Theory of Computation

Finite Automata

- Deterministic Finite Automata

■ Languages decided by a DFA - Regular Languages

- Closure Properties of regular languages

■ Non-Deterministic Finite Automata, DFA= NFA
■ Regular Expression: Computation as Description

- DFA=NFA=RegExp, Generalized NFA

■ Non-Regular Languages, The Pumping Lemma

- Minimizing DFA

Imdad ULLAH Khan

More Closure Properties of Regular Languages

Regular Languages are closed under "Reversal"

For every NFA N, there is a DFA M such that $L(M)=L(N)$

Regular Languages $=$ DFA-Recognizable Langauges $=$ NFA-Recognizable Languages

Definition (Regular Language)

A language L is regular if it is accepted by an NFA

Theorem

If L is a regular language over Σ, then L^{R} is also regular
Proof: If L is a regular, then there is a DFA M recognizing it The NFA M^{R} recognizes L^{R}, thus L^{R} is also regular We can also make a DFA M^{\prime} equivalent to M^{R}

Closure Properties via NFA

NFAs make proving closure properties simpler

What language is accepted by the new machine?

Regular Languages are closed under "Concatenation"

If L_{1} and L_{2} are regular languages over Σ, then $L_{1} \circ L_{2}$ is also regular
M_{1} and M_{2} : DFAs recognizing L_{1} and L_{2}, make M to recognize $L_{1} \circ L_{2}$

Intuitively, M should simulate M_{1} until x_{i} (check if M_{1} is accepting) and then start to simulate M_{2} until y_{j} (and check if M_{2} is accepting)
Don't know boundary of x and y, attach F_{1} to q_{0}^{2}

Regular Languages are closed under "Concatenation"

If L_{1} and L_{2} are regular languages over Σ, then $L_{1} \circ L_{2}$ is also regular
M_{1} and M_{2} : DFAs recognizing L_{1} and L_{2}, make M to recognize $L_{1} \circ L_{2}$

Intuitively, M should simulate M_{1} until x_{i} (check if M_{1} is accepting) and then start to simulate M_{2} until y_{j} (and check if M_{2} is accepting)
Don't know boundary of x and y, attach F_{1} to q_{0}^{2}
Accepting state of M_{2} may be visited many times (don't indicate x_{i}), need to guess end of x and beginning of y

Regular Languages are closed under "Star"

L is a regular language $\Longrightarrow L^{*}=\left\{w_{1} \ldots w_{n}: n \geq 0 \wedge w_{i} \in L\right\}$ is regular
M : DFAs recognizing $L . M^{*}$ simulates serial cascade of M to recognize L^{*}

Give formal construction of NFA's to recognize the concatenation of two regular languages and the star of a regular language

