Theory of Computation

Finite Automata

- Deterministic Finite Automata

■ Languages decided by a DFA - Regular Languages

- Closure Properties of regular languages

■ Non-Deterministic Finite Automata, DFA= NFA
■ Regular Expression: Computation as Description

- DFA=NFA=RegExp, Generalized NFA

■ Non-Regular Languages, The Pumping Lemma

- Minimizing DFA

Imdad ULLAH Khan

Equivalence of DFA, NFA, and RegExp

DFA \equiv NFA $\equiv \operatorname{RegExp}$

L is regular $\Longleftrightarrow L$ can be represented by a regex

If L can be represented by a regexp, then L can be recognized by an NFA

If L can be recognized by an NFA, then L can be represented by a regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp!
Base cases:

Regexp	Language	NFA, N	$L(N)$
$R=\emptyset$	$L(R)=\emptyset$	\rightarrow	\emptyset
$R=\epsilon$	$L(R)=\{\epsilon\}$		$\{\epsilon\}$
$R=a$	$L(R)=\{a\}$		$\{a\}$

If L can be represented by a regexp, then L can be recognized by an NFA
Proof by induction on the length of regexp! Inductive Hypothesis: Assume the language of every regexp of length $<k$ is recognized by an NFA

Inductive Step: Let R a regexp of length k

Case 1: $R=R_{1}+R_{2} \quad L(R)=L\left(R_{1}\right) \cup L\left(R_{2}\right)$
R_{1} and R_{2} have lengths $<k$,
By IH, there exists N_{1} and N_{2}
with $L\left(N_{1}\right)=L\left(R_{1}\right)$ and $L\left(N_{2}\right)=L\left(R_{2}\right)$
By closure under union $\exists N$ with $L(N)=L(R)$

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Proof by induction on the length of regexp! Inductive Hypothesis: Assume the language of every regexp of length $<k$ is recognized by an NFA

Inductive Step: Let R a regexp of length k

Case 2: $R=R_{1} \circ R_{2} \quad L(R)=L\left(R_{1}\right) \circ L\left(R_{2}\right)$
R_{1} and R_{2} have lengths $<k$,
By IH, there exists N_{1} and N_{2}
with $L\left(N_{1}\right)=L\left(R_{1}\right)$ and $L\left(N_{2}\right)=L\left(R_{2}\right)$

By closure under concatenation $\exists N$ with $L(N)=L(R)$

If L can be represented by a regexp, then L can be recognized by an NFA
Proof by induction on the length of regexp!
Inductive Hypothesis: Assume the language of every regexp of length $<k$ is recognized by an NFA

Inductive Step: Let R a regexp of length k

Case 3: $R=\left(R_{1}\right)^{*} \quad L(R)=L\left(R_{1}\right)^{*}$
R_{1} has length $<k$,
By IH, there exists N_{1} with $L\left(N_{1}\right)=L\left(R_{1}\right)$
By closure under start $\exists N$ with $L(N)=L(R)$

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Convert $(1(1+0))^{*}$ to NFA
Step 1:

0 :

Step 2:
$1+0$.

Step 3:
$1(1+0):$

Step 4:

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA

Convert
$a^{*}:$

$a^{*}+a b$ to NFA
$a b:$

Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Simplify NFA by removing states one at a time and replacing transition labels with regexps

We get generalized NFA

Generalized NFA

An NFA with following restriction and generalization

■ Only one start state with no incoming transitions
■ Only one final state with no outgoing transitions

- Start and final states are distinct
- Transitions are labeled with (general) regexps

Language of Generalized NFA (GNFA)

A GNFA accepts a string w, iff there is a walk from start state to final state with (concatenated) regexp $R_{1} R_{2} \cdots R_{k}$ such that w matches $R_{1} R_{2} \cdots R_{k}$

- G does not accept aaaa
- G accepts baa
- G accepts bba
- G does not accept aabaab

■ G accepts aabba

Converting NFA to GNFA

Every NFA can be converted to a GNFA
An NFA with following restriction and generalization

- Only one start state with no incoming transitions
- Only one final state with no outgoing transitions
- Start and final states are distinct

■ Transitions are labeled with (general) regexps

- If needed add a new start node with no incoming transition
- If needed add a unique final state with no outgoing transition

■ Existing transitions are already labeled with (simple) regexps

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Let N be the NFA such that $L(N)=L$

- Convert the NFA N to a GNFA

■ Reduce states in GNFA by removing states one at a time and replacing transition labels with regexps to account for removed state

- When only two states and one transition remains, the label of the one transition R is the required one, i.e. $L(R)=L$

Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp

Constructive Proof: Let N be the NFA such that $L(N)=L$
Reduce states in GNFA by removing states one at a time and replacing transition labels with regexps to account for removed state

Making Regexp from NFA

1. Input NFA
2. Initial GNFA

3. Redrawn GNFA

4. Removing State z

5. Removing State y

6. Final GNFA

Making Regexp from NFA

