## Finite Automata

- Deterministic Finite Automata
- Languages decided by a DFA Regular Languages
- Closure Properties of regular languages
- Non-Deterministic Finite Automata, DFA = NFA
- Regular Expression: Computation as Description
- DFA=NFA=RegExp, Generalized NFA
- Non-Regular Languages, The Pumping Lemma
- Minimizing DFA

# Imdad ullah Khan

## More Closure Properties of Regular Languages

## Regular Languages are closed under "Reversal"

For every NFA N, there is a DFA M such that L(M) = L(N)

 ${\sf Regular \ Languages} = {\sf DFA-Recognizable \ Languages} = {\sf NFA-Recognizable \ Languages}$ 

Definition (Regular Language)

A language L is regular if it is accepted by an NFA

#### Theorem

If L is a regular language over  $\Sigma$ , then  $L^R$  is also regular

**Proof:** If *L* is a regular, then there is a DFA *M* recognizing it The NFA  $M^R$  recognizes  $L^R$ , thus  $L^R$  is also regular

We can also make a DFA M' equivalent to  $M^R$ 

## Closure Properties via NFA

NFAs make proving closure properties simpler



What language is accepted by the new machine?

### Regular Languages are closed under "Concatenation"

If  $L_1$  and  $L_2$  are regular languages over  $\Sigma$ , then  $L_1 \circ L_2$  is also regular

 $M_1$  and  $M_2$ : DFAs recognizing  $L_1$  and  $L_2$ , make M to recognize  $L_1 \circ L_2$ 



Intuitively, M should simulate  $M_1$  until  $x_i$  (check if  $M_1$  is accepting) and then start to simulate  $M_2$  until  $y_j$  (and check if  $M_2$  is accepting) Don't know boundary of x and y, attach  $F_1$  to  $q_0^2$ 



## Regular Languages are closed under "Concatenation"

If  $L_1$  and  $L_2$  are regular languages over  $\Sigma$ , then  $L_1 \circ L_2$  is also regular

 $M_1$  and  $M_2$ : DFAs recognizing  $L_1$  and  $L_2$ , make M to recognize  $L_1 \circ L_2$ 



Intuitively, M should simulate  $M_1$  until  $x_i$  (check if  $M_1$  is accepting) and then start to simulate  $M_2$  until  $y_i$  (and check if  $M_2$  is accepting)

Don't know boundary of x and y, attach  $F_1$  to  $q_0^2$ 

Accepting state of  $M_2$  may be visited many times (don't indicate  $x_i$ ), need to guess end of x and beginning of y



## Regular Languages are closed under "Star"

L is a regular language  $\implies L^* = \{w_1 \dots w_n : n \ge 0 \land w_i \in L\}$  is regular

M: DFAs recognizing L.  $M^*$  simulates serial cascade of M to recognize  $L^*$ 



Give formal construction of NFA's to recognize the concatenation of two regular languages and the star of a regular language