Theory of Computation

Finite Automata

- Deterministic Finite Automata
- Languages decided by a DFA Regular Languages
- Closure Properties of regular languages
- Non-Deterministic Finite Automata, DFA= NFA
- Regular Expression: Computation as Description
- DFA=NFA=RegExp, Generalized NFA
- Non-Regular Languages, The Pumping Lemma
- Minimizing DFA

IMDAD ULLAH KHAN

Reduce the "complexity" of DFA why?

Computational and storage efficiency

What are the languages decided by these DFA's?

Let
$$\Sigma = \{0,1\}$$

 $\{w : w \text{ ends with a } 1\}$

Theorem (DFA Minimization Theorem)

- **1** For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $L = L(M^*)$
- **2** There is an efficient algorithm to convert any M to the unique minimal state DFA M^* , such that $L(M) = L(M^*)$

If such algorithms existed for more general computation models, that would be an engineering breakthrough!

If there is a program $\mathcal{A}.cpp$ that could convert any program to the most optimal, then . . .

Theorem (DFA Minimization Theorem)

- **1** For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $L = L(M^*)$
- 2 There is an efficient algorithm to convert any M to the unique minimal state DFA M^* , such that $L(M) = L(M^*)$

If such algorithms existed for more general computation models, that would be an engineering breakthrough!

Both these NFAs have minimal number of states

Extended transition function

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

Extend the transition function to strings

$$\delta: Q \times \Sigma \mapsto Q$$
 to $\Delta: Q \times \Sigma^* \mapsto Q$

- $\Delta(q, \sigma_1 \dots \sigma_k) = \delta(\Delta(q, \sigma_1 \dots \sigma_{k-1}), \sigma_k)$

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

A string $w \in \Sigma^*$ distinguishes two states p and q if exactly one of $\Delta(p, w)$ is in final state i.e.

$$[\Delta(p, w) \in F] \oplus [\Delta(q, w) \in F]$$

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

A string $w \in \Sigma^*$ distinguishes two states p and q if exactly one of $\Delta(p, w)$ is in final state i.e.

$$[\Delta(p,w) \in F] \oplus [\Delta(q,w) \in F]$$

States p and q are distinguishable iff there exists $w \in \Sigma^*$ that distinguishes them i.e. $\exists w \in \Sigma^*$ such that $\Delta(p, w) \in F \iff \Delta(q, w) \notin F$

States p and q are indistinguishable iff no $w \in \Sigma^*$ distinguishes them i.e. $\forall w \in \Sigma^*$ we have $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

Pairs of indistinguishable states are redundant, i.e. M has exactly the same behavior starting from p and q

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

States p and q are distinguishable iff there exists $w \in \Sigma^*$ that distinguishes them i.e. $\exists w \in \Sigma^*$ such that $\Delta(p, w) \in F \iff \Delta(q, w) \notin F$

The string ϵ distinguishes all final states from all non-final states

1 distinguishes q_1 and q_3 0 does not distinguish them

01 distinguishes q_0 and q_2 0, 1, 10 do not distinguish them

Indistinguishable is an equivalence relation

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

States p and q are indistinguishable iff no $w \in \Sigma^*$ distinguishes them i.e. $\forall w \in \Sigma^*$ we have $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

Let \sim be a binary relation on Q such that

$$p \sim q \iff p$$
 is indistinguishable from q

$$\triangleright p \nsim q \iff p$$
 is distinguishable from q

- $\exists \forall p,q,r \in Q \ p \sim q \land q \sim r \implies p \sim r$

A relation R on a set X is an **equivalence relation** if it is

- 1 reflexive
- 2 symmetric, and
- 3 transitive

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

States p and q are indistinguishable iff no $w \in \Sigma^*$ distinguishes them i.e. $\forall w \in \Sigma^*$ we have $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

Indistinguishable is an equivalence relation

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

States p and q are indistinguishable iff no $w \in \Sigma^*$ distinguishes them i.e. $\forall w \in \Sigma^*$ we have $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

Let \sim be a binary relation on Q such that

 $p \sim q \iff p$ is indistinguishable from q

 $\triangleright p \nsim q \iff p$ is distinguishable from q

 \sim partitions the states of \emph{M} into disjoint equivalence classes

Indistinguishable is an equivalence relation

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$

States p and q are indistinguishable iff no $w \in \Sigma^*$ distinguishes them i.e. $\forall w \in \Sigma^*$ we have $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

Let \sim be a binary relation on Q such that

$$p \sim q \iff p$$
 is indistinguishable from q

 $\triangleright p \nsim q \iff p$ is distinguishable from q

 \sim partitions the states of M into disjoint equivalence classes

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} such that

- 1 $L(M) = L(M_{min})$
- $2 M_{min}$ has no inaccessible states
- **3** M_{min} is irreducible \triangleright All states p and q of M_{min} are indistinguishable

Theorem

 M_{min} is the unique minimal equivalent to M DFA (up to states relabeling)

Intuitively, states of M_{min} are equivalence classes of M (under \sim)

How to find equivalence classes of Q?

What are transitions in M_{min} ?

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Dynamic Programming Formulation

- **I** In iteration 0, mark pairs of states distinguishable by ϵ
- $\mathbf{2}$ In iteration i, find pairs of states distinguishable by strings of length i
- In iteration i+1, given pairs of states distinguishable by strings of length $\leq i$, mark the pairs distinguishable by strings of length i+1

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

while $\mathcal D$ changed in the previous iteration $\mathbf d\mathbf o$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A $Q \times Q$ matrix \mathcal{D} , such that $\mathcal{D}(p,q) = D \iff p \nsim q$

Algorithm Table Filling Algorithm

if
$$p \in F$$
 and $q \notin F$ then $\mathcal{D}(p,q) \leftarrow D$

for
$$p, q \in Q \times Q$$
 and $\sigma \in \Sigma$ do

if
$$\delta(p,\sigma) = p'$$
 and $\delta(q,\sigma) = q'$ AND $\mathcal{D}(p',q') = D$ then $\mathcal{D}(p,q) \leftarrow D$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} such that

- 1 $L(M) = L(M_{min})$
- $2 M_{min}$ has no inaccessible states
- **3** M_{min} is irreducible \triangleright All states p and q of M_{min} are indistinguishable

Theorem

 M_{min} is the unique minimal equivalent to M DFA (up to states relabeling)

Intuitively, states of M_{min} are equivalence classes of M (under \sim)

How to find equivalence classes of Q?

What are transitions in M_{min} ?

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

- 1: Remove all inaccessible states from M
- 2: Table-Filling(M) to get $EQUIV_M = \{[q] : q \text{ is an accessible state in } M\}$
- 3: Define $M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$

$$Q_{min} = \text{EQUIV}_{min}$$

$$q_{0 min} = [q_0]$$

$$F_{min} = \{[q] : q \in F\}$$

$$\delta_{\min}([q],\sigma) = [\delta(q,\sigma)]$$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

- 1: Remove all inaccessible states from M

3:
$$M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$$

$$Q_{min} = \text{EQUIV}_{min}$$

$$q_{0 min} = [q_0]$$

$$F_{min} = \{[q] \,:\, q \in F\}$$

$$\delta_{min}([q], \sigma) = [\delta(q, \sigma)]$$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

Algorithm DFA Minimizing Algorithm

- 1: Remove all inaccessible states from M
- 2: Table-Filling(*M*) to get

 $EQUIV_M = \{[q] : q \text{ accessible in } M\}$

3:
$$M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$$

$$Q_{min} = \text{EQUIV}_{min}$$

$$q_{0 min} = [q_0]$$

$$F_{min} = \{[q] : q \in F\}$$

$$\delta_{min}([q], \sigma) = [\delta(q, \sigma)]$$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

- 1: Remove all inaccessible states from M
- 3: $M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$

$$Q_{min} = \text{EQUIV}_{min}$$

$$q_{0 min} = [q_0]$$

$$F_{min} = \{[q] : q \in F\}$$

$$\delta_{min}([q], \sigma) = [\delta(q, \sigma)]$$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

- 1: Remove all inaccessible states from M
- 2: TABLE-FILLING(M) to get

$$EQUIV_M = \{[q] : q \text{ accessible in } M\}$$

3:
$$M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$$

$$Q_{min} = \text{EQUIV}_{min}$$

$$q_{0 min} = [q_0]$$

$$F_{min} = \{[q] : q \in F\}$$

$$\delta_{min}([q], \sigma) = [\delta(q, \sigma)]$$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

- 1: Remove all inaccessible states from M
- 2: TABLE-FILLING(M) to get EQUIV_M = {[q] : q accessible in M}
- 3: $M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$

$$Q_{\textit{min}} = \text{EQUIV}_{\textit{min}} \quad q_{0 \, \textit{min}} = [q_0] \quad F_{\textit{min}} = \{[q]: q \in F\} \quad \delta_{\textit{min}}([q], \sigma) = [\delta(q, \sigma)]$$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

- 1: Remove all inaccessible states from M
- 2: Table-Filling(M) to get $EQUIV_M = \{[q] : q \text{ accessible in } M\}$
- 3: $M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$

$$Q_{\textit{min}} = \text{EQUIV}_{\textit{min}} \quad q_{0 \, \textit{min}} = [q_0] \quad F_{\textit{min}} = \{[q]: q \in F\} \quad \delta_{\textit{min}}([q], \sigma) = [\delta(q, \sigma)]$$

Input: A DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: A DFA M_{min} with fewest states and $L(M_{min}) = L(M)$

- 1: Remove all inaccessible states from M
- 2: Table-Filling(M) to get $EQUIV_M = \{[q] : q \text{ accessible in } M\}$
- 3: $M_{min} = (Q_{min}, \Sigma, \delta_{min}, q_{0 min}, F_{min})$

$$Q_{\textit{min}} = \text{EQUIV}_{\textit{min}} \quad q_{0 \, \textit{min}} = [q_0] \quad F_{\textit{min}} = \{[q]: q \in F\} \quad \delta_{\textit{min}}([q], \sigma) = [\delta(q, \sigma)]$$

