Theory of Computation

Finite Automata

- Deterministic Finite Automata

■ Languages decided by a DFA - Regular Languages

- Closure Properties of regular languages

■ Non-Deterministic Finite Automata, DFA= NFA
■ Regular Expression: Computation as Description

- DFA=NFA=RegExp, Generalized NFA

■ Non-Regular Languages, The Pumping Lemma

- Minimizing DFA

Imdad ULLAH Khan

Non-Deterministic Finite Automata

Are Regular Languages closed under "Reversal"?
Reverse $L^{R}=\left\{w^{R}: w \in L\right\}$
$L=\{\epsilon, a, a b, a a b, a a a b, a a a a b\} \Longrightarrow L^{R}=\{\epsilon, a, b a, b a a, b a a a, b a a a a\}$
If L is regular, then is L^{R} also regular?
$M=\left(Q, \Sigma, q_{0}, \delta, F\right): \quad$ DFA recognizing L
M accepts $w \Longrightarrow w$ describes a directed "walk" from start to final state

What if we make M^{R} by reversing all edge directions, making start state a final state and turning final states into start state(s)
\triangleright Essentially, a "reverse DFA" that reads strings from right to left

Issues with "Reverse" DFA

What if we make M^{R} by reversing all edge directions, making start state a final state and turning final states into start state(s)

Issues with "Reverse" DFA

What if we make M^{R} by reversing all edge directions, making start state a final state and turning final states into start state(s)

$L(M)=\left\{x 001 y: x, y \in\{0,1\}^{*}\right\}$
Ignoring the issues with M^{R}
Run M_{R} on $100 \in L^{R}$ - Move/stay choices at p_{0} and p_{1} on input 1 and 0
There is a walk (with a set of choices) that "accepts" string $100=001^{R}$
There is a walk (with a set of choices) that "accepts" $010011=110010^{R}$
There is a walk (with a set of choices) that "accepts" 000100
There is no walk (with any set of choices) that "accepts" 001111
There is no walk (with any set of choices) that "accepts" 1111
We got a creature that somewhat recognizes reverse of a regular language

Non-Deterministic Finite Automata (NDFA)

A nondeterministic finite automata or finite state machine is a little creature

- it has tiny eyes that can see only one symbol
- it changes its state of mind according to the symbol it sees or without it
- it can only remember its current state of mind
- it can make choice to change its state

Anatomy of NFA

NFA over Σ depicted as digraph with self-loops

non-deterministic transition

■ Multiple start states allowed

- Any number of outgoing arrows allowed from a state for a symbol σ
- Transitions on an empty string ϵ are also allowed

no transition on 1

transition on ϵ

no symbol consumed

NFA accepts string w if there is some walk from a start to accept state

An NFA N is a 5-tuple $\quad N=\left(Q, \Sigma, Q_{0}, \delta, F\right)$

- Q: A finite set of states
- Σ : Alphabet
\triangleright A finite set of characters
- $Q_{0} \subseteq Q \quad$ A set of start or initial states

■ $\delta: Q \times(\Sigma \cup\{\epsilon\}) \mapsto \mathcal{P}(Q) \quad$ Non-deterministic transition function
■ $F \subseteq Q \quad$ Set of accept/final states
N accepts $w \in \Sigma^{*}$ if there is a sequence $r_{0}, r_{1}, \ldots, r_{n}$ and w can be written as $w_{1}, w_{2}, \ldots, w_{n}$ with $w_{i} \in \Sigma \cup\{\epsilon\}$ such that

- $r_{0} \in Q_{0}$
- $r_{i+1} \in \delta\left(r_{i}, w_{i+1}\right)$
- $r_{n} \in F$
$L(N)$: the language reccognized by $N=$ set of strings N accepts

Languages of NFA

$$
\begin{aligned}
& N=\left(Q, \Sigma, Q_{0}, \delta, F\right) \\
& Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& \Sigma=\{0,1\} \\
& Q_{0}=\left\{q_{1}, q_{2}\right\} \\
& \delta\left(q_{1}, 1\right)=\left\{q_{4}\right\}, \delta\left(q_{2}, 0\right)=\left\{q_{3}\right\} \\
& \delta\left(q_{3}, 0\right)=\left\{q_{4}\right\} \\
& F=\left\{q_{4}\right\} \\
& L(N)=\{00,1\} ?
\end{aligned}
$$

Languages of NFA

$$
\begin{aligned}
& N=\left(Q, \Sigma, Q_{0}, \delta, F\right) \\
& Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\} \\
& \Sigma=\{0,1\} \\
& Q_{0}=\left\{q_{1}, q_{2}\right\} \\
& \delta\left(q_{1}, 0\right)=\left\{q_{3}\right\}, \delta\left(q_{2}, 1\right)=\left\{q_{4}\right\}, \\
& \delta\left(q_{3}, 0\right)=\left\{q_{4}\right\}, \delta\left(q_{3}, \epsilon\right)=\left\{q_{2}\right\} \\
& F=\left\{q_{4}\right\} \\
& 0 \in L(N) ? \quad 1 \in L(N) ? \quad 00 \in L(N) ? \quad 01 \in L(N) ? \\
& 11 \in L(N) ?
\end{aligned}
$$

Languages of NFA

$$
\begin{aligned}
& N=\left(Q, \Sigma, Q_{0}, \delta, F\right) \\
& Q=\left\{q_{1}, q_{2}, q_{3}\right\} \\
& \Sigma=\{0,1\} \\
& Q_{0}=\left\{q_{1}\right\} \\
& \delta\left(q_{1}, 0\right)=\left\{q_{1}, q_{2}\right\}, \delta\left(q_{1}, 1\right)=\left\{q_{1}\right\}, \\
& \delta\left(q_{1}, \epsilon\right)=\left\{q_{2}\right\}, \delta\left(q_{2}, 0\right)=\left\{q_{3}\right\}, \\
& \delta\left(q_{3}, 0\right)=\left\{q_{3}\right\}, \delta\left(q_{3}, 1\right)=\left\{q_{3}\right\} \\
& F=\left\{q_{3}\right\}
\end{aligned}
$$

$\mathbf{L}(\mathbf{N})=\{\mathbf{w}: \mathbf{w}$ contains a $\mathbf{0}\}$

Languages of NFA

Languages of NFA

NFA vs DFA

NFA are generally significantly simpler than DFA

NFA, N

$$
\mathbf{L}(\mathbf{D})=\mathbf{L}(\mathbf{N})=\{\mathbf{1}\}
$$

NFA vs DFA

NFA are generally significantly simpler than DFA

$\mathbf{L}(\mathbf{D})=\mathbf{L}(\mathbf{N})=\{\mathbf{w}: \mathbf{w}$ begins with 0 and ends with 1$\}$

NFA vs DFA

Multiple start states is not an issue
Some authors require even an NFA to have exactly one start state
Any NFA with multiple start states can be converted to one with one start state as follows

