Randomized Computation

- Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest Pair
- Randomized Complexity Classes

Imdad ullah Khan

Cuts in Graphs

- Cuts in graphs are useful structures
- Application in network flows, statistical physics, circuit design, complexity and approximation theory

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$
- $S = \emptyset$ and S = V are trivial cuts, we assume that $\emptyset \neq S \neq V$
- A graph on *n* vertices has 2^{*n*} cuts
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$

Size (or cost) of a cut in the number of crossing edges

In weighted graph size of cut is the sum of weights of crossing edges

The MIN-CUT(G) problem: Find a cut in G of minimum size?

IMDAD ULLAH KHAN (LUMS)

Randomized Computation

A cut in G is a subset $S \subset V$

- Denoted as $[S, \overline{S}]$
- An edge (u, v) is crossing the cut $[S, \overline{S}]$, if $u \in S$ and $v \in \overline{S}$

Size (or cost) of a cut in the number of crossing edges

- Min cut does not have to be unique
- size of min-cut is at most the minimum degree of any vertex

The MIN-CUT(G) problem: Find a cut in G of minimum size?

Also called Global Min-Cut

Min-cut has applications in network reliability and robustness analysis

The network on the left is easier to disconnect

Normalized min-cut: Spectral clustering applied to image segmentation

Separate foreground from background (e.g aircraft/missile from horizon)

Separate foreground from background (e.g aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels

Separate foreground from background (e.g aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels

Separate foreground from background (e.g aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels

Separate foreground from background (e.g aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is p_{ij} a penalty of classifying *i* and *j* differently p_{ij} is a "similarity measure" determined by image processing

Separate foreground from background (e.g aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is p_{ij} a penalty of classifying *i* and *j* differently p_{ij} is a "similarity measure" determined by image processing

Separate foreground from background (e.g aircraft/missile from horizon) If pixel (x, y) is background/foreground, then so are nearby pixels Make a graph with nodes for each pixel adjacent to neighboring pixels weight of edge (i, j) is p_{ij} a penalty of classifying *i* and *j* differently p_{ij} is a "similarity measure" determined by image processing

Find a min-cut in this weighted graph

IMDAD ULLAH KHAN (LUMS)

Many deterministic algorithms have been proposed

- Stoer-Wagner $O(nm + n^2 \log m)$ time algorithm
- We study a simple randomized algorithm by Karger
- And an elegant extension of it due to Karger and Stein

These algorithms are based on the Edge Contraction Operation

Types of Graphs: PseudoGraphs and Multigraphs

PseudoGraphs

G = (V, E)

- V is set of vertices
- E is set of edges
- (self loops allowed)

Multigraphs

G = (V, E)

V is set of vertices

E is multi-set of edges

may have self loops too

Contraction of an edge (u, v) in G constructs a graph $G \setminus uv$

- u and v become one vertex uv
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

Contraction of an edge (u, v) in G constructs a graph $G \setminus uv$

- u and v become one vertex uv
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

Contraction of an edge (u, v) in G constructs a graph $G \setminus uv$

- u and v become one vertex uv
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph $G \setminus uv$

- u and v become one vertex uv
- edge (u, v) becomes a self-loop (we remove it)
- All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

▷ Multigraphs can be saved with multiplicity as edge weight

Edge Contraction: Runtime

Edge contraction can be performed in O(n) time

- Merge adjacency lists of u and v
- Adjacency lists of other vertices can be updated in O(n) time (if we keep corresponding pointers at entries of adjacency lists)

Edge Contraction

- Contraction of an edge (u, v) in G makes multigraph $G \setminus uv$
- u, v merged into uv, edges incident on u or v become incident on uv

What happens to min cut after contraction?

▷ If the min-cut in G is of size 10, can $G \setminus uv$ have min cut of size 9?

- The min cut in $G \setminus uv$ is at least as large as min cut in G
 - Because any cut in $G \setminus uv$ is "actually" a cut in G too
- The converse is not necessarily true

Edge contraction increases min cut if the edge is in all possible min cuts

Algorithm : Karger's algorithm for mincut (G)

while there are more than two vertices left in G do

Pick a random edge
$$e = (u, v)$$

$$G \leftarrow G \setminus uv$$

return G \triangleright the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces a sub-optimal cut (with 3 edges)

Algorithm : Karger's algorithm for mincut (*G*)

while there are more than two vertices left in G do

Pick a random edge
$$e = (u, v)$$

$$G \leftarrow G \setminus uv$$

return G \triangleright the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces an optimal cut (with 2 edges)

Algorithm : Karger's algorithm for mincut (*G*)

while there are more than two vertices left in G do

Pick a random edge
$$e = (u, v)$$

$$G \leftarrow G \setminus uv$$

return G \triangleright the cut induced by the remaining two (super)nodes

- With the right data structure a contraction can be done in O(n)
- Each contraction reduces the number of vertices by 1
- Number of contraction is *n* − 2
- Total runtime is $O(n^2)$

The intuition:

- Let $C = [S, \overline{S}]$ be a specific cut
- If during the execution some edge in C is contracted, the algorithm will not output the cut C
 - If $(u, v) \in C \iff u \in S \land v \in \overline{S}$ is contracted, then *u* and *v* will belong to the same supernode and (u, v) cannot be a crossing edge
- The algorithm will output C if it never contracts any edge in C

Among all cuts, min-cuts have the least probability of having an edge contracted

Karger's Algorithm: Analysis

Let $G_0 = (V_0, E_0) = G = (V, E)$ $\triangleright |V_i| = n_i, |E_i| = m_i$ For $0 \le i \le n-2$, $G_i = (V_i, E_i)$: graph after *i*th contraction $\triangleright n_i = n - i$ Let $C = [S, \overline{S}]$ be a (specific) min-cut of size k

Every vertex has degree $\geq k \implies m_0 \geq \frac{kn_0}{2} \implies C$ is a min-cut of size k

C has survived up to $G_i \implies m_i \ge \frac{kn_i}{2} = \frac{k(n-i)}{2}$

 $\begin{aligned} & Pr[C \text{ is "killed" in 1st round}] = Pr[\text{an edge in } C \text{ is contracted}] = \frac{k}{m_0} \leq \frac{2}{n_0} \\ & Pr[C \text{ survives in 1st round}] = Pr[\text{no edge in } C \text{ is contracted}] \geq 1 - \frac{2}{n_0} \\ & Pr[C \text{ survives in } (i+1)\text{th round} \mid C \text{ survived so far}] = 1 - \frac{k}{m_i} \geq 1 - \frac{2}{n-i} \\ & Pr[C \text{ survives all rounds}] = \prod_{i=0}^{n-3} Pr[C \text{ survives round } i+1 \mid C \text{ survived so far}] \\ & Pr[C \text{ survives all rounds}] = Pr[C \text{ is the output}] = \prod_{i=0}^{n-3} \frac{n-i-2}{n-i} \\ & Pr[C \text{ is the output}] \geq \frac{n-2}{n} \times \frac{n-3}{n-1} \times \frac{n-4}{n-2} \times \ldots \times \frac{2}{4} \times \frac{1}{3} = \frac{2}{n(n-1)} = \frac{1}{n} \binom{n}{2} \end{aligned}$

Let $G_0 = (V_0, E_0) = G = (V, E)$ $\triangleright |V_0| = n, |E_0| = m$ Let $C = [S, \overline{S}]$ be a (specific) min-cut of size k

 $Pr[C \text{ is the output}] \simeq 1/n^2$

This probability is very small is it?

- There are 2^m cuts, many of them min-cuts, we find one of the min-cuts with probability 1/n²
- With repeated trials, we amplify the probability to any desired value

Karger's Algorithm: Analysis

Let $G_0 = (V_0, E_0) = G = (V, E)$ $\triangleright |V_0| = n, |E_0| = m$

Let $C = [S, \overline{S}]$ be a (specific) min-cut of size k

 $Pr[C \text{ is the output}] \simeq 1/n^2$

• With repeated trials, we amplify the probability to any desired value

Algorithm Good-Min-Cut(G, M)	Algorithm Min-Cut (G)	
Run MIN-CUT(G) M times	while more than two vertices left in ${\it G}$ do	
Return smallest of these M cuts	Pick a random edge $e = (u, v)$	
	${old G} \leftarrow {old G} \setminus {old uv}$	

return G

Karger's Algorithm: Analysis

Let $G_0 = (V_0, E_0) = G = (V, E)$		$\triangleright V_0 = n, E_0 = m$
$C = [S, \overline{S}]$: a (specific) min-cut of s	size <i>k</i>	\triangleright $Pr[C \text{ is the output}] \simeq 1/n^2$
Algorithm Good-Min-Cut(G, M)	Algorithm	Min-Cut (G)
Run MIN-CUT(G) M times Return smallest of these M cuts	while more than two vertices left in G do Pick a random edge $e = (u, v)$ $G \leftarrow G \setminus uv$	
	return G	

 $Pr[\text{all } M \text{ runs fail to output } C] = \prod_{i=1}^{n} Pr[\text{Run } i \text{ fails}] \leq (1 - \frac{1}{n^2})^{M}$

 $\forall x \in \mathbb{R} \ (1+x) < e^x$

▷ A very useful inequality

 $Pr[\text{GOOD-MIN-CUT}(G, M) \text{ fails to output } C] \leq e^{-M/n^2}$

 $M = cn^2 \log n \implies Pr[\text{GOOD-MIN-CUT}(G, M) \text{ outputs } C] \ge 1 - 1/n^c$

Runtime is $O(n^4 \log n)$

IMDAD ULLAH KHAN (LUMS)

Karger-Stein Algorithm

Algorithm Good-Min-Cut(G, M)	Algorithm : Min-Cut (G)	
Run MIN-CUT(G) M times	while more than two vertices left in G do	
Return smallest of these M cuts	Pick a random edge $e = (u, v)$	
	$\mathbf{G} \leftarrow \mathbf{G} \setminus uv$	
	return G	
$Pr[C ext{ is "killed" in round 1}] = Pr[ext{an edge in } C ext{ is contracted}] = k/m_0 \le 2/n$		
$Pr[C \text{ is "killed" in round 2} \mid C \text{ survived round 1}] = k/m_1 \leq 2/n-1$		
$Pr[C ext{ is "killed" in rond } (i+1) \ C ext{ survived so far}] = k/m_i \leq 2/n-i$		
$Pr[C ext{ is "killed" in rond } (n-3) \ C ext{ survived so far}] \ \leq \ ^2/4$		
$Pr[C ext{ is "killed" in rond } (n-2) C ext{ survived so far}] \leq 2/3$		
Bound on probability of wrong contraction increases in each round		
As G gets smaller, repeat increasingly many times to reduce the error probability		
⊳ do not	waste time repeating the first "few" iterations	

Algorithm Fast-Cut(G)	Algorithm Contract (G, t)
if $n \le 6$ then return Min-cut (via brute force)	function CONTRACT(G, t) while more than t vertices left in G do
$t \leftarrow \lceil 1 + n/\sqrt{2} ceil \ H_1 \leftarrow ext{CONTRACT}(G,t)$	Pick a random edge $e = (u, v)$ $G \leftarrow G \setminus uv$
$H_2 \leftarrow \text{CONTRACT}(G, t)$ $C_1 \leftarrow \text{FAST-CUT}(H_1)$ $C_2 \leftarrow \text{FAST-CUT}(H_2)$	return G

return smaller of C_1 and C_2

- Two independent randomly contracted graphs H_1 and H_2 from G
- When H_1 and H_2 are small, make 4 random contractions
- and so on
- $\scriptstyle \blacksquare$ When the graph has less than 6 vertices, return min among all $\sim 2^5$ cuts
- Now we cannot chase a fixed minimum cut *C*, as both *X*₁ and *X*₂ could be min cuts (if successful) and we may choose either

 $\begin{array}{l} \textbf{Algorithm} \quad \text{Fast-Cut}(G) \\ \hline \textbf{if} \ n \leq 6 \ \textbf{then} \\ \textbf{return} \ \textbf{Min-cut} \ (\text{via brute force}) \\ t \leftarrow \lceil 1 + n/\sqrt{2} \rceil \\ H_1 \leftarrow \text{CONTRACT}(G, t) \\ H_2 \leftarrow \text{CONTRACT}(G, t) \\ H_2 \leftarrow \text{CONTRACT}(G, t) \\ C_1 \leftarrow \text{FAST-CUT}(H_1) \\ C_2 \leftarrow \text{FAST-CUT}(H_2) \\ \textbf{return smaller of } C_1 \ \textbf{and} \ C_2 \end{array}$

Algorithm Contract (*G*, *t*)

function CONTRACT(G, t) while more than t vertices left in G do Pick a random edge e = (u, v) $G \leftarrow G \setminus uv$ return G

Let T(n) be runtime of FAST-CUT(G) with |V(G)| = n

$$T(n) = \begin{cases} 2T(n/\sqrt{2}) + O(n^2) & \text{if } n > 6\\ O(1) & \text{else} \end{cases}$$

 $\mathbf{T}(\mathbf{n}) = \mathbf{O}(\mathbf{n}^2 \log \mathbf{n})$

▷ master theorem

- 1: function FAST-CUT(G)
- 2: if $n \le 6$ then
- 3: return Min-cut (brute force)
- 4: $t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$
- 5: $H_1 \leftarrow \text{CONTRACT}(G, t)$
- 6: $H_2 \leftarrow \text{CONTRACT}(G, t)$
- 7: $C_1 \leftarrow \text{Fast-cut}(H_1)$
- 8: $C_2 \leftarrow \text{Fast-cut}(H_2)$
- 9: return smaller of C_1 and C_2

AlgorithmContract (G, t)functionCONTRACT(G, t)while more than t vertices left in G doPick a random edge e = (u, v) $G \leftarrow G \setminus uv$ return G

FAST-CUT(G) succeeds iff

- **1** A min-cut survives the CONTRACT(G, t) step
- 2 At least one of the FAST-CUT(H₁) and FAST-CUT(H₂) finds a min-cut

FAST-CUT(G) succeeds iff

- **1** A min-cut survives the CONTRACT(G, t) step
- 2 At least one of the FAST-CUT(H_1) and FAST-CUT(H_2) finds a min-cut

- 1: function FAST-CUT(G)
- if n < 6 then 2:
- 3: return Min-cut

4:
$$t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$$

5: $H_1 \leftarrow \text{CONTRAC}$

8

:
$$H_1 \leftarrow \text{CONTRACT}(G, t)$$

6: $H_2 \leftarrow \text{CONTRACT}(G, t)$

7:
$$C_1 \leftarrow \text{FAST-CUT}(H_1)$$

:
$$C_2 \leftarrow \text{FAST-CUT}(H_2)$$

9: **return** MIN of C_1 and C_2

Probability a min cut survive CONTRACT(G, t) step

⊳ line 5&6

$$Pr[a \text{ cut survives } n-t \text{ contractions}] = \prod_{i=0}^{n-t-1} \frac{n-i-2}{n-i}$$

$$= \frac{n-2}{n} \times \ldots \times \frac{t}{t+2} \times \frac{t-1}{t+1} = \frac{t(t-1)}{n(n-1)}$$
$$= \frac{t(t-1)}{n(n-1)} \simeq \frac{1}{2} \qquad \triangleright \ t = \frac{n}{\sqrt{2}}$$

FAST-CUT(G) succeeds iff

- A min-cut survives the CONTRACT(G, t) step
- At least one of the FAST-CUT(H_1) and FAST-CUT(H_2) finds a min-cut

- 1: function FAST-CUT(G)
- if n < 6 then 2:
- 3: return Min-cut

4:
$$t \leftarrow \lceil 1 + n/\sqrt{2} \rceil$$

- 5: $H_1 \leftarrow \text{CONTRACT}(G, t)$
- 6: $H_2 \leftarrow \text{CONTRACT}(G, t)$
- 7: $C_1 \leftarrow \text{FAST-CUT}(H_1)$

8:
$$C_2 \leftarrow \text{FAST-CUT}(H_2)$$

9: **return** MIN of C_1 and C_2

P(j): prob that FAST-CUT(H) finds min-cut if |V(H)| = j

• A min-cut survives in H_1 (line 5) \triangleright Prob: 1/2

Probability that FAST-CUT(G) succeeds: P(n)

AND C_1 is a min-cut in H_1 (line 7) \triangleright Prob: P(t)

OR

- A min-cut survives in H_2 (line 6) \triangleright Prob: 1/2
- **AND** C_2 is a min-cut in H_2 (line 8) \triangleright Prob: P(t)

P(j): prob that FAST-CUT(H) finds min-cut if |V(H)| = j

Probability that FAST-CUT(G) succeeds P(n) A min-cut survives in H_1 (line 5) AND C_1 is a min-cut in H_1 (line 7) OR A min-cut survives in H_2 (line 6) Prob: $\frac{1}{2}$

AND
$$C_2$$
 is a min-cut in H_2 (line 8) \triangleright Prob: $P(t)$

$$Pr[Branch-i \text{ succeeds}] = Pr \begin{bmatrix} A \text{ min-cut survives in } H_i \text{ (line 5/6)} \\ AND \ C_i \text{ is min-cut in } H_i \text{ (line 7/8)} \end{bmatrix} = \frac{1}{2} \cdot P(t)$$

 $Pr[Branch-i fails] = 1 - \frac{1}{2}P(t)$ $Pr[Both Branches fail] = (1 - \frac{1}{2}P(t))^2$

 $Pr[Algo succeeds] = Pr[NOT Both Branches fail] \ge 1 - (1 - 1/2P(t))^2$

P(j): prob that FAST-CUT(H) finds min-cut if |V(H)| = j

 $Pr[Branch-i \text{ succeeds}] = Pr\left[\begin{array}{c} A \text{ min-cut survives in } H_i \text{ (line 5/6)} \\ AND \ C_i \text{ is min-cut in } H_i \text{ (line 7/8)} \end{array}\right] = \frac{1}{2} \cdot P(t)$

 $Pr[Branch-i fails] = 1 - \frac{1}{2}P(t)$ $Pr[Both Branches fail] = (1 - \frac{1}{2}P(t))^2$

 $Pr[Algo succeeds] = Pr[NOT Both Branches fail] \ge 1 - (1 - 1/2P(t))^2$

$$P(n) \geq 1 - (1 - 1/2P(t))^2 = 1 - (1 - 1/2P(n/\sqrt{2}))^2 = \Omega(1/\log n)$$

Easily proved via induction

- FAST-CUT(G) takes O(n² log n) times not much worse than O(n²) initial version
- Has a success probability $\Omega(1/\log n)$ much better than $\Omega(1/n^2)$ of initial version
- The initial version amplified by $n^2 \log n$ independent trial had runtime $O(n^4 \log n)$ and success probability $\Omega(1 1/n^c)$
- FAST-CUT(G) amplified by $c \log^2 n$ independent trial has runtime $O(n^2 \log^3 n)$ and success probability $\Omega(1 1/n^c)$