
Theory of Computation

Finite Automata

Deterministic Finite Automata

Languages decided by a DFA – Regular Languages

Closure Properties of regular languages

Non-Deterministic Finite Automata, DFA= NFA

Regular Expression: Computation as Description

DFA=NFA=RegExp, Generalized NFA

Non-Regular Languages, The Pumping Lemma

Minimizing DFA

Imdad ullah Khan

Imdad ullah Khan (LUMS) Finite Automata 1 / 16



Non-Deterministic Finite Automata

Imdad ullah Khan (LUMS) Finite Automata 2 / 16



Are Regular Languages closed under “Reversal”?

Reverse LR = {wR : w ∈ L}

L = {ϵ, a, ab, aab, aaab, aaaab} =⇒ LR = {ϵ, a, ba, baa, baaa, baaaa}

If L is regular, then is LR also regular?

M = (Q,Σ, q0, δ,F ): DFA recognizing L

M accepts w =⇒ w describes a directed “walk” from start to final state

What if we make MR by reversing all edge directions, making start state a
final state and turning final states into start state(s)

▷ Essentially, a “reverse DFA” that reads strings from right to left

Imdad ullah Khan (LUMS) Finite Automata 3 / 16



Issues with “Reverse” DFA

What if we make MR by reversing all edge directions, making start state a
final state and turning final states into start state(s)

q0 q1 q2

1

0

0

1

1
0

q0 q1

0

1

10

q0

q1

q2

q3

1 1

0

1
0

1

0
0

a, b, c

q2 q3q1q0
a, b, c

c

b, c

a, ba

a, b, c

q2 q3q1q0
a, b, c

c

b, c

a, ba

q0

q1

q2

q3

1 1

0

1
0

1

0
0

q0 q1

0

1

10

q0 q1 q2

1

0

0

1

1
0

multiple start
states

states with ≥ 1
transitions for σ

states with 0
transitions for σ

Imdad ullah Khan (LUMS) Finite Automata 4 / 16



Issues with “Reverse” DFA

What if we make MR by reversing all edge directions, making start state a
final state and turning final states into start state(s)

p1 p0p2p3
10

0, 1

1

0

0
1

M MR

q00 q001q0q 10

0, 1

1

0

01

L(M) =
{
x001y : x , y ∈ {0, 1}∗

}
Ignoring the issues with MR

Run MR on 100 ∈ LR - Move/stay choices at p0 and p1 on input 1 and 0

There is a walk (with a set of choices) that “accepts” string 100 = 001R

There is a walk (with a set of choices) that “accepts” 010011 = 110010R

There is a walk (with a set of choices) that “accepts” 000100

There is no walk (with any set of choices) that “accepts” 001111

There is no walk (with any set of choices) that “accepts” 1111

We got a creature that somewhat recognizes reverse of a regular language

Imdad ullah Khan (LUMS) Finite Automata 5 / 16



Non-Deterministic Finite Automata (NDFA)

A Non Deterministic Finite
Automata has constant
working memory and perfect
guessing capability

O(1)

Working Memory

Program Memory

Finite Automaton

CPU
Output
Memory

n bits

Memory
Input

Automaton

A nondeterministic finite automata or finite
state machine is a little creature

it has tiny eyes that can see only one
symbol

it changes its state of mind according
to the symbol it sees or without it

it can only remember its current state
of mind

it can make choice to change its state

q0

q1

q2

q3

1
1

0

10

1

0

0
q0 q1

0

1

0 1

Imdad ullah Khan (LUMS) Finite Automata 6 / 16



Anatomy of NFA

NFA over Σ depicted as digraph with self-loops

q0

q1

q2

q3

1
0, 1

0, 1

1
0,1

1

non-deterministic transition

states

initial states accepting states

0

ϵ

0

ϵ-transition

Multiple start states allowed

Any number of outgoing
arrows allowed from a state
for a symbol σ

Transitions on an empty
string ϵ are also allowed

0

0, 1

multiple
transitions on 0

0

no transition on 1

ϵ

transition on ϵ

no symbol consumed

NFA accepts string w if there is some walk from a start to accept state

Imdad ullah Khan (LUMS) Finite Automata 7 / 16



NFA: Formal Definition

An NFA N is a 5-tuple N = (Q,Σ,Q0, δ,F )

Q: A finite set of states

Σ: Alphabet ▷ A finite set of characters

Q0 ⊆ Q A set of start or initial states

δ : Q ×
(
Σ ∪ {ϵ}

)
7→ P

(
Q
)

Non-deterministic transition function

F ⊆ Q Set of accept/final states

N accepts w ∈ Σ∗ if there is a sequence r0, r1, . . . , rn and w can be
written as w1,w2, . . . ,wn with wi ∈ Σ ∪ {ϵ} such that

r0 ∈ Q0

ri+1 ∈ δ(ri ,wi+1)

rn ∈ F

L(N): the language reccognized by N = set of strings N accepts

Imdad ullah Khan (LUMS) Finite Automata 8 / 16



Languages of NFA

N = (Q,Σ,Q0, δ,F )

Q = {q1, q2, q3, q4}
Σ = {0, 1}
Q0 = {q1, q2}
δ(q1, 1) = {q4}, δ(q2, 0) = {q3},
δ(q3, 0) = {q4}
F = {q4}

q2

q4q1

q3
0

0

1

L(N) = {00, 1}?

Imdad ullah Khan (LUMS) Finite Automata 9 / 16



Languages of NFA

N = (Q,Σ,Q0, δ,F )

Q = {q1, q2, q3, q4}
Σ = {0, 1}
Q0 = {q1, q2}

δ(q1, 0) = {q3}, δ(q2, 1) = {q4},
δ(q3, 0) = {q4}, δ(q3, ϵ) = {q2}

F = {q4}

q2 q4

q1 q3
0

0

1

ϵ

0 ∈ L(N)? 1 ∈ L(N)? 00 ∈ L(N)? 01 ∈ L(N)? 10 ∈ L(N)?
11 ∈ L(N)?

Imdad ullah Khan (LUMS) Finite Automata 10 / 16



Languages of NFA

N = (Q,Σ,Q0, δ,F )

Q = {q1, q2, q3}
Σ = {0, 1}
Q0 = {q1}

δ(q1, 0) = {q1, q2}, δ(q1, 1) = {q1},
δ(q1, ϵ) = {q2}, δ(q2, 0) = {q3},
δ(q3, 0) = {q3}, δ(q3, 1) = {q3}

F = {q3}

q2q1
0, ϵ

q3
0

0, 10, 1

L(N) = {w : w contains a 0}

Imdad ullah Khan (LUMS) Finite Automata 11 / 16



Languages of NFA

q2q1
0

q3
0, 1

0, 1

L(N) = {w : w ends with 00 or 01}

Imdad ullah Khan (LUMS) Finite Automata 12 / 16



Languages of NFA

q0

0, 1

q5q4
0

q6
1

q2q1
1

q3
0

ϵ

ϵ

Imdad ullah Khan (LUMS) Finite Automata 13 / 16



NFA vs DFA

NFA are generally significantly simpler than DFA

q1q1
1

q1q1
1

q3
0, 1

0 0, 1DFA, D NFA, N

L(D) = L(N) = {1}

Imdad ullah Khan (LUMS) Finite Automata 14 / 16



NFA vs DFA

NFA are generally significantly simpler than DFA

q0 q1 q2

1
0

1

0

q4 0, 1

1

0

q0 q1
0 1

0, 1

L(D) = L(N) = {w : w begins with 0 and ends with 1}

q2

Imdad ullah Khan (LUMS) Finite Automata 15 / 16



NFA vs DFA

Multiple start states is not an issue

Some authors require even an NFA to have exactly one start state

Any NFA with multiple start states can be converted to one with one start
state as follows

s0

s1 s2 s3s1 s2 s3

ϵ ϵ ϵ

Imdad ullah Khan (LUMS) Finite Automata 16 / 16


