Finite Automata

- Deterministic Finite Automata
- Languages decided by a DFA Regular Languages
- Closure Properties of regular languages
- Non-Deterministic Finite Automata, DFA= NFA
- Regular Expression: Computation as Description
- DFA=NFA=RegExp, Generalized NFA
- Non-Regular Languages, The Pumping Lemma
- Minimizing DFA

Imdad ullah Khan

Equivalence of DFA, NFA, and RegExp

$\mathsf{DFA} \equiv \mathsf{NFA} \equiv \mathsf{RegExp}$

L is regular \iff *L* can be represented by a regex

If L can be represented by a regexp, then L can be recognized by an NFA

If L can be recognized by an NFA, then L can be represented by a regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Base cases:

Regexp	Language	NFA, N	L(N)
$R = \emptyset$	$L(R) = \emptyset$	-	Ø
$R = \epsilon$	$L(R) = \{\epsilon\}$	-	$\{\epsilon\}$
R = a	$L(R) = \{a\}$		$\rightarrow \bigcirc \{a\}$

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k is recognized by an NFA

Inductive Step: Let *R* a regexp of length *k*

Case 1: $R = R_1 + R_2$ $L(R) = L(R_1) \cup L(R_2)$ R_1 and R_2 have lengths < k, By IH, there exists N_1 and N_2 with $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$

By closure under union $\exists N$ with L(N) = L(R)

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k is recognized by an NFA

Inductive Step: Let *R* a regexp of length *k*

Case 2: $R = R_1 \circ R_2$ $L(R) = L(R_1) \circ L(R_2)$

 R_1 and R_2 have lengths < k,

By IH, there exists N_1 and N_2

with $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$

By closure under concatenation $\exists N$ with $L(N) = L(\overline{R})$

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k is recognized by an NFA

Inductive Step: Let *R* a regexp of length *k*

Case 3: $R = (R_1)^*$ $L(R) = L(R_1)^*$ R_1 has length < k,

By IH, there exists N_1 with $L(N_1) = L(R_1)$

By closure under start $\exists N$ with L(N) = L(R)

If L can be represented by a regexp, then L can be recognized by an NFA

Convert $(1(1+0))^*$ to NFA

If L can be represented by a regexp, then L can be recognized by an NFA

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Simplify NFA by removing states one at a time and replacing transition labels with regexps

We get generalized NFA

An NFA with following restriction and generalization

- Only one start state with no incoming transitions
- Only one final state with no outgoing transitions
- Start and final states are distinct
- Transitions are labeled with (general) regexps

Language of Generalized NFA (GNFA)

A GNFA accepts a string w, iff there is a walk from start state to final state with (concatenated) regexp $R_1R_2 \cdots R_k$ such that w matches $R_1R_2 \cdots R_k$

- G does not accept aaaa
- G accepts baa
- G accepts bba
- G does not accept aabaab
- G accepts aabba

Converting NFA to GNFA

Every NFA can be converted to a GNFA

An NFA with following restriction and generalization

- Only one start state with no incoming transitions
- Only one final state with no outgoing transitions
- Start and final states are distinct
- Transitions are labeled with (general) regexps
- If needed add a new start node with no incoming transition
- If needed add a unique final state with no outgoing transition
- Existing transitions are already labeled with (simple) regexps

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Let *N* be the NFA such that L(N) = L

- Convert the NFA N to a GNFA
- Reduce states in GNFA by removing states one at a time and replacing transition labels with regexps to account for removed state
- When only two states and one transition remains, the label of the one transition R is the required one, i.e. L(R) = L

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Let *N* be the NFA such that L(N) = L

Reduce states in GNFA by removing states one at a time and replacing transition labels with regexps to account for removed state

Making Regexp from NFA

Making Regexp from NFA

 $b^*a(a+bb^*a)^*ba^*$

s