Randomized Computation

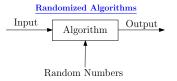
- Deterministic and (Las Vegas & Monte Carlo) Randomized Algorithms
- Probability Review
- Probabilistic Analysis of deterministic QUICK-SORT Algorithm
- RANDOMIZED-SELECT and RANDOMIZED-QUICK-SORT
- Max-Cut
- Min-Cut
- MAX-3-SAT and Derandomization
- Closest Pair
- Randomized Complexity Classes

Imdad ullah Khan

We have seen **Deterministic** algorithms using

- Greedy
- Divide-and-Conquer
- Dynamic Programming
- Network Flows

Randomized Algorithms incorporate randomness in their operation



Randomized Algorithm

Randomized Algorithm receives, in addition to the input, a random number stream to make random decision during execution

May give different results on the same input in different runs Often aims for properties like:

- Good average-case (expected) behavior
- Getting exact answers with high probability
- Getting answer close to the right answer with high probability
- Runtime is small with high probability

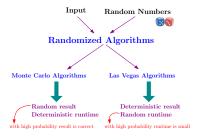
Advantages:

- Simple and elegant. Their output/runtime is good with high probability
- The execution time or space requirement is smaller than that of the best deterministic algorithm

- Guaranteed to run in a fixed time
- Outputs a correct answer with some (high) probability
- e.g. Min cut algorithm

Las Vegas Algorithms

- Guaranteed to output the correct answer
- Running time is random (with high probability runtime is small)
- e.g: randomized Quicksort, Closest pair

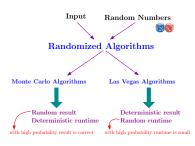


Las Vegas and Monte Carlo Algorithms

Input: An array A with n/4 1's and 3n/4 0's **Output:** An index k such that A[k] = 1

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	0	1	0	0	0	0	0	0	1	0	0	1	1	0

AlgorithmDeterministic $k \leftarrow 0$ for $i = 1 \rightarrow n$ doif $A[i] = 1$ then	$\frac{\textbf{Algorithm} \text{Monte Carlo}}{k \leftarrow \text{RANDOM}(1 \cdots n)}$ return k	AlgorithmLas Vegas $k \leftarrow 1$ while $A[k] \neq 1$ do $k \leftarrow \text{RANDOM}(1 \cdots n)$
$k \leftarrow i$ return k		return k
Quality: correct worst case runtime: $\frac{3n}{4}$	Quality: correct w.p $\frac{1}{4}$ worst case runtime: 1	Quality: correct expected runtime: 4



Monte Carlo Algorithms

- Guaranteed to run in a fixed time
- Outputs a correct answer with some (high) probability

Las Vegas Algorithms

- Guaranteed to output the correct answer
- Running time is random (with high probability runtime is small)

Can always convert a Las-Vegas algorithm into a Monte Carlo algorithm

▷ Stop the algorithm after a certain point

But no method is known for the other way - needs efficient verification