Theory of Computation

Finite Automata

m Deterministic Finite Automata

m Languages decided by a DFA — Regular Languages
m Closure Properties of regular languages

m Non-Deterministic Finite Automata, DFA= NFA
m Regular Expression: Computation as Description

m DFA=NFA=RegExp, Generalized NFA

m Non-Regular Languages, The Pumping Lemma

m Minimizing DFA

IMDAD ULLAH KHAN

IMDAD ULLAH KHAN (LUMS) Finite Automata 1/17

Equivalence of DFA, NFA, and RegExp

IMDAD ULLAH KHAN (LUMS) Finite Automata

DFA = NFA = RegExp

L is regular <= L can be represented by a regex)

PROVED EARLIER
DFA <————— > NFA

I

Regular Regular
Languages Expressions

DEFINITION

If L can be represented by a regexp, then L can be recognized by an NFA J

If L can be recognized by an NFA, then L can be represented by a regexp J

IMDAD ULLAH KHAN (LUMS) Finite Automata 3/17

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA J

Proof by induction on the length of regexp!

Base cases:

Regexp Language NFA, N L(N)

R=10 LR =0 = —() 0

R=c LR ={ = —) {c}
R=a LR ={a} = ———) {a}

IMDAD ULLAH KHAN (LUMS) Finite Automata 4/17

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA J

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k
is recognized by an NFA

Inductive Step: Let R a regexp of length k

Case 1: R=R;+ R, L(R)= L(R))UL(Ry) M O

Ry and Rs have lengths < k, @

By IH, there exists Ny and N, ¢ @
N.

By closure under union 3 N with L(N) = L(R) ¢ ’ O

O

IMDAD ULLAH KHAN (LUMS) Finite Automata 5/17

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA J

Proof by induction on the length of regexp!

Inductive Hypothesis: Assume the language of every regexp of length < k
is recognized by an NFA

Inductive Step: Let R a regexp of length k

Case 2: R=RjoRy L(R)=L(Ri)oL(Ry) N OUNRE
Ry and Rs have lengths < k, S
. — OHe
By IH, there exists Ny and Ny
with L(Ny) = L(Ry) and L(Ns) = L(Rs) €

By closure under concatenation 3 N with L(N) = L(R)

IMDAD ULLAH KHAN (LUMS) Finite Automata 6/17

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA J

Proof by induction on the length of regexp!
Inductive Hypothesis: Assume the language of every regexp of length < k
is recognized by an NFA

Inductive Step: Let R a regexp of length k

Case 3: R=(R)* L(R) = L(Ry)"

R has length < k,

By IH, there exists Ny with L(Ny) = L(R;)
By closure under start 3 N with L(N) = L(R)

IMDAD ULLAH KHAN (LUMS) Finite Automata 7/17

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA J

Convert (1(1 + O))* to NFA
Step 1: Step 3:

1:_’01 e 1(1+0):
0:

IMDAD ULLAH KHAN (LUMS) Finite Automata 8/17

Making NFA from Regexp

If L can be represented by a regexp, then L can be recognized by an NFA J

a:

b :

Convert a* -
a*+ ab

to NFA ab :

a*+ ab :

IMDAD ULLAH KHAN (LUMS) Finite Automata 9/17

Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp J

Constructive Proof: Simplify NFA by removing states one at a time and
replacing transition labels with regexps

We get generalized NFA

IMDAD ULLAH KHAN (LUMS) Finite Automata 10/17

Generalized NFA

An NFA with following restriction and generalization

m Only one start state with no incoming transitions
m Only one final state with no outgoing transitions
m Start and final states are distinct

|

Transitions are labeled with (general) regexps

exactly one start state # exactly one final state

not allowed

IMDAD ULLAH KHAN (LUMS) Finite Automata 11/17

Language of Generalized NFA (GNFA)

A GNFA accepts a string w, iff there is a walk from start state to final
state with (concatenated) regexp R1R> - - - Ry such that w matches
RiRy - Rk

G

a+b
Ca Q o
G does not accept aaaa
G accepts baa

G accepts bba
G does not accept aabaab

G accepts aabba

IMDAD ULLAH KHAN (LUMS) Finite Automata

12/17

Converting NFA to GNFA

Every NFA can be converted to a GNFA

An NFA with following restriction and generalization

u
n
m Start and final states are distinct
u

Only one start state with no incoming transitions

Only one final state with no outgoing transitions

Transitions are labeled with (general) regexps

If needed add a new start node with no incoming transition
If needed add a unique final state with no outgoing transition
Existing transitions are already labeled with (simple) regexps

(]

N

7@\

O_
T
Q/

IMDAD ULLAH KHAN (LUMS)

Finite Automata

13/17

Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp J

Constructive Proof: Let N be the NFA such that L(N) =L
m Convert the NFA N to a GNFA

m Reduce states in GNFA by removing states one at a time and
replacing transition labels with regexps to account for removed state

m When only two states and one transition remains, the label of the one
transition R is the required one, i.e. L(R) =1L

k states k + 2 states k + 1 states 2 states
[NFA |=>(GNFA |=>(GNFA |= - = GNFA |=REGEXP]

IMDAD ULLAH KHAN (LUMS) Finite Automata 14 /17

Making Regexp from NFA

If L can be recognized by an NFA, then L can be represented by a regexp J

Constructive Proof: Let N be the NFA such that L(N) =L

Reduce states in GNFA by removing states one at a time and replacing
transition labels with regexps to account for removed state

IMDAD ULLAH KHAN (LUMS) Finite Automata 15 /17

Making Regexp from NFA

1. Input NFA 9. Initial GNFA 3. Removing State x

ab*a

8. Final GNFA 9. Output Regexp

(b+ ab*a)(a + b)*e

(b+ ab*a)(a +b)*e

\
b+ab*a’\
R

PR

a+bl |)

IMDAD ULLAH KHAN (LUMS) Finite Automata 16 /17

Making Regexp from NFA

—()— (v) = ©

17 /17

