
Theory of Computation

Randomized Computation

Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms

Probability Review

Probabilistic Analysis of deterministic quick-sort Algorithm

randomized-select and randomized-quick-sort

Max-Cut

Min-Cut

max-3-sat and Derandomization

Closest Pair

Randomized Complexity Classes

Imdad ullah Khan
Imdad ullah Khan (LUMS) Randomized Computation 1 / 37

Cuts in Graphs

Cuts in graphs are useful structures
Application in network flows, statistical physics, circuit design,
complexity and approximation theory

A cut in G is a subset S ⊂ V

Denoted as
[
S, S

]
S = ∅ and S = V are trivial cuts, we assume that ∅ ≠ S ̸= V
A graph on n vertices has 2n cuts
An edge (u, v) is crossing the cut

[
S, S

]
, if u ∈ S and v ∈ S

A

F

E

G

D

C

B

cu
t
e
d
g
e
s

E

A

F

D

C

B

3

2

1

4

8
5

6

6G
13

Imdad ullah Khan (LUMS) Randomized Computation 2 / 37

The min-cut problem

A cut in G is a subset S ⊂ V

Denoted as
[
S, S

]
An edge (u, v) is crossing the cut

[
S, S

]
, if u ∈ S and v ∈ S

Size (or cost) of a cut in the number of crossing edges

A cut of size 3 A min cut of size 2

In weighted graph size of cut is the sum of weights of crossing edges

The min-cut(G) problem: Find a cut in G of minimum size?

Imdad ullah Khan (LUMS) Randomized Computation 3 / 37

The min-cut problem

A cut in G is a subset S ⊂ V

Denoted as
[
S, S

]
An edge (u, v) is crossing the cut

[
S, S

]
, if u ∈ S and v ∈ S

Size (or cost) of a cut in the number of crossing edges

Min cut does not have to be unique

size of min-cut is at most the minimum degree of any vertex

Imdad ullah Khan (LUMS) Randomized Computation 4 / 37

The min-cut problem

The min-cut(G) problem: Find a cut in G of minimum size?

Also called Global Min-Cut

Min-cut has applications in network reliability and robustness analysis

The network on the left is easier to disconnect

Normalized min-cut: Spectral clustering applied to image segmentation

Imdad ullah Khan (LUMS) Randomized Computation 5 / 37

Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)

https://stackoverflow.com/

Imdad ullah Khan (LUMS) Randomized Computation 6 / 37

Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing

Find a min-cut in this weighted graph
Imdad ullah Khan (LUMS) Randomized Computation 7 / 37

Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing

Find a min-cut in this weighted graph
Imdad ullah Khan (LUMS) Randomized Computation 8 / 37

Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing

Find a min-cut in this weighted graph
Imdad ullah Khan (LUMS) Randomized Computation 9 / 37

Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing

9 9 9 9

9

9

9

9

9

9

99

9

9

9999

888

8

8 8 8

8

8

8 8

8

8

8 8

8

8

888

8

8

88 8

8

8

9

9

9

9

9

9

1
11

1

11
1

1

1

11

1

2

2
2

2
2

2

2 2

8

9

99

99 11

8 88

Find a min-cut in this weighted graph
Imdad ullah Khan (LUMS) Randomized Computation 10 / 37

Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing

9 9 9 9

9

9

9

9

9

9

99

9

9

9999

888

8

8 8 8

8

8

8 8

8

8

8 8

8

8

888

8

8

88 8

8

8

9

9

9

9

9

9

1
11

1

11
1

1

1

11

1

2

2
2

2
2

2

2 2

8

9

99

99 11

8 88

Find a min-cut in this weighted graph
Imdad ullah Khan (LUMS) Randomized Computation 11 / 37

Image Segmentation application of min-cut

Separate foreground from background (e.g aircraft/missile from horizon)
If pixel (x , y) is background/foreground, then so are nearby pixels
Make a graph with nodes for each pixel adjacent to neighboring pixels
weight of edge (i , j) is pij a penalty of classifying i and j differently
pij is a “similarity measure” determined by image processing

9 9 9 9

9

9

9

9

9

9

99

9

9

9999

888

8

8 8 8

8

8

8 8

8

8

8 8

8

8

888

8

8

88 8

8

8

9

9

9

9

9

9

1
11

1

11
1

1

1

11

1

2

2
2

2
2

2

2 2

8

9

99

99 11

8 88

1

1

1

Find a min-cut in this weighted graph
Imdad ullah Khan (LUMS) Randomized Computation 12 / 37

Algorithms for Min-Cut

Many deterministic algorithms have been proposed

Stoer-Wagner O(nm + n2 log m) time algorithm

We study a simple randomized algorithm by Karger

And an elegant extension of it due to Karger and Stein

These algorithms are based on the Edge Contraction Operation

Imdad ullah Khan (LUMS) Randomized Computation 13 / 37

Types of Graphs: PseudoGraphs and Multigraphs

PseudoGraphs

G = (V , E)

V is set of vertices

E is set of edges

(self loops allowed)

a

b c d

Multigraphs

G = (V , E)

V is set of vertices

E is multi-set of edges

may have self loops too

a

b c d

Imdad ullah Khan (LUMS) Randomized Computation 14 / 37

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv

u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

a

b
c d

e

f
g

a

b
c

de

f
g

contract

(e, d)

Imdad ullah Khan (LUMS) Randomized Computation 15 / 37

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv

u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

contract

(b, g)

a

c

de

f

bg

a

b
c

de

f
g

Imdad ullah Khan (LUMS) Randomized Computation 16 / 37

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv

u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

contract

(a, bg)

a

c

de

f

bg

c

de

f

abg

Imdad ullah Khan (LUMS) Randomized Computation 17 / 37

Edge Contraction

Contraction of an edge (u, v) in G constructs a graph G \ uv
u and v become one vertex uv
edge (u, v) becomes a self-loop (we remove it)
All edges incident on u or v become incident on uv

The resulting graph may become a multigraph (we keep all edges)

a

b
c d

e

f
g

a

b
c

de

f
g

contract

(e, d)

▷ Multigraphs can be saved with multiplicity as edge weight

Imdad ullah Khan (LUMS) Randomized Computation 18 / 37

Edge Contraction: Runtime

Edge contraction can be performed in O(n) time

Merge adjacency lists of u and v
Adjacency lists of other vertices can be updated in O(n) time (if we
keep corresponding pointers at entries of adjacency lists)

1 2 3

3 1

u 3

u

v x

vx

...

...

1 2 3

3 1

u 3

u

v x

vx

...

...

...
...

Imdad ullah Khan (LUMS) Randomized Computation 19 / 37

Edge Contraction

Contraction of an edge (u, v) in G makes multigraph G \ uv
u, v merged into uv , edges incident on u or v become incident on uv

a

b
c d

e

f
g

a

b
c

de

f
g

contract

(e, d)

What happens to min cut after contraction?
▷ If the min-cut in G is of size 10, can G \ uv have min cut of size 9?

The min cut in G \ uv is at least as large as min cut in G
Because any cut in G \ uv is “actually” a cut in G too

The converse is not necessarily true

cfb

a

c

e

f g b

a e

g

Edge contraction increases min cut if the edge is in all possible min cuts

Imdad ullah Khan (LUMS) Randomized Computation 20 / 37

Karger’s Algorithm

Algorithm : Karger’s algorithm for mincut (G)
while there are more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G ▷ the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces a sub-optimal cut (with 3 edges)

Imdad ullah Khan (LUMS) Randomized Computation 21 / 37

Karger’s Algorithm

Algorithm : Karger’s algorithm for mincut (G)
while there are more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G ▷ the cut induced by the remaining two (super)nodes

A run of Karger algorithm that produces an optimal cut (with 2 edges)

Imdad ullah Khan (LUMS) Randomized Computation 22 / 37

Karger’s Algorithm: Runtime

Algorithm : Karger’s algorithm for mincut (G)
while there are more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G ▷ the cut induced by the remaining two (super)nodes

With the right data structure a contraction can be done in O(n)

Each contraction reduces the number of vertices by 1

Number of contraction is n − 2

Total runtime is O(n2)

Imdad ullah Khan (LUMS) Randomized Computation 23 / 37

Karger’s Algorithm: Analysis

The intuition:

Let C =
[
S, S

]
be a specific cut

If during the execution some edge in C is contracted, the algorithm
will not output the cut C

If (u, v) ∈ C ↔ u ∈ S ∧ v ∈ S is contracted, then u and v will belong
to the same supernode and (u, v) cannot be a crossing edge

The algorithm will output C if it never contracts any edge in C

Among all cuts, min-cuts have the least probability of having an edge
contracted

Imdad ullah Khan (LUMS) Randomized Computation 24 / 37

Karger’s Algorithm: Analysis
Let G0 = (V0, E0) = G = (V , E) ▷ |Vi | = ni , |Ei | = mi

For 0 ≤ i ≤ n − 2, Gi = (Vi , Ei) : graph after ith contraction ▷ ni = n − i
Let C =

[
S, S

]
be a (specific) min-cut of size k

Every vertex has degree ≥ k =⇒ m0 ≥ kn0/2 ▷ ∵ C is a min-cut of size k

C has survived up to Gi =⇒ mi ≥ kni/2 = k(n−i)/2

Pr [C is “killed” in 1st round] = Pr [an edge in C is contracted] = k/m0 ≤ 2/n0

Pr [C survives in 1st round] = Pr [no edge in C is contracted] ≥ 1− 2/n0

Pr [C survives in (i + 1)th round
∣∣ C survived so far] = 1− k/mi ≥ 1− 2/n−i

Pr [C survives all rounds] =
∏n−3

i=0 Pr [C survives round i + 1
∣∣ C survived so far]

Pr [C survives all rounds] = Pr [C is the output] =
∏n−3

i=0
n−i−2

n−i

Pr [C is the output] ≥ n−2
n ×

n−3
n−1 ×

n−4
n−2 × . . .× 2

4 ×
1
3 = 2

n(n−1) = 1/(n
2)

Imdad ullah Khan (LUMS) Randomized Computation 25 / 37

Karger’s Algorithm: Analysis

Let G0 = (V0, E0) = G = (V , E) ▷ |V0| = n, |E0| = m

Let C =
[
S, S

]
be a (specific) min-cut of size k

Pr [C is the output] ≃ 1/n2

This probability is very small is it?

There are 2m cuts, many of them min-cuts, we find one of the
min-cuts with probability 1/n2

With repeated trials, we amplify the probability to any desired value

Imdad ullah Khan (LUMS) Randomized Computation 26 / 37

Karger’s Algorithm: Analysis

Let G0 = (V0, E0) = G = (V , E) ▷ |V0| = n, |E0| = m

Let C =
[
S, S

]
be a (specific) min-cut of size k

Pr [C is the output] ≃ 1/n2

With repeated trials, we amplify the probability to any desired value

Algorithm Good-Min-Cut(G , M)

Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm Min-Cut (G)

while more than two vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G

Imdad ullah Khan (LUMS) Randomized Computation 27 / 37

Karger’s Algorithm: Analysis

Let G0 = (V0, E0) = G = (V , E) ▷ |V0| = n, |E0| = m

C =
[
S, S

]
: a (specific) min-cut of size k ▷ Pr [C is the output] ≃ 1/n2

Algorithm Good-Min-Cut(G , M)
Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm Min-Cut (G)
while more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G

Pr [all M runs fail to output C] =
∏n

i=1 Pr [Run i fails] ≤
(
1− 1/n2

)M

∀ x ∈ R (1 + x) < ex ▷ A very useful inequality

Pr [good-min-cut(G , M) fails to output C] ≤ e−M/n2

M = cn2 log n =⇒ Pr [good-min-cut(G , M) outputs C] ≥ 1− 1/nc

Runtime is O(n4 log n)
Imdad ullah Khan (LUMS) Randomized Computation 28 / 37

Karger-Stein Algorithm

Algorithm Good-Min-Cut(G , M)
Run Min-Cut(G) M times
Return smallest of these M cuts

Algorithm : Min-Cut (G)
while more than two vertices left in G do

Pick a random edge e = (u, v)
G ← G \ uv

return G

Pr [C is “killed” in round 1] = Pr [an edge in C is contracted] = k/m0 ≤ 2/n

Pr [C is “killed” in round 2 | C survived round 1] = k/m1 ≤ 2/n−1

Pr [C is “killed” in rond (i + 1)| C survived so far] = k/mi ≤ 2/n−i

Pr [C is “killed” in rond (n − 3)| C survived so far] ≤ 2/4

Pr [C is “killed” in rond (n − 2)| C survived so far] ≤ 2/3

Bound on probability of wrong contraction increases in each round

As G gets smaller, repeat increasingly many times to reduce the error probability
▷ do not waste time repeating the first “few” iterations

Imdad ullah Khan (LUMS) Randomized Computation 29 / 37

Karger-Stein Algorithm

Algorithm Fast-Cut(G)
if n ≤ 6 then

return Min-cut (via brute force)
t ← ⌈1 + n/

√
2⌉

H1 ← contract(G , t)
H2 ← contract(G , t)
C1 ← fast-cut(H1)
C2 ← fast-cut(H2)
return smaller of C1 and C2

Algorithm Contract (G , t)
function contract(G , t)

while more than t vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G

Two independent randomly contracted graphs H1 and H2 from G

When H1 and H2 are small, make 4 random contractions

and so on

When the graph has less than 6 vertices, return min among all ∼ 25 cuts

Now we cannot chase a fixed minimum cut C , as both X1 and X2 could be
min cuts (if successful) and we may choose either

Imdad ullah Khan (LUMS) Randomized Computation 30 / 37

Karger-Stein Algorithm

Algorithm Fast-Cut(G)
if n ≤ 6 then

return Min-cut (via brute force)
t ← ⌈1 + n/

√
2⌉

H1 ← contract(G , t)
H2 ← contract(G , t)
C1 ← fast-cut(H1)
C2 ← fast-cut(H2)
return smaller of C1 and C2

Algorithm Contract (G , t)
function contract(G , t)

while more than t vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G

Let T (n) be runtime of fast-cut(G) with |V (G)| = n

T (n) =

2T (n/
√

2) + O(n2) if n > 6
O(1) else

T(n) = O(n2 log n) ▷ master theorem

Imdad ullah Khan (LUMS) Randomized Computation 31 / 37

Karger-Stein Algorithm: Quality

1: function fast-cut(G)
2: if n ≤ 6 then
3: return Min-cut (brute force)
4: t ← ⌈1 + n/

√
2⌉

5: H1 ← contract(G , t)
6: H2 ← contract(G , t)
7: C1 ← fast-cut(H1)
8: C2 ← fast-cut(H2)
9: return smaller of C1 and C2

Algorithm Contract (G , t)
function contract(G , t)

while more than t vertices left in G do
Pick a random edge e = (u, v)
G ← G \ uv

return G

fast-cut(G) succeeds iff

1 A min-cut survives the contract(G , t) step

2 At least one of the fast-cut(H1) and
fast-cut(H2) finds a min-cut

G

H1 H2

H

Imdad ullah Khan (LUMS) Randomized Computation 32 / 37

Karger-Stein Algorithm: Quality

fast-cut(G) succeeds iff

1 A min-cut survives the contract(G , t) step

2 At least one of the fast-cut(H1) and
fast-cut(H2) finds a min-cut

1: function fast-cut(G)
2: if n ≤ 6 then
3: return Min-cut
4: t ← ⌈1 + n/

√
2⌉

5: H1 ← contract(G , t)
6: H2 ← contract(G , t)
7: C1 ← fast-cut(H1)
8: C2 ← fast-cut(H2)
9: return min of C1 and C2

Probability a min cut survive contract(G , t) step ▷ line 5&6

Pr [a cut survives n − t contractions] =
n−t−1∏

i=0

n−i−2
n−i

Pr [a cut survives n − t contractions] = n−2
n × . . .× t

t+2 ×
t−1
t+1 = t(t−1)

n(n−1)

Pr [a cut survives n − t contractions] = t(t−1)/n(n−1) ≃ 1/2 ▷ t = n/
√

2

Imdad ullah Khan (LUMS) Randomized Computation 33 / 37

Karger-Stein Algorithm: Quality

fast-cut(G) succeeds iff

A min-cut survives the contract(G , t) step

At least one of the fast-cut(H1) and
fast-cut(H2) finds a min-cut

1: function fast-cut(G)
2: if n ≤ 6 then
3: return Min-cut
4: t ← ⌈1 + n/

√
2⌉

5: H1 ← contract(G , t)
6: H2 ← contract(G , t)
7: C1 ← fast-cut(H1)
8: C2 ← fast-cut(H2)
9: return min of C1 and C2

P(j) : prob that fast-cut(H) finds min-cut if |V (H)| = j

Probability that
fast-cut(G)
succeeds:

P(n)

A min-cut survives in H1 (line 5) ▷ Prob: 1/2

AND C1 is a min-cut in H1 (line 7) ▷ Prob: P(t)

OR
A min-cut survives in H2 (line 6) ▷ Prob: 1/2

AND C2 is a min-cut in H2 (line 8) ▷ Prob: P(t)

Imdad ullah Khan (LUMS) Randomized Computation 34 / 37

Karger-Stein Algorithm: Quality

P(j) : prob that fast-cut(H) finds min-cut if |V (H)| = j

Probability that
fast-cut(G)
succeeds

P(n)

A min-cut survives in H1 (line 5) ▷ Prob: 1/2

AND C1 is a min-cut in H1 (line 7) ▷ Prob: P(t)

OR
A min-cut survives in H2 (line 6) ▷ Prob: 1/2

AND C2 is a min-cut in H2 (line 8) ▷ Prob: P(t)

Pr [Branch-i succeeds] = Pr
[

A min-cut survives in Hi (line 5/6)
AND Ci is min-cut in Hi (line 7/8)

]
= 1

2 · P(t)

Pr [Branch-i fails] = 1− 1/2P(t) Pr [Both Branches fail] = (1− 1/2P(t))2

Pr [Algo succeeds] = Pr [NOT Both Branches fail] ≥ 1− (1− 1/2P(t))2

Imdad ullah Khan (LUMS) Randomized Computation 35 / 37

Karger-Stein Algorithm: Quality

P(j) : prob that fast-cut(H) finds min-cut if |V (H)| = j

Pr [Branch-i succeeds] = Pr
[

A min-cut survives in Hi (line 5/6)
AND Ci is min-cut in Hi (line 7/8)

]
= 1

2 ·P(t)

Pr [Branch-i fails] = 1− 1/2P(t) Pr [Both Branches fail] = (1− 1/2P(t))2

Pr [Algo succeeds] = Pr [NOT Both Branches fail] ≥ 1− (1− 1/2P(t))2

P(n) ≥ 1− (1− 1/2P(t))2 = 1− (1− 1/2P(n/
√

2))2 = Ω(1/log n)

Easily proved via induction

Imdad ullah Khan (LUMS) Randomized Computation 36 / 37

Karger-Stein Algorithm: Quality

fast-cut(G) takes O(n2 log n) times not much worse than O(n2)
initial version

Has a success probability Ω(1/log n) much better than Ω(1/n2) of initial
version

The initial version amplified by n2 log n independent trial had runtime
O(n4 log n) and success probability Ω(1− 1/nc)

fast-cut(G) amplified by c log2 n independent trial has runtime
O(n2 log3 n) and success probability Ω(1− 1/nc)

Imdad ullah Khan (LUMS) Randomized Computation 37 / 37

