Theory of Computation

Finite Automata

- Deterministic Finite Automata

■ Languages decided by a DFA - Regular Languages

- Closure Properties of regular languages

■ Non-Deterministic Finite Automata, DFA= NFA
■ Regular Expression: Computation as Description

- DFA=NFA=RegExp, Generalized NFA

■ Non-Regular Languages, The Pumping Lemma

- Minimizing DFA

Imdad ULLAH Khan

Minimizing DFA

Minimizing DFA

Reduce the "complexity" of DFA why?

Computational and storage efficiency

Minimizing DFA

What are the languages decided by these DFA's?
Let $\Sigma=\{0,1\}$

$\{w: w$ ends with a 1$\}$

Minimizing DFA

Theorem (DFA Minimization Theorem)

1 For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M^{*} such that $L=L\left(M^{*}\right)$
2 There is an efficient algorithm to convert any M to the unique minimal state DFA M^{*}, such that $L(M)=L\left(M^{*}\right)$

If such algorithms existed for more general computation models, that would be an engineering breakthrough!

If there is a program \mathcal{A}. cpp that could convert any program to the most optimal, then ...

Theorem (DFA Minimization Theorem)

1 For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M^{*} such that $L=L\left(M^{*}\right)$
2 There is an efficient algorithm to convert any M to the unique minimal state DFA M^{*}, such that $L(M)=L\left(M^{*}\right)$

If such algorithms existed for more general computation models, that would be an engineering breakthrough!

Both these NFAs have minimal number of states

Extended transition function

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Extend the transition function to strings

$$
\delta: Q \times \Sigma \mapsto Q \quad \text { to } \quad \Delta: Q \times \Sigma^{*} \mapsto Q
$$

- $\Delta(q, \epsilon)=q$
- $\Delta(q, \sigma)=\delta(q, \sigma)$
- $\Delta\left(q, \sigma_{1} \ldots \sigma_{k}\right)=\delta\left(\Delta\left(q, \sigma_{1} \ldots \sigma_{k-1}\right), \sigma_{k}\right)$

Distinguishing States with Strings

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
A string $w \in \Sigma^{*}$ distinguishes two states p and q if exactly one of $\Delta(p, w)$ is in final state i.e.

$$
[\Delta(p, w) \in F] \oplus[\Delta(q, w) \in F]
$$

Distinguishing States with Strings

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
A string $w \in \Sigma^{*}$ distinguishes two states p and q if exactly one of $\Delta(p, w)$ is in final state i.e.

$$
[\Delta(p, w) \in F] \oplus[\Delta(q, w) \in F]
$$

States p and q are distinguishable iff there exists $w \in \Sigma^{*}$ that distinguishes them i.e. $\exists w \in \Sigma^{*}$ such that $\Delta(p, w) \in F \Longleftrightarrow \Delta(q, w) \notin F$

States p and q are indistinguishable iff no $w \in \Sigma^{*}$ distinguishes them i.e. $\forall w \in \Sigma^{*}$ we have $\Delta(p, w) \in F \Longleftrightarrow \Delta(q, w) \in F$

Pairs of indistinguishable states are redundant, i.e. M has exactly the same behavior starting from p and q

Distinguishing States with Strings

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
States p and q are distinguishable iff there exists $w \in \Sigma^{*}$ that distinguishes them i.e. $\exists w \in \Sigma^{*}$ such that $\Delta(p, w) \in F \Longleftrightarrow \Delta(q, w) \notin F$

The string ϵ distinguishes all final states from all non-final states

1 distinguishes q_{1} and q_{3} 0 does not distinguish them

01 distinguishes q_{0} and q_{2}
$0,1,10$ do not distinguish them

Indistinguishable is an equivalence relation

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
States p and q are indistinguishable iff no $w \in \Sigma^{*}$ distinguishes them i.e. $\forall w \in \Sigma^{*}$ we have $\Delta(p, w) \in F \Longleftrightarrow \Delta(q, w) \in F$

Let \sim be a binary relation on Q such that
$p \sim q \Longleftrightarrow p$ is indistinguishable from q
$\triangleright p \nsim q \Longleftrightarrow p$ is distinguishable from q
$1 \forall q \in Q q \sim q$
$2 \forall p, q \in Q q \sim q \Longrightarrow q \sim p$
$3 \forall p, q, r \in Q p \sim q \wedge q \sim r \Longrightarrow p \sim r$

A relation R on a set X is an equivalence relation if it is

1 reflexive
2 symmetric, and
3 transitive

Distinguishing States with Strings

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
States p and q are indistinguishable iff no $w \in \Sigma^{*}$ distinguishes them i.e. $\forall w \in \Sigma^{*}$ we have $\Delta(p, w) \in F \Longleftrightarrow \Delta(q, w) \in F$

Indistinguishable is an equivalence relation

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
States p and q are indistinguishable iff no $w \in \Sigma^{*}$ distinguishes them i.e. $\forall w \in \Sigma^{*}$ we have $\Delta(p, w) \in F \Longleftrightarrow \Delta(q, w) \in F$

Let \sim be a binary relation on Q such that
$p \sim q \Longleftrightarrow p$ is indistinguishable from q
$\triangleright p \nsim q \Longleftrightarrow p$ is distinguishable from q
\sim partitions the states of M into disjoint equivalence classes

Indistinguishable is an equivalence relation

For a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
States p and q are indistinguishable iff no $w \in \Sigma^{*}$ distinguishes them i.e. $\forall w \in \Sigma^{*}$ we have $\Delta(p, w) \in F \Longleftrightarrow \Delta(q, w) \in F$

Let \sim be a binary relation on Q such that

$$
p \sim q \Longleftrightarrow p \text { is indistinguishable from } q
$$

$$
\triangleright p \nsim q \Longleftrightarrow p \text { is distinguishable from } q
$$

\sim partitions the states of M into disjoint equivalence classes

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\text {min }}$ such that
$1 L(M)=L\left(M_{\text {min }}\right)$
$2 M_{\text {min }}$ has no inaccessible states
3 $M_{\text {min }}$ is irreducible \triangleright All states p and q of $M_{\text {min }}$ are indistinguishable

Theorem

$M_{\text {min }}$ is the unique minimal equivalent to M DFA (up to states relabeling)

Intuitively, states of $M_{\text {min }}$ are equivalence classes of M (under \sim)
How to find equivalence classes of Q ?
What are transitions in $M_{\text {min }}$?

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A $Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$

Dynamic Programming Formulation

1 In iteration 0, mark pairs of states distinguishable by ϵ
2 In iteration i, find pairs of states distinguishable by strings of length i
3 In iteration $i+1$, given pairs of states distinguishable by strings of length $\leq i$, mark the pairs distinguishable by strings of length $i+1$

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A $Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$

Algorithm Table Filling Algorithm

if $p \in F$ and $q \notin F$ then $\mathcal{D}(p, q) \leftarrow D$
while \mathcal{D} changed in the previous iteration do for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do if $\delta(p, \sigma)=p^{\prime}$ and $\delta(q, \sigma)=q^{\prime}$ and $\mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D$ then $\mathcal{D}(p, q) \leftarrow D$

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: $\mathrm{A} Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm
if $p \in F$ and $q \notin F$ then

$$
\mathcal{D}(p, q) \leftarrow D
$$

while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do
if $\delta(p, \sigma)=p^{\prime}$ and $\delta(q, \sigma)=q^{\prime}$ and $\mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D$ then $\mathcal{D}(p, q) \leftarrow D$

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A $Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm
if $p \in F$ and $q \notin F$ then

$$
\mathcal{D}(p, q) \leftarrow D
$$

while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do
if $\delta(p, \sigma)=p^{\prime}$ and $\delta(q, \sigma)=q^{\prime}$ and $\mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D$ then $\mathcal{D}(p, q) \leftarrow D$

q_{0}				
q_{1}				
q_{2}				
q_{3}	D	D	D	
	q_{0}	q_{1}	q_{2}	q_{3}

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A $Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm
if $p \in F$ and $q \notin F$ then

$$
\mathcal{D}(p, q) \leftarrow D
$$

while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do
if $\delta(p, \sigma)=p^{\prime}$ and $\delta(q, \sigma)=q^{\prime}$ and $\mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D$ then $\mathcal{D}(p, q) \leftarrow D$

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A $Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm
if $p \in F$ and $q \notin F$ then

$$
\mathcal{D}(p, q) \leftarrow D
$$

while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do
if $\delta(p, \sigma)=p^{\prime}$ and $\delta(q, \sigma)=q^{\prime}$ and $\mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D$ then $\mathcal{D}(p, q) \leftarrow D$

q_{0}				
q_{1}				
q_{2}	D	D		
q_{3}	D	D	D	
	q_{0}	q_{1}	q_{2}	q_{3}

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A $Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm
if $p \in F$ and $q \notin F$ then

$$
\mathcal{D}(p, q) \leftarrow D
$$

while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do
if $\delta(p, \sigma)=p^{\prime}$ and $\delta(q, \sigma)=q^{\prime}$ and $\mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D$ then $\mathcal{D}(p, q) \leftarrow D$

q_{0}				
q_{1}	D			
q_{2}	D	D		
q_{3}	D	D	D	
	q_{0}	q_{1}	q_{2}	q_{3}

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A $Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm

if $p \in F$ and $q \notin F$ then

 $\mathcal{D}(p, q) \leftarrow D$while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do

$$
\text { if } \delta(p, \sigma)=p^{\prime} \text { and } \delta(q, \sigma)=q^{\prime} \text { and } \mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D \text { then }
$$

$$
\mathcal{D}(p, q) \leftarrow D
$$

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: $\mathrm{A} Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm

if $p \in F$ and $q \notin F$ then

 $\mathcal{D}(p, q) \leftarrow D$while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do

$$
\text { if } \delta(p, \sigma)=p^{\prime} \text { and } \delta(q, \sigma)=q^{\prime} \text { and } \mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D \text { then }
$$

$$
\mathcal{D}(p, q) \leftarrow D
$$

Table Filling Algorithm to find indistinguishable states

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: $\mathrm{A} Q \times Q$ matrix \mathcal{D}, such that $\mathcal{D}(p, q)=D \Longleftrightarrow p \nsim q$
Algorithm Table Filling Algorithm

if $p \in F$ and $q \notin F$ then $\mathcal{D}(p, q) \leftarrow D$

while \mathcal{D} changed in the previous iteration do
for $p, q \in Q \times Q$ and $\sigma \in \Sigma$ do

$$
\text { if } \delta(p, \sigma)=p^{\prime} \text { and } \delta(q, \sigma)=q^{\prime} \text { AND } \mathcal{D}\left(p^{\prime}, q^{\prime}\right)=D \text { then }
$$

$$
\mathcal{D}(p, q) \leftarrow D
$$

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ such that
$1 L(M)=L\left(M_{\text {min }}\right)$
$2 M_{\text {min }}$ has no inaccessible states
3 $M_{\text {min }}$ is irreducible \triangleright All states p and q of $M_{\text {min }}$ are indistinguishable

Theorem

$M_{\text {min }}$ is the unique minimal equivalent to M DFA (up to states relabeling)

Intuitively, states of $M_{\min }$ are equivalence classes of M (under \sim)
How to find equivalence classes of Q ?
What are transitions in $M_{\text {min }}$?

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\text {min }}\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: Table-Filling (M) to get $\operatorname{EQUiv}_{M}=\{[q]: q$ is an accessible state in $M\}$
3: Define $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
\begin{aligned}
& Q_{\text {min }}=\text { EQUIV }_{\text {min }} \\
& q_{0 \text { min }}=\left[q_{0}\right] \\
& F_{\text {min }}=\{[q]: q \in F\} \\
& \delta_{\text {min }}([q], \sigma)=[\delta(q, \sigma)]
\end{aligned}
$$

Minimizing DFA

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\min }\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: Table-Filling(M) to get

$$
\operatorname{EQUIV}_{M}=\{[q]: q \text { accessible in } M\}
$$

3: $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
\begin{aligned}
& Q_{\text {min }}=\text { EQUIV }_{\text {min }} \\
& q_{0 \text { min }}=\left[q_{0}\right] \\
& F_{\text {min }}=\{[q]: q \in F\} \\
& \delta_{\min }([q], \sigma)=[\delta(q, \sigma)]
\end{aligned}
$$

Minimizing DFA

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\min }\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: Table-Filling(M) to get

$$
\operatorname{EQUIV}_{M}=\{[q]: q \text { accessible in } M\}
$$

3: $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
\begin{aligned}
& Q_{\text {min }}=\text { EQUIV }_{\text {min }} \\
& q_{0 \text { min }}=\left[q_{0}\right] \\
& F_{\text {min }}=\{[q]: q \in F\} \\
& \delta_{\min }([q], \sigma)=[\delta(q, \sigma)]
\end{aligned}
$$

Minimizing DFA

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\min }\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: Table-Filling(M) to get

$$
\operatorname{EQUIV}_{M}=\{[q]: q \text { accessible in } M\}
$$

3: $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
\begin{aligned}
& Q_{\text {min }}=\text { EQUIV }_{\text {min }} \\
& q_{0 \text { min }}=\left[q_{0}\right] \\
& F_{\text {min }}=\{[q]: q \in F\} \\
& \delta_{\text {min }}([q], \sigma)=[\delta(q, \sigma)]
\end{aligned}
$$

Minimizing DFA

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\min }\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: Table-Filling(M) to get

$$
\operatorname{EQUIV}_{M}=\{[q]: q \text { accessible in } M\}
$$

3: $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
\begin{aligned}
& Q_{\text {min }}=\text { EQUIV }_{\text {min }} \\
& q_{0 \text { min }}=\left[q_{0}\right] \\
& F_{\text {min }}=\{[q]: q \in F\} \\
& \delta_{\text {min }}([q], \sigma)=[\delta(q, \sigma)]
\end{aligned}
$$

Minimizing DFA

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\text {min }}\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: $\left.\operatorname{Table-Filling}^{(} M\right)$ to get $\operatorname{EQUiv}_{M}=\{[q]: q$ accessible in $M\}$
3: $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
Q_{\text {min }}=\text { EQUIV }_{\min } \quad q_{0 \text { min }}=\left[q_{0}\right] \quad F_{\text {min }}=\{[q]: q \in F\} \quad \delta_{\min }([q], \sigma)=[\delta(q, \sigma)]
$$

Minimizing DFA

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\text {min }}\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: Table-Filling (M) to get $\operatorname{EQUiv}_{M}=\{[q]: q$ accessible in $M\}$
3: $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
Q_{\text {min }}=\text { EQUIV }_{\text {min }} \quad q_{0 \text { min }}=\left[q_{0}\right] \quad F_{\text {min }}=\{[q]: q \in F\} \quad \delta_{\text {min }}([q], \sigma)=[\delta(q, \sigma)]
$$

Minimizing DFA

Input: A DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$
Output: A DFA $M_{\min }$ with fewest states and $L\left(M_{\min }\right)=L(M)$

Algorithm DFA Minimizing Algorithm

1: Remove all inaccessible states from M
2: $\left.\operatorname{Table-Filling}^{(} M\right)$ to get $\operatorname{EqUiv}_{M}=\{[q]: q$ accessible in $M\}$
3: $M_{\text {min }}=\left(Q_{\text {min }}, \Sigma, \delta_{\text {min }}, q_{0 \text { min }}, F_{\text {min }}\right)$

$$
Q_{\text {min }}=\text { EQUIV }_{\text {min }} \quad q_{0 \text { min }}=\left[q_{0}\right] \quad F_{\text {min }}=\{[q]: q \in F\} \quad \delta_{\text {min }}([q], \sigma)=[\delta(q, \sigma)]
$$

