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Cuts in Graphs

Cuts in graphs are useful structures
Application in network flows, statistical physics, circuit design,
complexity and approximation theory

A cut in G is a subset S ⊂ V

Denoted as
[
S, S

]
S = ∅ and S = V are trivial cuts, we assume that ∅ ≠ S ̸= V
A graph on n vertices has 2n cuts
An edge (u, v) is crossing the cut

[
S, S

]
, if u ∈ S and v ∈ S
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The min-cut problem

A cut in G is a subset S ⊂ V

Denoted as
[
S, S

]
An edge (u, v) is crossing the cut

[
S, S

]
, if u ∈ S and v ∈ S

Size (or cost) of a cut in the number of crossing edges

A cut of size 3 A min cut of size 2

In weighted graph size of cut is the sum of weights of crossing edges

The min-cut(G) problem: Find a cut in G of minimum size?
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The min-cut problem

A cut in G is a subset S ⊂ V

Denoted as
[
S, S

]
An edge (u, v) is crossing the cut

[
S, S

]
, if u ∈ S and v ∈ S

Size (or cost) of a cut in the number of crossing edges

Min cut does not have to be unique

size of min-cut is at most the minimum degree of any vertex

Imdad ullah Khan (LUMS) Randomized Computation 4 / 37



The min-cut problem

The min-cut(G) problem: Find a cut in G of minimum size?

Also called Global Min-Cut

Min-cut has applications in network reliability and robustness analysis

The network on the left is easier to disconnect

Normalized min-cut: Spectral clustering applied to image segmentation
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Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)

https://stackoverflow.com/
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Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing

Find a min-cut in this weighted graph
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Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
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Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing
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Algorithms for Min-Cut

Many deterministic algorithms have been proposed

Stoer-Wagner O(nm + n2 log m) time algorithm

We study a simple randomized algorithm by Karger

And an elegant extension of it due to Karger and Stein

These algorithms are based on the Edge Contraction Operation
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Types of Graphs: PseudoGraphs and Multigraphs

PseudoGraphs

G = (V , E )

V is set of vertices

E is set of edges

(self loops allowed)

a

b c d

Multigraphs

G = (V , E )

V is set of vertices

E is multi-set of edges

may have self loops too

a

b c d
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Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv

u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)
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Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv

u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)
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Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv

u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)
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Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv
u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)
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(e, d)

▷ Multigraphs can be saved with multiplicity as edge weight
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Edge Contraction: Runtime

Edge contraction can be performed in O(n) time

Merge adjacency lists of u and v
Adjacency lists of other vertices can be updated in O(n) time (if we
keep corresponding pointers at entries of adjacency lists)

1 2 3

3 1

u 3

u

v x

vx

...

...

1 2 3

3 1

u 3

u

v x

vx

...

...

...
...
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Edge Contraction

Contraction of an edge (u, v) in G makes multigraph G \ uv
u, v merged into uv , edges incident on u or v become incident on uv
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(e, d)

What happens to min cut after contraction?
▷ If the min-cut in G is of size 10, can G \ uv have min cut of size 9?

The min cut in G \ uv is at least as large as min cut in G
Because any cut in G \ uv is “actually” a cut in G too

The converse is not necessarily true
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Edge contraction increases min cut if the edge is in all possible min cuts
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Karger’s Algorithm

Algorithm : Karger’s algorithm for mincut (G)
while there are more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G ▷ the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces a sub-optimal cut (with 3 edges)
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Karger’s Algorithm

Algorithm : Karger’s algorithm for mincut (G)
while there are more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G ▷ the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces an optimal cut (with 2 edges)
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Karger’s Algorithm: Runtime

Algorithm : Karger’s algorithm for mincut (G)
while there are more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G ▷ the cut induced by the remaining two (super)nodes

With the right data structure a contraction can be done in O(n)

Each contraction reduces the number of vertices by 1

Number of contraction is n − 2

Total runtime is O(n2)
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Karger’s Algorithm: Analysis

The intuition:

Let C =
[
S, S

]
be a specific cut

If during the execution some edge in C is contracted, the algorithm
will not output the cut C

If (u, v) ∈ C ↔ u ∈ S ∧ v ∈ S is contracted, then u and v will belong
to the same supernode and (u, v) cannot be a crossing edge

The algorithm will output C if it never contracts any edge in C

Among all cuts, min-cuts have the least probability of having an edge
contracted
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Karger’s Algorithm: Analysis
Let G0 = (V0, E0) = G = (V , E ) ▷ |Vi | = ni , |Ei | = mi

For 0 ≤ i ≤ n − 2, Gi = (Vi , Ei) : graph after ith contraction ▷ ni = n − i
Let C =

[
S, S

]
be a (specific) min-cut of size k

Every vertex has degree ≥ k =⇒ m0 ≥ kn0/2 ▷ ∵ C is a min-cut of size k

C has survived up to Gi =⇒ mi ≥ kni/2 = k(n−i)/2

Pr [C is “killed” in 1st round] = Pr [an edge in C is contracted] = k/m0 ≤ 2/n0

Pr [C survives in 1st round] = Pr [no edge in C is contracted] ≥ 1− 2/n0

Pr [C survives in (i + 1)th round
∣∣ C survived so far] = 1− k/mi ≥ 1− 2/n−i

Pr [C survives all rounds] =
∏n−3

i=0 Pr [C survives round i + 1
∣∣ C survived so far]

Pr [C survives all rounds] = Pr [C is the output] =
∏n−3

i=0
n−i−2

n−i

Pr [C is the output] ≥ n−2
n ×

n−3
n−1 ×

n−4
n−2 × . . .× 2

4 ×
1
3 = 2

n(n−1) = 1/(n
2)
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Karger’s Algorithm: Analysis

Let G0 = (V0, E0) = G = (V , E ) ▷ |V0| = n, |E0| = m

Let C =
[
S, S

]
be a (specific) min-cut of size k

Pr [C is the output] ≃ 1/n2

This probability is very small is it?

There are 2m cuts, many of them min-cuts, we find one of the
min-cuts with probability 1/n2

With repeated trials, we amplify the probability to any desired value
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Karger’s Algorithm: Analysis

Let G0 = (V0, E0) = G = (V , E ) ▷ |V0| = n, |E0| = m

Let C =
[
S, S

]
be a (specific) min-cut of size k

Pr [C is the output] ≃ 1/n2

With repeated trials, we amplify the probability to any desired value

Algorithm Good-Min-Cut(G , M)

Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm Min-Cut (G)

while more than two vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G
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Karger’s Algorithm: Analysis

Let G0 = (V0, E0) = G = (V , E ) ▷ |V0| = n, |E0| = m

C =
[
S, S

]
: a (specific) min-cut of size k ▷ Pr [C is the output] ≃ 1/n2

Algorithm Good-Min-Cut(G , M)
Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm Min-Cut (G)
while more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G

Pr [all M runs fail to output C ] =
∏n

i=1 Pr [Run i fails] ≤
(
1− 1/n2

)M

∀ x ∈ R (1 + x) < ex ▷ A very useful inequality

Pr [good-min-cut(G , M) fails to output C ] ≤ e−M/n2

M = cn2 log n =⇒ Pr [good-min-cut(G , M) outputs C ] ≥ 1− 1/nc

Runtime is O(n4 log n)
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Karger-Stein Algorithm

Algorithm Good-Min-Cut(G , M)
Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm : Min-Cut (G)
while more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G

Pr [C is “killed” in round 1] = Pr [an edge in C is contracted] = k/m0 ≤ 2/n

Pr [C is “killed” in round 2 | C survived round 1] = k/m1 ≤ 2/n−1

Pr [C is “killed” in rond (i + 1)| C survived so far] = k/mi ≤ 2/n−i

Pr [C is “killed” in rond (n − 3)| C survived so far] ≤ 2/4

Pr [C is “killed” in rond (n − 2)| C survived so far] ≤ 2/3

Bound on probability of wrong contraction increases in each round

As G gets smaller, repeat increasingly many times to reduce the error probability
▷ do not waste time repeating the first “few” iterations
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Karger-Stein Algorithm

Algorithm Fast-Cut(G)
if n ≤ 6 then

return Min-cut (via brute force)
t ← ⌈1 + n/

√
2⌉

H1 ← contract(G , t)
H2 ← contract(G , t)
C1 ← fast-cut(H1)
C2 ← fast-cut(H2)
return smaller of C1 and C2

Algorithm Contract (G , t)
function contract(G , t)

while more than t vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G

Two independent randomly contracted graphs H1 and H2 from G

When H1 and H2 are small, make 4 random contractions

and so on

When the graph has less than 6 vertices, return min among all ∼ 25 cuts

Now we cannot chase a fixed minimum cut C , as both X1 and X2 could be
min cuts (if successful) and we may choose either
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Karger-Stein Algorithm

Algorithm Fast-Cut(G)
if n ≤ 6 then

return Min-cut (via brute force)
t ← ⌈1 + n/

√
2⌉

H1 ← contract(G , t)
H2 ← contract(G , t)
C1 ← fast-cut(H1)
C2 ← fast-cut(H2)
return smaller of C1 and C2

Algorithm Contract (G , t)
function contract(G , t)

while more than t vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G

Let T (n) be runtime of fast-cut(G) with |V (G)| = n

T (n) =

2T (n/
√

2) + O(n2) if n > 6
O(1) else

T(n) = O(n2 log n) ▷ master theorem
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Karger-Stein Algorithm: Quality

1: function fast-cut(G)
2: if n ≤ 6 then
3: return Min-cut (brute force)
4: t ← ⌈1 + n/

√
2⌉

5: H1 ← contract(G , t)
6: H2 ← contract(G , t)
7: C1 ← fast-cut(H1)
8: C2 ← fast-cut(H2)
9: return smaller of C1 and C2

Algorithm Contract (G , t)
function contract(G , t)

while more than t vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G

fast-cut(G) succeeds iff

1 A min-cut survives the contract(G , t) step

2 At least one of the fast-cut(H1) and
fast-cut(H2) finds a min-cut

G

H1 H2

H
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Karger-Stein Algorithm: Quality

fast-cut(G) succeeds iff

1 A min-cut survives the contract(G , t) step

2 At least one of the fast-cut(H1) and
fast-cut(H2) finds a min-cut

1: function fast-cut(G)
2: if n ≤ 6 then
3: return Min-cut
4: t ← ⌈1 + n/

√
2⌉

5: H1 ← contract(G , t)
6: H2 ← contract(G , t)
7: C1 ← fast-cut(H1)
8: C2 ← fast-cut(H2)
9: return min of C1 and C2

Probability a min cut survive contract(G , t) step ▷ line 5&6

Pr [a cut survives n − t contractions] =
n−t−1∏

i=0

n−i−2
n−i

Pr [a cut survives n − t contractions] = n−2
n × . . .× t

t+2 ×
t−1
t+1 = t(t−1)

n(n−1)

Pr [a cut survives n − t contractions] = t(t−1)/n(n−1) ≃ 1/2 ▷ t = n/
√

2
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Karger-Stein Algorithm: Quality

fast-cut(G) succeeds iff

A min-cut survives the contract(G , t) step

At least one of the fast-cut(H1) and
fast-cut(H2) finds a min-cut

1: function fast-cut(G)
2: if n ≤ 6 then
3: return Min-cut
4: t ← ⌈1 + n/

√
2⌉

5: H1 ← contract(G , t)
6: H2 ← contract(G , t)
7: C1 ← fast-cut(H1)
8: C2 ← fast-cut(H2)
9: return min of C1 and C2

P(j) : prob that fast-cut(H) finds min-cut if |V (H)| = j

Probability that
fast-cut(G)
succeeds:

P(n)

A min-cut survives in H1 (line 5) ▷ Prob: 1/2

AND C1 is a min-cut in H1 (line 7) ▷ Prob: P(t)

OR
A min-cut survives in H2 (line 6) ▷ Prob: 1/2

AND C2 is a min-cut in H2 (line 8) ▷ Prob: P(t)
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Karger-Stein Algorithm: Quality

P(j) : prob that fast-cut(H) finds min-cut if |V (H)| = j

Probability that
fast-cut(G)
succeeds

P(n)

A min-cut survives in H1 (line 5) ▷ Prob: 1/2

AND C1 is a min-cut in H1 (line 7) ▷ Prob: P(t)

OR
A min-cut survives in H2 (line 6) ▷ Prob: 1/2

AND C2 is a min-cut in H2 (line 8) ▷ Prob: P(t)

Pr [Branch-i succeeds] = Pr
[

A min-cut survives in Hi (line 5/6)
AND Ci is min-cut in Hi (line 7/8)

]
= 1

2 · P(t)

Pr [Branch-i fails] = 1− 1/2P(t) Pr [Both Branches fail] = (1− 1/2P(t))2

Pr [Algo succeeds] = Pr [NOT Both Branches fail] ≥ 1− (1− 1/2P(t))2
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Karger-Stein Algorithm: Quality

P(j) : prob that fast-cut(H) finds min-cut if |V (H)| = j

Pr [Branch-i succeeds] = Pr
[

A min-cut survives in Hi (line 5/6)
AND Ci is min-cut in Hi (line 7/8)

]
= 1

2 ·P(t)

Pr [Branch-i fails] = 1− 1/2P(t) Pr [Both Branches fail] = (1− 1/2P(t))2

Pr [Algo succeeds] = Pr [NOT Both Branches fail] ≥ 1− (1− 1/2P(t))2

P(n) ≥ 1− (1− 1/2P(t))2 = 1− (1− 1/2P(n/
√

2))2 = Ω(1/log n)

Easily proved via induction
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Karger-Stein Algorithm: Quality

fast-cut(G) takes O(n2 log n) times not much worse than O(n2)
initial version

Has a success probability Ω(1/log n) much better than Ω(1/n2) of initial
version

The initial version amplified by n2 log n independent trial had runtime
O(n4 log n) and success probability Ω(1− 1/nc)

fast-cut(G) amplified by c log2 n independent trial has runtime
O(n2 log3 n) and success probability Ω(1− 1/nc)
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