Theory of Computation

Randomized Computation

- Deterministic and (Las Vegas \& Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest Pair
- Randomized Complexity Classes

Imdad ullah Khan

Cuts in Graphs

■ Cuts in graphs are very useful structures

- It has applications in network flows, statistical physics, circuit design, complexity, and approximation theory

A cut in G is a subset $S \subset V$

- Denoted as $[S, \bar{S}]$
- $S=\emptyset$ and $S=V$ are trivial cuts, we assume that $\emptyset \neq S \neq V$
- A graph on n vertices has 2^{n} cuts
- An edge (u, v) crosses the cut $[S, \bar{S}]$, if $u \in S$ and $v \in \bar{S}$

The maX-CUT problem

A cut in G is a subset $S \subset V$

- Denoted as $[S, \bar{S}]$
- An edge (u, v) crosses the cut $[S, \bar{S}]$, if $u \in S$ and $v \in \bar{S}$

Size (or cost) of a cut in the number of crossing edges

A max cut of size 6

- In weighted graphs size of cut is the sum of weights of crossing edges

The max-Cut (G) problem: Find a cut in G of maximum size?

The maX-CUT problem

A cut in G is a subset $S \subset V$

■ Denoted as $[S, \bar{S}]$

- An edge (u, v) is crossing the cut $[S, \bar{S}]$, if $u \in S$ and $v \in \bar{S}$

Size (or cost) of a cut in the number of crossing edges

■ In weighted graph size of cut is the sum of weights of crossing edges
The max-cut (G) problem: Find a cut in G of maximum size/weight?

The decision version of the max-Cut (G) problem is NP-Complete

Randomized Approximation Algorithm for Max-CuT

The algorithm construct $[S, \bar{S}]$ by placing each vertex in S or \bar{S} at random

Algorithm RAND-MAX-CUT(G)
$S \leftarrow \emptyset$
for each vertex $v \in V$ do
$S \leftarrow S \cup\{v\}$ with probability $1 / 2$

For edge e, let C_{e} be an indicator random variable, where

$$
\begin{gathered}
C_{e}= \begin{cases}1 & \text { if } e \text { crosses the cut }[S, \bar{S}] \quad \operatorname{size}([S, \bar{S}])=\sum_{e \in E} C_{e} \\
0 & \text { otherwise }\end{cases} \\
E[\operatorname{size}([S, \bar{S}])]=E\left[\sum_{e \in E} C_{e}\right]=\sum_{e \in E} E\left[C_{e}\right]
\end{gathered}
$$

Randomized Approximation Algorithm for Max-Cut

$$
E[\operatorname{size}([S, \bar{S}])]=\sum_{e \in E} E\left[C_{e}\right]
$$

$E\left[C_{e}\right]=\operatorname{Pr}[e=(u, v)$ crosses the cut $[S, \bar{S}]]$
$=\operatorname{Pr}[(u \in S \wedge v \in \bar{S}) \vee(u \in \bar{S} \wedge v \in S)]$
$=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
Four possibilities for edge
$\bigcirc: \in S \bigcirc: \in \bar{S}$

$$
E[\operatorname{size}([S, \bar{S}])]=\sum_{e \in E} E\left[C_{e}\right]=\sum_{e \in E} 1 / 2=|E| / 2=\mathrm{m} / 2
$$

This cut has size at least $1 / 2$ of the \max cut \triangleright all cuts $\leq m$

Run time is $O(n)$
\triangleright one iteration over the vertices

Improvement over RAND-MAX-CUT(G)

- The algorithm is good on average, but their is no (probabilistic) guarantee on the quality of the output of RAND-MAX-CUT (G)
- We use the magic of repeated trial to amplify the probability
- Run Rand-max-CUT(G) k times on G
- Return the largest cut found
- For large k, this returns a large cut with (desired) high probability
- We will show that we get a cut of size $m / 4$ with very high probability
- Runtime is $O((m+n) k)$
- k rounds of running RAND-MAX-CUT (G)
- $O(n)$ to build the cut, m to determine the size

Randomized Approximation Algorithm for Max-Cut

- Let $X_{1}, X_{2}, \cdots, X_{k}$ be sizes of the cuts found by each run of RAND-MAX-CUT(G)
- Let \mathcal{E} be the event the meta algorithm produces a cut of size less than $m / 4$

$$
\begin{array}{ll}
\mathcal{E}=\bigcap_{i=1}^{k}\left(X_{i} \leq \frac{m}{4}\right) & \triangleright \text { all } X_{i} \text { are } \leq m / 4 \\
\operatorname{Pr}[\mathcal{E}]=\operatorname{Pr}\left[\bigcap_{i=1}^{k}\left(X_{i} \leq \frac{m}{4}\right)\right]=\prod_{i=1}^{k} \operatorname{Pr}\left[X_{i} \leq \frac{m}{4}\right] & \triangleright X_{i}^{\prime} \text { s are independent }
\end{array}
$$

- Let $Y_{1}, Y_{2}, \cdots Y_{k}$ be random variables, defined as

$$
Y_{i}=m-X_{i} \quad E\left[Y_{i}\right]=m-E\left[X_{i}\right]=m-m / 2=m / 2
$$

Markov Inequality: If Z is a non-negative random variable and $a>0$, then

$$
\operatorname{Pr}[Z \geq a E[Z]] \leq 1 / a \Longleftrightarrow \operatorname{Pr}[Z \geq a] \leq E[Z] / a
$$

$$
\operatorname{Pr}[\mathcal{E}]=\prod_{i=1}^{k} P\left(Y_{i} \geq \frac{3 m}{4}\right) \leq \prod_{i=1}^{k} \frac{E\left[Y_{i}\right]}{3 m / 4}=\prod_{i=1}^{k} \frac{m / 2}{3 m / 4}=\prod_{i=1}^{k} \frac{2}{3}=\left(\frac{2}{3}\right)^{k}
$$

Randomized Approximation Algorithm for Max-Cut

■ If we output the largest cut out of k runs of RAND-MAX-CUT(G) k, the probability that we don't get $\geq m / 4$ edges is at most $(2 / 3)^{k}$

- The probability we do get $\geq m / 4$ edges is at least $1-(2 / 3)^{k}$

■ Set $k=\log _{2 / 3} m$, the probability we get at least $m / 4$ edges is $1-1 / m$

- So the meta algorithm is $O((m+n) \log m)$-time randomized algorithm that finds a 0.25 -approximation to max-cut with probability $1-1 / m$

We got (ϵ, δ)-approximation algorithm with $\epsilon=1 / 4$ and $\delta=1 / \mathrm{m}$

