2, ..., p_n\}$: a set of *n* distinct points in \mathbb{R}^2 **Output:** A pair of distinct points in *P* that minimizes the d(p, q)

Assumptions

- All points are in the unit square $0 \le x_i, y_i \le 1$ \triangleright WLOG
- Distance between each pair of points is distinct

A Randomized Incremental Algorithm

- Let $P = \{p_1, p_2, \cdots, p_n\}$ be a fixed random order
- $S_i = \{p_1, p_2, \cdots, p_i\}$: the first *i* points in *P*
- δ_i : the distance of the closest pair in S_i
- \triangleright need δ_n
- Idea is to begin with S₂ lay out a grid G with cell size $\delta_2 \times \delta_2$
- For i = 3 to *n* insert point p_i in *G* incrementally
- In each step, update G cell size if $\delta_i < \delta_{i-1}$



A Randomized Incremental Algorithm: Implementation

• Given δ_{i-1} , how can we compute δ_i ?

• $\delta_i = \min d(p_i, p_j) \forall j$ in the neighborhood of p_i if $d(p_i, p_j) < \delta_{i-1}$

 \triangleright Why? Distance between p_i and points outside adjacent cells of p_i is at least δ_{i-1} by construction

- What operations do we need for the grid structure?
 - BUILD-GRID (S, δ) : build grid G with cell size δ & insert all points in S
 - INSERT-POINT(*p_i*): insert *p_i*
 - LOCATE-CELL(p_i): return cell containing p_i
 - GET-POINTS(*c*): return points in cell *c*

• Use hashing to implement grid so operations take $\mathcal{O}(1)$ time

- Key universe is IDs of all cells in the grid
- Actual key space is the IDs of cells containing points
- Point co-ordinates are the data for each key
- Cell containing p_i is located at in grid $(\lfloor x_i/\delta_{i-1} \rfloor, \lfloor y_i/\delta_{i-1} \rfloor)$

A Randomized Incremental Algorithm: Runtime

Algorithm Randomized Closest Pair: returns distance

```
function CLOSEST-PAIR(P)
\{p_1, p_2, \cdots, p_n\} \leftarrow \text{RANDOM-PERMUTATION}(P)
S_2 \leftarrow \{p_1, p_2\}
G \leftarrow \text{BUILD-GRID}(S, \delta_2)
for i = 3 \rightarrow n do
    S_i \leftarrow S_{i-1} \cup p_i
                                                                                                                       \triangleright \mathcal{O}(1)
    Compute \delta_i
                                                                                                                        \triangleright \mathcal{O}(1)
                                                                                                                        \triangleright \mathcal{O}(i)
    if \delta_i < \delta_{i-1} then G.BUILD-GRID(S, \delta_i)
    else
        G.INSERT-POINT(p_i)
                                                                                                                        \triangleright \mathcal{O}(1)
return \delta_n
```

A Randomized Incremental Algorithm: Runtime

Given S_i , $\delta_i < \delta_{i-1}$ when $p_i \in C$ for any permutation of S_i

$$Pr[\delta_i < \delta_{i-1}|S_i] = \frac{2(i-1)!}{i!} = \frac{2}{i!}$$

• The $\binom{n}{i}$ choices of S_i are equally likely $\implies \sum_{j \in \binom{n}{i}} \Pr[S_{i_j}] = 1$

$$\Pr[\delta_i < \delta_{i-1}] = \sum_{j \in \binom{n}{i}} \Pr[\delta_i < \delta_{i-1} | S_{i_j}] \cdot \Pr[S_{i_j}] = \frac{2}{i} \sum_{j \in \binom{n}{i}} \Pr[S_{i_j}] = \frac{2}{i}$$

- Let X_i be the runtime of iteration i
- $E[X_i] = \mathcal{O}(1) + \mathcal{O}(i) \cdot Pr[\delta_i < \delta_{i-1}] = \mathcal{O}(1) + \mathcal{O}(i) \cdot 2/i = \mathcal{O}(1)$

$$E[X] = \sum_{i=1}^{n} E[X_i] = \mathcal{O}(n)$$