
Theory of Computation

Finite Automata

Deterministic Finite Automata

Languages decided by a DFA – Regular Languages

Closure Properties of regular languages

Non-Deterministic Finite Automata, DFA= NFA

Regular Expression: Computation as Description

DFA=NFA=RegExp, Generalized NFA

Non-Regular Languages, The Pumping Lemma

Minimizing DFA

Imdad ullah Khan

Imdad ullah Khan (LUMS) Finite Automata 1 / 17



Equivalence of DFA, NFA, and RegExp

Imdad ullah Khan (LUMS) Finite Automata 2 / 17



DFA ≡ NFA ≡ RegExp

L is regular ⇐⇒ L can be represented by a regex

Regular

DFA NFA

ExpressionsLanguages
Regular

d
e
f
in
it
io
n

proved earlier

If L can be represented by a regexp, then L can be recognized by an NFA

If L can be recognized by an NFA, then L can be represented by a regexp

Imdad ullah Khan (LUMS) Finite Automata 3 / 17



Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Base cases:

R = ∅ L(R) = ∅

R = ϵ L(R) = {ϵ}

R = a L(R) = {a}

Regexp Language NFA, N L(N)

a

∅

{ϵ}

{a}

Imdad ullah Khan (LUMS) Finite Automata 4 / 17



Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k
is recognized by an NFA

Inductive Step: Let R a regexp of length k

R1 and R2 have lengths < k,

By IH, there exists N1 and N2

with L(N1) = L(R1) and L(N2) = L(R2)

By closure under union ∃ N with L(N) = L(R)

Case 1: R = R1 +R2 L(R) = L(R1) ∪ L(R2)

ϵ

N2

N1

ϵ

Imdad ullah Khan (LUMS) Finite Automata 5 / 17



Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k
is recognized by an NFA

Inductive Step: Let R a regexp of length k

R1 and R2 have lengths < k,

By IH, there exists N1 and N2

with L(N1) = L(R1) and L(N2) = L(R2)

By closure under concatenation ∃ N with L(N) = L(R)

Case 2: R = R1 ◦R2 L(R) = L(R1) ◦ L(R2) N2N1

ϵ

ϵ
ϵ

Imdad ullah Khan (LUMS) Finite Automata 6 / 17



Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k
is recognized by an NFA

Inductive Step: Let R a regexp of length k

R1 has length < k,

By IH, there exists N1 with L(N1) = L(R1)

By closure under start ∃ N with L(N) = L(R)

Case 3: R = (R1)
∗ L(R) = L(R1)

∗
ϵ

ϵ

ϵ N1

Imdad ullah Khan (LUMS) Finite Automata 7 / 17



Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

1

0

1

0

0 :

1 :

1 + 0 :
ϵ

ϵ

1(1 + 0) :

(1(1 + 0))∗ :

1

0

ϵ

ϵ

1 ϵ

1

0

ϵ

ϵ

1 ϵϵ

ϵ

ϵ

Convert
(
1(1 + 0)

)∗
to NFA

Step 1:

Step 2:

Step 4:

Step 3:

Imdad ullah Khan (LUMS) Finite Automata 8 / 17



Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Convert

a∗ + ab

to NFA

b :

a :

ab :

a∗ :

a∗ + ab :
ϵ

ϵ

aϵ

ϵ

a ϵ b

a ϵ b

aϵ

ϵ

b

a

Imdad ullah Khan (LUMS) Finite Automata 9 / 17



Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Simplify NFA by removing states one at a time and
replacing transition labels with regexps

We get generalized NFA

Imdad ullah Khan (LUMS) Finite Automata 10 / 17



Generalized NFA

An NFA with following restriction and generalization

Only one start state with no incoming transitions

Only one final state with no outgoing transitions

Start and final states are distinct

Transitions are labeled with (general) regexps

q0 q2 q3q1
ab∗ a(a+ b)

a∗b

bba

not allowed

exactly one start state ̸= exactly one final state

Imdad ullah Khan (LUMS) Finite Automata 11 / 17



Language of Generalized NFA (GNFA)

A GNFA accepts a string w , iff there is a walk from start state to final
state with (concatenated) regexp R1R2 · · ·Rk such that w matches
R1R2 · · ·Rk

q0 q2q1
a∗b

a+ b

a

G

G does not accept aaaa

G accepts baa

G accepts bba

G does not accept aabaab

G accepts aabba

Imdad ullah Khan (LUMS) Finite Automata 12 / 17



Converting NFA to GNFA

Every NFA can be converted to a GNFA

An NFA with following restriction and generalization
Only one start state with no incoming transitions

Only one final state with no outgoing transitions

Start and final states are distinct

Transitions are labeled with (general) regexps

If needed add a new start node with no incoming transition

If needed add a unique final state with no outgoing transition

Existing transitions are already labeled with (simple) regexps

s f
ϵ

ϵ

ϵ

ϵ

N

Imdad ullah Khan (LUMS) Finite Automata 13 / 17



Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Let N be the NFA such that L(N) = L

Convert the NFA N to a GNFA

Reduce states in GNFA by removing states one at a time and
replacing transition labels with regexps to account for removed state

When only two states and one transition remains, the label of the one
transition R is the required one, i.e. L(R) = L

NFA GNFA GNFA GNFA REGEXP· · ·
k states k + 2 states k + 1 states 2 states

R
s f

Imdad ullah Khan (LUMS) Finite Automata 14 / 17



Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Let N be the NFA such that L(N) = L

Reduce states in GNFA by removing states one at a time and replacing
transition labels with regexps to account for removed state

qrem

q1

q2

q3

o2

o1

R1
i

R2
i

R3
i

R1
o

R2
o

qremqi o1
Ri Ro

Rs

Ri (Rs) ∗ Ro

Imdad ullah Khan (LUMS) Finite Automata 15 / 17



Making Regexp from NFA

yx
a

z

b

b a

a, b

s
ϵ yx

a
b

b a

a+ b f
ϵz

(b + ab∗a)(a + b)∗ϵ

1. Input NFA 2. Initial GNFA 3. Removing State x

4. Redrawn GNFA 5. Removing State y 6. Redrawn GNFA

7. Removing State z 8. Final GNFA 9. Output Regexp

ϵ yx
a

b

b a

a+ b f
ϵz

ϵa

ϵb

s y
a

b

b a

a+ b
ϵ

fz

s y
a

b

b a

a+ b
ϵ

f

ab∗a

z

s

b+ ab∗a

a+ b
ϵ

fz

(b+
ab ∗

a)(a+
b) ∗ϵ s

(b+ ab∗a)(a+ b)∗ϵ

f

s

b+ ab∗a

a+ b
ϵ

fz

Imdad ullah Khan (LUMS) Finite Automata 16 / 17



Making Regexp from NFA

b∗a
(
a+ bb∗a

)∗
ba∗

s f

y

a+ bb∗a

ba∗
s f

b∗a

yx
a

b

a
ba∗

b

s f
ϵ

y zx
a b

b

a ab

s f
ϵ ϵ

y zx
a b

b

a ab

Imdad ullah Khan (LUMS) Finite Automata 17 / 17


