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Non-Deterministic Finite Automata
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Are Regular Languages closed under “Reversal”?

Reverse LR = {wR : w ∈ L}

L = {ϵ, a, ab, aab, aaab, aaaab} =⇒ LR = {ϵ, a, ba, baa, baaa, baaaa}

If L is regular, then is LR also regular?

M = (Q,Σ, q0, δ,F ): DFA recognizing L

M accepts w =⇒ w describes a directed “walk” from start to final state

What if we make MR by reversing all edge directions, making start state a
final state and turning final states into start state(s)

▷ Essentially, a “reverse DFA” that reads strings from right to left
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Issues with “Reverse” DFA

What if we make MR by reversing all edge directions, making start state a
final state and turning final states into start state(s)
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Issues with “Reverse” DFA

What if we make MR by reversing all edge directions, making start state a
final state and turning final states into start state(s)
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L(M) =
{
x001y : x , y ∈ {0, 1}∗

}
Ignoring the issues with MR

Run MR on 100 ∈ LR - Move/stay choices at p0 and p1 on input 1 and 0

There is a walk (with a set of choices) that “accepts” string 100 = 001R

There is a walk (with a set of choices) that “accepts” 010011 = 110010R

There is a walk (with a set of choices) that “accepts” 000100

There is no walk (with any set of choices) that “accepts” 001111

There is no walk (with any set of choices) that “accepts” 1111

We got a creature that somewhat recognizes reverse of a regular language
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Non-Deterministic Finite Automata (NDFA)

A Non Deterministic Finite
Automata has constant
working memory and perfect
guessing capability
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A nondeterministic finite automata or finite
state machine is a little creature

it has tiny eyes that can see only one
symbol

it changes its state of mind according
to the symbol it sees or without it

it can only remember its current state
of mind

it can make choice to change its state
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Anatomy of NFA

NFA over Σ depicted as digraph with self-loops
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NFA accepts string w if there is some walk from a start to accept state
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NFA: Formal Definition

An NFA N is a 5-tuple N = (Q,Σ,Q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

Q0 ⊆ Q A set of start or initial states

δ : Q ×
(
Σ ∪ {ϵ}

)
7→ P

(
Q
)

Non-deterministic transition function

F ⊆ Q Set of accept/final states

N accepts w ∈ Σ∗ if there is a sequence r0, r1, . . . , rn and w can be
written as w1,w2, . . . ,wn with wi ∈ Σ ∪ {ϵ} such that

r0 ∈ Q0

ri+1 ∈ δ(ri ,wi+1)

rn ∈ F

L(N): the language reccognized by N = set of strings N accepts
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Languages of NFA

N = (Q,Σ,Q0, δ,F )

Q = {q1, q2, q3, q4}
Σ = {0, 1}
Q0 = {q1, q2}
δ(q1, 1) = {q4}, δ(q2, 0) = {q3},
δ(q3, 0) = {q4}
F = {q4}
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L(N) = {00, 1}?
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Languages of NFA

N = (Q,Σ,Q0, δ,F )

Q = {q1, q2, q3, q4}
Σ = {0, 1}
Q0 = {q1, q2}

δ(q1, 0) = {q3}, δ(q2, 1) = {q4},
δ(q3, 0) = {q4}, δ(q3, ϵ) = {q2}

F = {q4}
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0 ∈ L(N)? 1 ∈ L(N)? 00 ∈ L(N)? 01 ∈ L(N)? 10 ∈ L(N)?
11 ∈ L(N)?
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Languages of NFA

N = (Q,Σ,Q0, δ,F )

Q = {q1, q2, q3}
Σ = {0, 1}
Q0 = {q1}

δ(q1, 0) = {q1, q2}, δ(q1, 1) = {q1},
δ(q1, ϵ) = {q2}, δ(q2, 0) = {q3},
δ(q3, 0) = {q3}, δ(q3, 1) = {q3}

F = {q3}
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L(N) = {w : w contains a 0}
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Languages of NFA
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L(N) = {w : w ends with 00 or 01}
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Languages of NFA
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NFA vs DFA

NFA are generally significantly simpler than DFA
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NFA vs DFA

NFA are generally significantly simpler than DFA
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NFA vs DFA

Multiple start states is not an issue

Some authors require even an NFA to have exactly one start state

Any NFA with multiple start states can be converted to one with one start
state as follows
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