
Theory of Computation

Randomized Computation

Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms

Probability Review

Probabilistic Analysis of deterministic quick-sort Algorithm

randomized-select and randomized-quick-sort

Max-Cut

Min-Cut

max-3-sat and Derandomization

Closest Pair

Randomized Complexity Classes

Imdad ullah Khan
Imdad ullah Khan (LUMS) Randomized Computation 1 / 8



Closest Pair of Points Problem

Given n points in a plane, find a pair of points with minimum Euclidean
distance between them

For pi = (xi , yi) and pj = (xj , yj)

d(pi , pj) =
√

(xi − xj)2 + (yi − yj)2

can be computed in O(1)

Applications: Computer graphics, computer vision, geographic
information systems, molecular modeling, air traffic control

Brute force Algorithm:
findmin among all

(n
2
)

pairwise distances ▷ O(n2) comparisons

Imdad ullah Khan (LUMS) Randomized Computation 2 / 8



Closest Pair of Points Problem

Input: P = {p1, p2, . . . , pn}: a set of n distinct points in R2

Output: A pair of distinct points in P that minimizes the d(p, q)

1-dimensional space:

1 Sort points ▷ O(n log n)
2 Find closest adjacent points ▷ O(n)

2-dimensional space:

Divide and Conquer Algorithm ▷ O(n log n)

Imdad ullah Khan (LUMS) Randomized Computation 3 / 8



Randomized Algorithm for Closest Pair

Input: P = {p1, p2, . . . , pn}: a set of n distinct points in R2

Output: A pair of distinct points in P that minimizes the d(p, q)

Assumptions

All points are in the unit square 0 ≤ xi , yi ≤ 1 ▷ wlog

Distance between each pair of points is distinct

Imdad ullah Khan (LUMS) Randomized Computation 4 / 8



A Randomized Incremental Algorithm

Let P = {p1, p2, · · · , pn} be a fixed random order
Si = {p1, p2, · · · , pi} : the first i points in P
δi : the distance of the closest pair in Si ▷ need δn

Idea is to begin with S2 lay out a grid G with cell size δ2 × δ2

For i = 3 to n insert point pi in G incrementally
In each step, update G cell size if δi < δi−1

δi−1

δi−1

δi

δi

δi−1

δi

δi

pi pi

Imdad ullah Khan (LUMS) Randomized Computation 5 / 8



A Randomized Incremental Algorithm: Implementation

Given δi−1, how can we compute δi?
δi = min d(pi , pj) ∀ j in the neighborhood of pi if d(pi , pj) < δi−1

▷ Why? Distance between pi and points outside adjacent cells of pi is
at least δi−1 by construction

What operations do we need for the grid structure?
build-grid(S, δ): build grid G with cell size δ & insert all points in S
insert-point(pi): insert pi

locate-cell(pi): return cell containing pi

get-points(c): return points in cell c

Use hashing to implement grid so operations take O(1) time
Key universe is IDs of all cells in the grid
Actual key space is the IDs of cells containing points
Point co-ordinates are the data for each key
Cell containing pi is located at in grid (⌊xi/δi−1⌋, ⌊yi/δi−1⌋)

Imdad ullah Khan (LUMS) Randomized Computation 6 / 8



A Randomized Incremental Algorithm: Runtime

Algorithm Randomized Closest Pair: returns distance
function closest-pair(P)
{p1, p2, · · · , pn} ← random-permutation(P)
S2 ← {p1, p2}
G ← build-grid(S, δ2)
for i = 3→ n do

Si ← Si−1 ∪ pi ▷ O(1)
Compute δi ▷ O(1)
if δi < δi−1 then G.build-grid(S, δi) ▷ O(i)
else

G.insert-point(pi) ▷ O(1)
return δn

Imdad ullah Khan (LUMS) Randomized Computation 7 / 8



A Randomized Incremental Algorithm: Runtime

Given Si , δi < δi−1 when pi ∈ C for any permutation of Si

Pr [δi < δi−1|Si ] = 2(i − 1)!
i! = 2

i

The
(n

i
)

choices of Si are equally likely =⇒
∑

j∈(n
i ) Pr [Sij ] = 1

Pr [δi < δi−1] =
∑

j∈(n
i )

Pr [δi < δi−1|Sij ] · Pr [Sij ] = 2
i

∑
j∈(n

i )
Pr [Sij ] = 2

i

Let Xi be the runtime of iteration i

E [Xi ] = O(1) +O(i) · Pr [δi < δi−1] = O(1) +O(i) · 2/i = O(1)

E [X ] =
n∑

i=1
E [Xi ] = O(n)

Imdad ullah Khan (LUMS) Randomized Computation 8 / 8


