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Non-Regular Languages
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The Problems Solved by DFAs

L is regular if there exists a DFA M, such that L(M) = L

Are all languages regular? No! Here are some non-regular languages

balanced-strings = {w |w has an equal number of 0’s and 1’s}

0n1n

c251anb2n

a2
n ⊆ {a}∗ (unary language)

How to tell if a language is not regular?

▷ Pumping Lemma and Myhill-Nerod theorem

How to tell if a language is regular?

▷ Give FA or Regular Expression, and Myhill-Nerod theorem

Imdad ullah Khan (LUMS) Finite Automata 3 / 12



DFA Unsolvable Problem: balanced-strings

balanced-strings is not a regular language

Formal proof later!

Need to prove that there is no DFA reognizing it

Intuitively,

DFA must remember the frequencies of 0’s and 1’s seen so far

▷ it can also remember the difference in the two frequencies

The two frequencies (or their difference) is unbounded, there can’t be
enough states to keep track of

Here the finite states/or constant memory is used critically
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DFA Unsolvable Problems

Pigeonhole Principle

If there are more pigeons

than there are pigeon holes,

then some pigeon hole must have more than one pigeons
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DFA walk on a string

For a string w ∈ Σ∗, a w-walk or walk on w is the sequence of visited
states when M is run on w

In walks on

a
aa
ab
abb
bbb

no state is repeated

In walks on

aba
abba
aaba
abbb
bbbab

at least one state is repeated

q0 q2q1
a, b

aM

q3

b

b

a

b

a

Generally, if string w has length ≥ number of states in M, then some
state q must be repeated in the walk on w ▷ pigeon-hold principle

· · · · · ·q
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Pumping Lemma for Regular Languages

L : an infinite regular language, M : a DFA on m states recognizing L

Let w be a string such that w ∈ L and |w | ≥ m

Let q be the first state repeated in the walk on w

· · · · · ·q︸ ︷︷ ︸ ︸ ︷︷ ︸

︷ ︸︸ ︷

x z

y

· · · · · · · · ·
x y zw

Let w = xyz |y | ≥ 1 |xy | ≤ m ▷ ∵ q is the first state repeated

xz ∈ L ▷ accepting walk is present

xyz ∈ L ▷ w ∈ L

xyyz ∈ L ▷ by taking one more tour of the ‘subwalk’ for y

xyyyz ∈ L ▷ by taking three tours of the ‘subwalk’ for y

xy iz ∈ L, i = 0, 1, 2 . . . , ▷ by taking i tours of the ‘subwalk’ for y
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Pumping Lemma for Regular Languages

The Pumping Lemma

Let L be an infinite regular language.

There exists an integer m such that any string w ∈ L, with length
|w | ≥ m can be written as w = xyz with

|xy | ≤ m

|y | ≥ 1

xy iz ∈ L for i = 0, 1, 2, . . .

· · · · · ·q︸ ︷︷ ︸ ︸ ︷︷ ︸

︷ ︸︸ ︷

x z

y

· · · · · · · · ·
x y zw

The y portion of the string w is pumped up
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DFA Unsolvable Problems: L = {0n1n : n ≥ 0}

The language L = {0n1n : n ≥ 0} is not regular

We use the pumping lemma to prove that L is not regular

Proof: Suppose L is a regular language. L is infinite

Let m be the integer guaranteed by the pumping lemma

Let w = 0m1m ∈ L. By the pumping lemma w can be written as

w = 0m1m = x y z =

m︷ ︸︸ ︷
0 . . . 0 0 . . . 0 0 . . . 00

m︷ ︸︸ ︷
11 . . . . . . 11︸ ︷︷ ︸

x
︸ ︷︷ ︸

y
︸ ︷︷ ︸

z

such that |xy | ≤ m and |y | ≥ 1 =⇒ y = 0k , 1 ≤ k ≤ m

and xy2z = 0m+k1m ∈ L ▷ A contradiction

x y2 z =

m+k︷ ︸︸ ︷
0 . . . 0 0 . . . 0 0 . . . 0 0 . . . 00

m︷ ︸︸ ︷
11 . . . . . . 11︸ ︷︷ ︸

x
︸ ︷︷ ︸

y
︸ ︷︷ ︸

z
︸ ︷︷ ︸

y
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DFA Unsolvable Problems: L = {vvR : v ∈ {a, b}∗}

The language L = {vvR : v ∈ {a, b}∗} is not regular

We use the pumping lemma to prove that L is not regular

Proof: Suppose L is a regular language. L is infinite

Let m be the integer guaranteed by the pumping lemma

Let w = ambmbmam ∈ L. By the pumping lemma w can be written as

w = x y z = a . . . a a . . . a a . . . ab . . . . . . b b . . . . . . ba . . . . . . a︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
z

︷ ︸︸ ︷m ︷ ︸︸ ︷m ︷ ︸︸ ︷m ︷ ︸︸ ︷m

such that |xy | ≤ m and |y | ≥ 1 =⇒ y = ak , 1 ≤ k ≤ m

and xy2z = am+kbmbmam ∈ L ▷ A contradiction

x y2 z = a . . . a a . . . a a . . . a a . . . ab . . . . . . b b . . . . . . ba . . . . . . a︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
z

︸ ︷︷ ︸
y

︷ ︸︸ ︷m+ k m m m︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
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DFA Unsolvable Problems: L = {apbqcp+q : p, q ≥ 0}

The language L = {apbqcp+q : p, q ≥ 0} is not regular

We use the pumping lemma to prove that L is not regular

Proof: Suppose L is a regular language. L is infinite

Let m be the integer guaranteed by the pumping lemma

Let w = ambmc2m ∈ L. By the pumping lemma w can be written as

w = x y z = a . . . a a . . . a a . . . ab . . . . . . b c . . . . . . cc . . . . . . c︸ ︷︷ ︸
x

︸ ︷︷ ︸
y

︸ ︷︷ ︸
z

︷ ︸︸ ︷m ︷ ︸︸ ︷m ︷ ︸︸ ︷2m

such that |xy | ≤ m and |y | ≥ 1 =⇒ y = ak , 1 ≤ k ≤ m

and xy0z = xz = am−kbmc2m ∈ L ▷ A contradiction

x y0 z = a . . . a a . . . ab . . . . . . b c . . . . . . cc . . . . . . c︸ ︷︷ ︸
x

︸ ︷︷ ︸
z

︷ ︸︸ ︷m− k ︷ ︸︸ ︷m ︷ ︸︸ ︷2m
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DFA Unsolvable Problems: L = {an! : n ≥ 0}

The language L = {an! : n ≥ 0} is not regular

We use the pumping lemma to prove that L is not regular

Proof: Suppose L is a regular language. L is infinite

Let m be the integer guaranteed by the pumping lemma

Let w = am! ∈ L. By the pumping lemma w can be written as w = xyz

such that |xy | ≤ m and |y | ≥ 1 =⇒ y = ak , 1 ≤ k ≤ m

and xy2z = am+k+m!−m = am!+k ∈ L ▷ A contradiction

Is m! + k = p! for any integer k?

m! < m! + k and m! + k < (m + 1)! for k ≤ m
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